diff --git a/Doc/library/rational.rst b/Doc/library/fractions.rst similarity index 60% rename from Doc/library/rational.rst rename to Doc/library/fractions.rst index 8ed702f5f8c..af6ed76386e 100644 --- a/Doc/library/rational.rst +++ b/Doc/library/fractions.rst @@ -1,29 +1,29 @@ -:mod:`rational` --- Rational numbers +:mod:`fractions` --- Rational numbers ==================================== -.. module:: rational +.. module:: fractions :synopsis: Rational numbers. .. moduleauthor:: Jeffrey Yasskin .. sectionauthor:: Jeffrey Yasskin .. versionadded:: 2.6 -The :mod:`rational` module defines an immutable, infinite-precision -Rational number class. +The :mod:`fractions` module defines an immutable, infinite-precision +Fraction number class. -.. class:: Rational(numerator=0, denominator=1) - Rational(other_rational) - Rational(string) +.. class:: Fraction(numerator=0, denominator=1) + Fraction(other_fraction) + Fraction(string) The first version requires that *numerator* and *denominator* are instances of :class:`numbers.Integral` and returns a new - ``Rational`` representing ``numerator/denominator``. If + ``Fraction`` representing ``numerator/denominator``. If *denominator* is :const:`0`, raises a :exc:`ZeroDivisionError`. The - second version requires that *other_rational* is an instance of + second version requires that *other_fraction* is an instance of :class:`numbers.Rational` and returns an instance of - :class:`Rational` with the same value. The third version expects a + :class:`Fraction` with the same value. The third version expects a string of the form ``[-+]?[0-9]+(/[0-9]+)?``, optionally surrounded by spaces. @@ -31,39 +31,39 @@ Rational number class. :class:`numbers.Rational` and is immutable and hashable. -.. method:: Rational.from_float(flt) +.. method:: Fraction.from_float(flt) - This classmethod constructs a :class:`Rational` representing the + This classmethod constructs a :class:`Fraction` representing the exact value of *flt*, which must be a :class:`float`. Beware that - ``Rational.from_float(0.3)`` is not the same value as ``Rational(3, + ``Fraction.from_float(0.3)`` is not the same value as ``Fraction(3, 10)`` -.. method:: Rational.from_decimal(dec) +.. method:: Fraction.from_decimal(dec) - This classmethod constructs a :class:`Rational` representing the + This classmethod constructs a :class:`Fraction` representing the exact value of *dec*, which must be a :class:`decimal.Decimal`. -.. method:: Rational.__floor__() +.. method:: Fraction.__floor__() Returns the greatest :class:`int` ``<= self``. Will be accessible through :func:`math.floor` in Py3k. -.. method:: Rational.__ceil__() +.. method:: Fraction.__ceil__() Returns the least :class:`int` ``>= self``. Will be accessible through :func:`math.ceil` in Py3k. -.. method:: Rational.__round__() - Rational.__round__(ndigits) +.. method:: Fraction.__round__() + Fraction.__round__(ndigits) The first version returns the nearest :class:`int` to ``self``, rounding half to even. The second version rounds ``self`` to the - nearest multiple of ``Rational(1, 10**ndigits)`` (logically, if + nearest multiple of ``Fraction(1, 10**ndigits)`` (logically, if ``ndigits`` is negative), again rounding half toward even. Will be accessible through :func:`round` in Py3k. diff --git a/Doc/library/numbers.rst b/Doc/library/numbers.rst index 6ee8f271866..7a5f1051eed 100644 --- a/Doc/library/numbers.rst +++ b/Doc/library/numbers.rst @@ -106,7 +106,7 @@ Notes for type implementors Implementors should be careful to make equal numbers equal and hash them to the same values. This may be subtle if there are two different -extensions of the real numbers. For example, :class:`rational.Rational` +extensions of the real numbers. For example, :class:`fractions.Fraction` implements :func:`hash` as follows:: def __hash__(self): @@ -201,11 +201,11 @@ in :class:`complex`, and both :meth:`__radd__` s land there, so ``a+b Because most of the operations on any given type will be very similar, it can be useful to define a helper function which generates the forward and reverse instances of any given operator. For example, -:class:`rational.Rational` uses:: +:class:`fractions.Fraction` uses:: def _operator_fallbacks(monomorphic_operator, fallback_operator): def forward(a, b): - if isinstance(b, (int, long, Rational)): + if isinstance(b, (int, long, Fraction)): return monomorphic_operator(a, b) elif isinstance(b, float): return fallback_operator(float(a), b) @@ -217,7 +217,7 @@ forward and reverse instances of any given operator. For example, forward.