Merge typing docs cleanup diff by Zach Ware from default back into 350 branch.
This commit is contained in:
parent
03728fac15
commit
ac062f7935
|
@ -20,8 +20,9 @@ The function below takes and returns a string and is annotated as follows::
|
|||
def greeting(name: str) -> str:
|
||||
return 'Hello ' + name
|
||||
|
||||
In the function `greeting`, the argument `name` is expected to by of type `str`
|
||||
and the return type `str`. Subtypes are accepted as arguments.
|
||||
In the function ``greeting``, the argument ``name`` is expected to by of type
|
||||
:class:`str` and the return type :class:`str`. Subtypes are accepted as
|
||||
arguments.
|
||||
|
||||
Type aliases
|
||||
------------
|
||||
|
@ -49,8 +50,8 @@ For example::
|
|||
|
||||
It is possible to declare the return type of a callable without specifying
|
||||
the call signature by substituting a literal ellipsis
|
||||
for the list of arguments in the type hint: `Callable[..., ReturnType]`.
|
||||
`None` as a type hint is a special case and is replaced by `type(None)`.
|
||||
for the list of arguments in the type hint: ``Callable[..., ReturnType]``.
|
||||
``None`` as a type hint is a special case and is replaced by ``type(None)``.
|
||||
|
||||
Generics
|
||||
--------
|
||||
|
@ -108,11 +109,12 @@ A user-defined class can be defined as a generic class.
|
|||
def log(self, message: str) -> None:
|
||||
self.logger.info('{}: {}'.format(self.name, message))
|
||||
|
||||
`Generic[T]` as a base class defines that the class `LoggedVar` takes a single
|
||||
type parameter `T` . This also makes `T` valid as a type within the class body.
|
||||
``Generic[T]`` as a base class defines that the class ``LoggedVar`` takes a
|
||||
single type parameter ``T`` . This also makes ``T`` valid as a type within the
|
||||
class body.
|
||||
|
||||
The `Generic` base class uses a metaclass that defines `__getitem__` so that
|
||||
`LoggedVar[t]` is valid as a type::
|
||||
The :class:`Generic` base class uses a metaclass that defines
|
||||
:meth:`__getitem__` so that ``LoggedVar[t]`` is valid as a type::
|
||||
|
||||
from typing import Iterable
|
||||
|
||||
|
@ -132,7 +134,7 @@ be constrained::
|
|||
class StrangePair(Generic[T, S]):
|
||||
...
|
||||
|
||||
Each type variable argument to `Generic` must be distinct.
|
||||
Each type variable argument to :class:`Generic` must be distinct.
|
||||
This is thus invalid::
|
||||
|
||||
from typing import TypeVar, Generic
|
||||
|
@ -152,9 +154,9 @@ You can use multiple inheritance with `Generic`::
|
|||
class LinkedList(Sized, Generic[T]):
|
||||
...
|
||||
|
||||
Subclassing a generic class without specifying type parameters assumes `Any`
|
||||
for each position. In the following example, `MyIterable` is not generic but
|
||||
implicitly inherits from `Iterable[Any]`::
|
||||
Subclassing a generic class without specifying type parameters assumes
|
||||
:class:`Any` for each position. In the following example, ``MyIterable`` is
|
||||
not generic but implicitly inherits from ``Iterable[Any]``::
|
||||
|
||||
from typing import Iterable
|
||||
|
||||
|
@ -162,24 +164,24 @@ implicitly inherits from `Iterable[Any]`::
|
|||
|
||||
Generic metaclasses are not supported.
|
||||
|
||||
The `Any` type
|
||||
--------------
|
||||
The :class:`Any` type
|
||||
---------------------
|
||||
|
||||
A special kind of type is `Any`. Every type is a subtype of `Any`.
|
||||
This is also true for the builtin type object. However, to the static type
|
||||
checker these are completely different.
|
||||
A special kind of type is :class:`Any`. Every type is a subtype of
|
||||
:class:`Any`. This is also true for the builtin type object. However, to the
|
||||
static type checker these are completely different.
|
||||
|
||||
When the type of a value is `object`, the type checker will reject almost all
|
||||
operations on it, and assigning it to a variable (or using it as a return value)
|
||||
of a more specialized type is a type error. On the other hand, when a value has
|
||||
type `Any`, the type checker will allow all operations on it, and a value of
|
||||
type `Any` can be assigned to a variable (or used as a return value) of a more
|
||||
constrained type.
|
||||
When the type of a value is :class:`object`, the type checker will reject
|
||||
almost all operations on it, and assigning it to a variable (or using it as a
|
||||
return value) of a more specialized type is a type error. On the other hand,
|
||||
when a value has type :class:`Any`, the type checker will allow all operations
|
||||
on it, and a value of type :class:`Any` can be assigned to a variable (or used
|
||||
as a return value) of a more constrained type.
|
||||
|
||||
Default argument values
|
||||
-----------------------
|
||||
|
||||
Use a literal ellipsis `...` to declare an argument as having a default value::
|
||||
Use a literal ellipsis ``...`` to declare an argument as having a default value::
|
||||
|
||||
from typing import AnyStr
|
||||
|
||||
|
@ -195,9 +197,10 @@ The module defines the following classes, functions and decorators:
|
|||
|
||||
Special type indicating an unconstrained type.
|
||||
|
||||
* Any object is an instance of `Any`.
|
||||
* Any class is a subclass of `Any`.
|
||||
* As a special case, `Any` and `object` are subclasses of each other.
|
||||
* Any object is an instance of :class:`Any`.
|
||||
* Any class is a subclass of :class:`Any`.
|
||||
* As a special case, :class:`Any` and :class:`object` are subclasses of
|
||||
each other.
|
||||
|
||||
.. class:: TypeVar
|
||||
|
||||
|
@ -224,22 +227,22 @@ The module defines the following classes, functions and decorators:
|
|||
return x if len(x) >= len(y) else y
|
||||
|
||||
The latter example's signature is essentially the overloading
|
||||
of `(str, str) -> str` and `(bytes, bytes) -> bytes`. Also note
|
||||
that if the arguments are instances of some subclass of `str`,
|
||||
the return type is still plain `str`.
|
||||
of ``(str, str) -> str`` and ``(bytes, bytes) -> bytes``. Also note
|
||||
that if the arguments are instances of some subclass of :class:`str`,
|
||||
the return type is still plain :class:`str`.
|
||||
|
||||
At runtime, `isinstance(x, T)` will raise `TypeError`. In general,
|
||||
`isinstance` and `issublass` should not be used with types.
|
||||
At runtime, ``isinstance(x, T)`` will raise :exc:`TypeError`. In general,
|
||||
:func:`isinstance` and :func:`issublass` should not be used with types.
|
||||
|
||||
Type variables may be marked covariant or contravariant by passing
|
||||
`covariant=True` or `contravariant=True`. See :pep:`484` for more
|
||||
``covariant=True`` or ``contravariant=True``. See :pep:`484` for more
|
||||
details. By default type variables are invariant.
|
||||
|
||||
.. class:: Union
|
||||
|
||||
Union type; `Union[X, Y]` means either X or Y.
|
||||
Union type; ``Union[X, Y]`` means either X or Y.
|
||||
|
||||
To define a union, use e.g. `Union[int, str]`. Details:
|
||||
To define a union, use e.g. ``Union[int, str]``. Details:
|
||||
|
||||
* The arguments must be types and there must be at least one.
|
||||
|
||||
|
@ -259,37 +262,37 @@ The module defines the following classes, functions and decorators:
|
|||
|
||||
Union[int, str] == Union[str, int]
|
||