__doc__ = monomorphic_operator.__doc__ def reverse(b, a): - if isinstance(a, RationalAbc): + if isinstance(a, Rational): # Includes ints. return monomorphic_operator(a, b) elif isinstance(a, numbers.Real): @@ -233,7 +233,7 @@ forward and reverse instances of any given operator. For example, def _add(a, b): """a + b""" - return Rational(a.numerator * b.denominator + + return Fraction(a.numerator * b.denominator + b.numerator * a.denominator, a.denominator * b.denominator) diff --git a/Doc/whatsnew/2.6.rst b/Doc/whatsnew/2.6.rst index cbc8b8fdacb..83cca99dcd6 100644 --- a/Doc/whatsnew/2.6.rst +++ b/Doc/whatsnew/2.6.rst @@ -578,8 +578,8 @@ and comparisons. :class:`Rational` numbers derive from :class:`Real`, have :attr:`numerator` and :attr:`denominator` properties, and can be -converted to floats. Python 2.6 adds a simple rational-number class -in the :mod:`rational` module. +converted to floats. Python 2.6 adds a simple rational-number class, +:class:`Fraction`, in the :mod:`fractions` module. :class:`Integral` numbers derive from :class:`Rational`, and can be shifted left and right with ``<<`` and ``>>``, @@ -598,29 +598,29 @@ one, :func:`trunc`, that's been backported to Python 2.6. -The Rational Module +The Fraction Module -------------------------------------------------- To fill out the hierarchy of numeric types, a rational-number class -has been added as the :mod:`rational` module. Rational numbers are +has been added as the :mod:`fractions` module. Rational numbers are represented as a fraction; rational numbers can exactly represent numbers such as two-thirds that floating-point numbers can only approximate. -The :class:`Rational` constructor takes two :class:`Integral` values +The :class:`Fraction` constructor takes two :class:`Integral` values that will be the numerator and denominator of the resulting fraction. :: - >>> from rational import Rational - >>> a = Rational(2, 3) - >>> b = Rational(2, 5) + >>> from fractions import Fraction + >>> a = Fraction(2, 3) + >>> b = Fraction(2, 5) >>> float(a), float(b) (0.66666666666666663, 0.40000000000000002) >>> a+b - rational.Rational(16,15) + Fraction(16,15) >>> a/b - rational.Rational(5,3) + Fraction(5,3) -The :mod:`rational` module is based upon an implementation by Sjoerd +The :mod:`fractions` module is based upon an implementation by Sjoerd Mullender that was in Python's :file:`Demo/classes/` directory for a long time. This implementation was significantly updated by Jeffrey Yaskin. diff --git a/Lib/rational.py b/Lib/fractions.py similarity index 81% rename from Lib/rational.py rename to Lib/fractions.py index b45da13568d..3f070de0f1a 100755 --- a/Lib/rational.py +++ b/Lib/fractions.py @@ -9,9 +9,9 @@ import numbers import operator import re -__all__ = ["Rational"] +__all__ = ["Fraction"] -RationalAbc = numbers.Rational +Rational = numbers.Rational def gcd(a, b): @@ -39,15 +39,15 @@ _RATIONAL_FORMAT = re.compile(r""" """, re.VERBOSE) -class Rational(RationalAbc): +class Fraction(Rational): """This class implements rational numbers. - Rational(8, 6) will produce a rational number equivalent to + Fraction(8, 6) will produce a rational number equivalent to 4/3. Both arguments must be Integral. The numerator defaults to 0 - and the denominator defaults to 1 so that Rational(3) == 3 and - Rational() == 0. + and the denominator defaults to 1 so that Fraction(3) == 3 and + Fraction() == 0. - Rationals can also be constructed from strings of the form + Fractions can also be constructed from strings of the form '[-+]?[0-9]+((/|.)[0-9]+)?', optionally surrounded by spaces. """ @@ -56,13 +56,13 @@ class Rational(RationalAbc): # We're immutable, so use __new__ not __init__ def __new__(cls, numerator=0, denominator=1): - """Constructs a Rational. + """Constructs a Fraction. - Takes a string like '3/2' or '1.5', another Rational, or a + Takes a string like '3/2' or '1.5', another Fraction, or a numerator/denominator pair. """ - self = super(Rational, cls).__new__(cls) + self = super(Fraction, cls).__new__(cls) if denominator == 1: if isinstance(numerator, basestring): @@ -70,7 +70,7 @@ class Rational(RationalAbc): input = numerator m = _RATIONAL_FORMAT.match(input) if m is None: - raise ValueError('Invalid literal for Rational: ' + input) + raise ValueError('Invalid literal for Fraction: ' + input) numerator = m.group('num') decimal = m.group('decimal') if decimal: @@ -87,7 +87,7 @@ class Rational(RationalAbc): numerator = -numerator elif (not isinstance(numerator, numbers.Integral) and - isinstance(numerator, RationalAbc)): + isinstance(numerator, Rational)): # Handle copies from other rationals. other_rational = numerator numerator = other_rational.numerator @@ -95,11 +95,11 @@ class Rational(RationalAbc): if (not isinstance(numerator, numbers.Integral) or not isinstance(denominator, numbers.Integral)): - raise TypeError("Rational(%(numerator)s, %(denominator)s):" + raise TypeError("Fraction(%(numerator)s, %(denominator)s):" " Both arguments must be integral." % locals()) if denominator == 0: - raise ZeroDivisionError('Rational(%s, 0)' % numerator) + raise ZeroDivisionError('Fraction(%s, 0)' % numerator) g = gcd(numerator, denominator) self._numerator = int(numerator // g) @@ -110,15 +110,15 @@ class Rational(RationalAbc): def from_float(f): """Converts a finite float to a rational number, exactly. - Beware that Rational.from_float(0.3) != Rational(3, 10). + Beware that Fraction.from_float(0.3) != Fraction(3, 10). """ if not isinstance(f, float): - raise TypeError("Rational.from_float() only takes floats, " + raise TypeError("Fraction.from_float() only takes floats, " "not %r (%s)" % (f, type(f).__name__)) if math.isnan(f) or math.isinf(f): - raise TypeError("Cannot convert %r to Rational." % f) - return Rational(*f.as_integer_ratio()) + raise TypeError("Cannot convert %r to Fraction." % f) + return Fraction(*f.as_integer_ratio()) @staticmethod def from_decimal(dec): @@ -126,28 +126,28 @@ class Rational(RationalAbc): from decimal import Decimal if not isinstance(dec, Decimal): raise TypeError( - "Rational.from_decimal() only takes Decimals, not %r (%s)" % + "Fraction.from_decimal() only takes Decimals, not %r (%s)" % (dec, type(dec).__name__)) if not dec.is_finite(): # Catches infinities and nans. - raise TypeError("Cannot convert %s to Rational." % dec) + raise TypeError("Cannot convert %s to Fraction." % dec) sign, digits, exp = dec.as_tuple() digits = int(''.join(map(str, digits))) if sign: digits = -digits if exp >= 0: - return Rational(digits * 10 ** exp) + return Fraction(digits * 10 ** exp) else: - return Rational(digits, 10 ** -exp) + return Fraction(digits, 10 ** -exp) @staticmethod def from_continued_fraction(seq): - 'Build a Rational from a continued fraction expessed as a sequence' + 'Build a Fraction from a continued fraction expessed as a sequence' n, d = 1, 0 for e in reversed(seq): n, d = d, n n += e * d - return Rational(n, d) if seq else Rational(0) + return Fraction(n, d) if seq else Fraction(0) def as_continued_fraction(self): 'Return continued fraction expressed as a list' @@ -169,7 +169,7 @@ class Rational(RationalAbc): if self.denominator <= max_denominator: return self cf = self.as_continued_fraction() - result = Rational(0) + result = Fraction(0) for i in range(1, len(cf)): new = self.from_continued_fraction(cf[:i]) if new.denominator > max_denominator: @@ -187,7 +187,7 @@ class Rational(RationalAbc): def __repr__(self): """repr(self)""" - return ('Rational(%r,%r)' % (self.numerator, self.denominator)) + return ('Fraction(%r,%r)' % (self.numerator, self.denominator)) def __str__(self): """str(self)""" @@ -207,13 +207,13 @@ class Rational(RationalAbc): that mixed-mode operations either call an implementation whose author knew about the types of both arguments, or convert both to the nearest built in type and do the operation there. In - Rational, that means that we define __add__ and __radd__ as: + Fraction, that means that we define __add__ and __radd__ as: def __add__(self, other): # Both types have numerators/denominator attributes, # so do the operation directly - if isinstance(other, (int, long, Rational)): - return Rational(self.numerator * other.denominator + + if isinstance(other, (int, long, Fraction)): + return Fraction(self.numerator * other.denominator + other.numerator * self.denominator, self.denominator * other.denominator) # float and complex don't have those operations, but we @@ -228,8 +228,8 @@ class Rational(RationalAbc): def __radd__(self, other): # radd handles more types than add because there's # nothing left to fall back to. - if isinstance(other, RationalAbc): - return Rational(self.numerator * other.denominator + + if isinstance(other, Rational): + return Fraction(self.numerator * other.denominator + other.numerator * self.denominator, self.denominator * other.denominator) elif isinstance(other, Real): @@ -240,32 +240,32 @@ class Rational(RationalAbc): There are 5 different cases for a mixed-type addition on - Rational. I'll refer to all of the above code that doesn't - refer to Rational, float, or complex as "boilerplate". 'r' - will be an instance of Rational, which is a subtype of - RationalAbc (r : Rational <: RationalAbc), and b : B <: + Fraction. I'll refer to all of the above code that doesn't + refer to Fraction, float, or complex as "boilerplate". 'r' + will be an instance of Fraction, which is a subtype of + Rational (r : Fraction <: Rational), and b : B <: Complex. The first three involve 'r + b': - 1. If B <: Rational, int, float, or complex, we handle + 1. If B <: Fraction, int, float, or complex, we handle that specially, and all is well. - 2. If Rational falls back to the boilerplate code, and it + 2. If Fraction falls back to the boilerplate code, and it were to return a value from __add__, we'd miss the possibility that B defines a more intelligent __radd__, so the boilerplate should return NotImplemented from - __add__. In particular, we don't handle RationalAbc + __add__. In particular, we don't handle Rational here, even though we could get an exact answer, in case the other type wants to do something special. - 3. If B <: Rational, Python tries B.__radd__ before - Rational.__add__. This is ok, because it was - implemented with knowledge of Rational, so it can + 3. If B <: Fraction, Python tries B.__radd__ before + Fraction.__add__. This is ok, because it was + implemented with knowledge of Fraction, so it can handle those instances before delegating to Real or Complex. The next two situations describe 'b + r'. We assume that b - didn't know about Rational in its implementation, and that it + didn't know about Fraction in its implementation, and that it uses similar boilerplate code: - 4. If B <: RationalAbc, then __radd_ converts both to the + 4. If B <: Rational, then __radd_ converts both to the builtin rational type (hey look, that's us) and proceeds. 5. Otherwise, __radd__ tries to find the nearest common @@ -277,7 +277,7 @@ class Rational(RationalAbc): """ def forward(a, b): - if isinstance(b, (int, long, Rational)): + if isinstance(b, (int, long, Fraction)): return monomorphic_operator(a, b) elif isinstance(b, float): return fallback_operator(float(a), b) @@ -289,7 +289,7 @@ class Rational(RationalAbc): forward.__doc__ = monomorphic_operator.__doc__ def reverse(b, a): - if isinstance(a, RationalAbc): + if isinstance(a, Rational): # Includes ints. return monomorphic_operator(a, b) elif isinstance(a, numbers.Real): @@ -305,7 +305,7 @@ class Rational(RationalAbc): def _add(a, b): """a + b""" - return Rational(a.numerator * b.denominator + + return Fraction(a.numerator * b.denominator + b.numerator * a.denominator, a.denominator * b.denominator) @@ -313,7 +313,7 @@ class Rational(RationalAbc): def _sub(a, b): """a - b""" - return Rational(a.numerator * b.denominator - + return Fraction(a.numerator * b.denominator - b.numerator * a.denominator, a.denominator * b.denominator) @@ -321,13 +321,13 @@ class Rational(RationalAbc): def _mul(a, b): """a * b""" - return Rational(a.numerator * b.numerator, a.denominator * b.denominator) + return Fraction(a.numerator * b.numerator, a.denominator * b.denominator) __mul__, __rmul__ = _operator_fallbacks(_mul, operator.mul) def _div(a, b): """a / b""" - return Rational(a.numerator * b.denominator, + return Fraction(a.numerator * b.denominator, a.denominator * b.numerator) __truediv__, __rtruediv__ = _operator_fallbacks(_div, operator.truediv) @@ -337,7 +337,7 @@ class Rational(RationalAbc): """a // b""" # Will be math.floor(a / b) in 3.0. div = a / b - if isinstance(div, RationalAbc): + if isinstance(div, Rational): # trunc(math.floor(div)) doesn't work if the rational is # more precise than a float because the intermediate # rounding may cross an integer boundary. @@ -349,7 +349,7 @@ class Rational(RationalAbc): """a // b""" # Will be math.floor(a / b) in 3.0. div = a / b - if isinstance(div, RationalAbc): + if isinstance(div, Rational): # trunc(math.floor(div)) doesn't work if the rational is # more precise than a float because the intermediate # rounding may cross an integer boundary. @@ -375,14 +375,14 @@ class Rational(RationalAbc): result will be rational. """ - if isinstance(b, RationalAbc): + if isinstance(b, Rational): if b.denominator == 1: power = b.numerator if power >= 0: - return Rational(a.numerator ** power, + return Fraction(a.numerator ** power, a.denominator ** power) else: - return Rational(a.denominator ** -power, + return Fraction(a.denominator ** -power, a.numerator ** -power) else: # A fractional power will generally produce an @@ -397,8 +397,8 @@ class Rational(RationalAbc): # If a is an int, keep it that way if possible. return a ** b.numerator - if isinstance(a, RationalAbc): - return Rational(a.numerator, a.denominator) ** b + if isinstance(a, Rational): + return Fraction(a.numerator, a.denominator) ** b if b.denominator == 1: return a ** b.numerator @@ -406,16 +406,16 @@ class Rational(RationalAbc): return a ** float(b) def __pos__(a): - """+a: Coerces a subclass instance to Rational""" - return Rational(a.numerator, a.denominator) + """+a: Coerces a subclass instance to Fraction""" + return Fraction(a.numerator, a.denominator) def __neg__(a): """-a""" - return Rational(-a.numerator, a.denominator) + return Fraction(-a.numerator, a.denominator) def __abs__(a): """abs(a)""" - return Rational(abs(a.numerator), a.denominator) + return Fraction(abs(a.numerator), a.denominator) def __trunc__(a): """trunc(a)""" @@ -445,7 +445,7 @@ class Rational(RationalAbc): def __eq__(a, b): """a == b""" - if isinstance(b, RationalAbc): + if isinstance(b, Rational): return (a.numerator == b.numerator and a.denominator == b.denominator) if isinstance(b, numbers.Complex) and b.imag == 0: @@ -472,7 +472,7 @@ class Rational(RationalAbc): if isinstance(b, float): b = a.from_float(b) try: - # XXX: If b <: Real but not <: RationalAbc, this is likely + # XXX: If b <: Real but not <: Rational, this is likely # to fall back to a float. If the actual values differ by # less than MIN_FLOAT, this could falsely call them equal, # which would make <= inconsistent with ==. Better ways of @@ -480,7 +480,7 @@ class Rational(RationalAbc): diff = a - b except TypeError: return NotImplemented - if isinstance(diff, RationalAbc): + if isinstance(diff, Rational): return op(diff.numerator, 0) return op(diff, 0) @@ -510,11 +510,11 @@ class Rational(RationalAbc): return (self.__class__, (str(self),)) def __copy__(self): - if type(self) == Rational: + if type(self) == Fraction: return self # I'm immutable; therefore I am my own clone return self.__class__(self.numerator, self.denominator) def __deepcopy__(self, memo): - if type(self) == Rational: + if type(self) == Fraction: return self # My components are also immutable return self.__class__(self.numerator, self.denominator) diff --git a/Lib/test/test_builtin.py b/Lib/test/test_builtin.py index 9612a4b6872..ddc58422a59 100644 --- a/Lib/test/test_builtin.py +++ b/Lib/test/test_builtin.py @@ -5,7 +5,7 @@ from test.test_support import fcmp, have_unicode, TESTFN, unlink, \ run_unittest, run_with_locale from operator import neg -import sys, warnings, cStringIO, random, rational, UserDict +import sys, warnings, cStringIO, random, fractions, UserDict warnings.filterwarnings("ignore", "hex../oct.. of negative int", FutureWarning, __name__) warnings.filterwarnings("ignore", "integer argument expected", @@ -703,7 +703,7 @@ class BuiltinTest(unittest.TestCase): n, d = f.as_integer_ratio() self.assertEqual(float(n).__truediv__(d), f) - R = rational.Rational + R = fractions.Fraction self.assertEqual(R(0, 1), R(*float(0.0).as_integer_ratio())) self.assertEqual(R(5, 2), diff --git a/Lib/test/test_rational.py b/Lib/test/test_fractions.py similarity index 90% rename from Lib/test/test_rational.py rename to Lib/test/test_fractions.py index 8e620813a99..cd35644022b 100644 --- a/Lib/test/test_rational.py +++ b/Lib/test/test_fractions.py @@ -1,15 +1,15 @@ -"""Tests for Lib/rational.py.""" +"""Tests for Lib/fractions.py.""" from decimal import Decimal from test.test_support import run_unittest, verbose import math import operator -import rational +import fractions import unittest from copy import copy, deepcopy from cPickle import dumps, loads -R = rational.Rational -gcd = rational.gcd +R = fractions.Fraction +gcd = fractions.gcd class GcdTest(unittest.TestCase): @@ -31,7 +31,7 @@ def _components(r): return (r.numerator, r.denominator) -class RationalTest(unittest.TestCase): +class FractionTest(unittest.TestCase): def assertTypedEquals(self, expected, actual): """Asserts that both the types and values are the same.""" @@ -60,7 +60,7 @@ class RationalTest(unittest.TestCase): self.assertEquals((7, 15), _components(R(7, 15))) self.assertEquals((10**23, 1), _components(R(10**23))) - self.assertRaisesMessage(ZeroDivisionError, "Rational(12, 0)", + self.assertRaisesMessage(ZeroDivisionError, "Fraction(12, 0)", R, 12, 0) self.assertRaises(TypeError, R, 1.5) self.assertRaises(TypeError, R, 1.5 + 3j) @@ -83,41 +83,41 @@ class RationalTest(unittest.TestCase): self.assertRaisesMessage( - ZeroDivisionError, "Rational(3, 0)", + ZeroDivisionError, "Fraction(3, 0)", R, "3/0") self.assertRaisesMessage( - ValueError, "Invalid literal for Rational: 3/", + ValueError, "Invalid literal for Fraction: 3/", R, "3/") self.assertRaisesMessage( - ValueError, "Invalid literal for Rational: 3 /2", + ValueError, "Invalid literal for Fraction: 3 /2", R, "3 /2") self.assertRaisesMessage( # Denominators don't need a sign. - ValueError, "Invalid literal for Rational: 3/+2", + ValueError, "Invalid literal for Fraction: 3/+2", R, "3/+2") self.assertRaisesMessage( # Imitate float's parsing. - ValueError, "Invalid literal for Rational: + 3/2", + ValueError, "Invalid literal for Fraction: + 3/2", R, "+ 3/2") self.assertRaisesMessage( # Avoid treating '.' as a regex special character. - ValueError, "Invalid literal for Rational: 3a2", + ValueError, "Invalid literal for Fraction: 3a2", R, "3a2") self.assertRaisesMessage( # Only parse ordinary decimals, not scientific form. - ValueError, "Invalid literal for Rational: 3.2e4", + ValueError, "Invalid literal for Fraction: 3.2e4", R, "3.2e4") self.assertRaisesMessage( - # Don't accept combinations of decimals and rationals. - ValueError, "Invalid literal for Rational: 3/7.2", + # Don't accept combinations of decimals and fractions. + ValueError, "Invalid literal for Fraction: 3/7.2", R, "3/7.2") self.assertRaisesMessage( - # Don't accept combinations of decimals and rationals. - ValueError, "Invalid literal for Rational: 3.2/7", + # Don't accept combinations of decimals and fractions. + ValueError, "Invalid literal for Fraction: 3.2/7", R, "3.2/7") self.assertRaisesMessage( # Allow 3. and .3, but not . - ValueError, "Invalid literal for Rational: .", + ValueError, "Invalid literal for Fraction: .", R, ".") def testImmutable(self): @@ -138,7 +138,7 @@ class RationalTest(unittest.TestCase): def testFromFloat(self): self.assertRaisesMessage( - TypeError, "Rational.from_float() only takes floats, not 3 (int)", + TypeError, "Fraction.from_float() only takes floats, not 3 (int)", R.from_float, 3) self.assertEquals((0, 1), _components(R.from_float(-0.0))) @@ -154,19 +154,19 @@ class RationalTest(unittest.TestCase): inf = 1e1000 nan = inf - inf self.assertRaisesMessage( - TypeError, "Cannot convert inf to Rational.", + TypeError, "Cannot convert inf to Fraction.", R.from_float, inf) self.assertRaisesMessage( - TypeError, "Cannot convert -inf to Rational.", + TypeError, "Cannot convert -inf to Fraction.", R.from_float, -inf) self.assertRaisesMessage( - TypeError, "Cannot convert nan to Rational.", + TypeError, "Cannot convert nan to Fraction.", R.from_float, nan) def testFromDecimal(self): self.assertRaisesMessage( TypeError, - "Rational.from_decimal() only takes Decimals, not 3 (int)", + "Fraction.from_decimal() only takes Decimals, not 3 (int)", R.from_decimal, 3) self.assertEquals(R(0), R.from_decimal(Decimal("-0"))) self.assertEquals(R(5, 10), R.from_decimal(Decimal("0.5"))) @@ -176,16 +176,16 @@ class RationalTest(unittest.TestCase): R.from_decimal(Decimal("0." + "9" * 30))) self.assertRaisesMessage( - TypeError, "Cannot convert Infinity to Rational.", + TypeError, "Cannot convert Infinity to Fraction.", R.from_decimal, Decimal("inf")) self.assertRaisesMessage( - TypeError, "Cannot convert -Infinity to Rational.", + TypeError, "Cannot convert -Infinity to Fraction.", R.from_decimal, Decimal("-inf")) self.assertRaisesMessage( - TypeError, "Cannot convert NaN to Rational.", + TypeError, "Cannot convert NaN to Fraction.", R.from_decimal, Decimal("nan")) self.assertRaisesMessage( - TypeError, "Cannot convert sNaN to Rational.", + TypeError, "Cannot convert sNaN to Fraction.", R.from_decimal, Decimal("snan")) def testFromContinuedFraction(self): @@ -301,7 +301,7 @@ class RationalTest(unittest.TestCase): # Decimal refuses mixed comparisons. self.assertRaisesMessage( TypeError, - "unsupported operand type(s) for +: 'Rational' and 'Decimal'", + "unsupported operand type(s) for +: 'Fraction' and 'Decimal'", operator.add, R(3,11), Decimal('3.1415926')) self.assertNotEquals(R(5, 2), Decimal('2.5')) @@ -363,7 +363,7 @@ class RationalTest(unittest.TestCase): self.assertFalse(R(5, 2) == 2) def testStringification(self): - self.assertEquals("Rational(7,3)", repr(R(7, 3))) + self.assertEquals("Fraction(7,3)", repr(R(7, 3))) self.assertEquals("7/3", str(R(7, 3))) self.assertEquals("7", str(R(7, 1))) @@ -406,7 +406,7 @@ class RationalTest(unittest.TestCase): self.assertEqual(id(r), id(deepcopy(r))) def test_main(): - run_unittest(RationalTest, GcdTest) + run_unittest(FractionTest, GcdTest) if __name__ == '__main__': test_main() diff --git a/Misc/NEWS b/Misc/NEWS index c519ba664e2..81eef0e633d 100644 --- a/Misc/NEWS +++ b/Misc/NEWS @@ -400,6 +400,10 @@ Core and builtins Library ------- +- Rename rational.py to fractions.py and the rational.Rational class + to fractions.Fraction, to avoid the name clash with the abstract + base class numbers.Rational. See discussion in issue #1682. + - The pickletools module now provides an optimize() function that eliminates unused PUT opcodes from a pickle string.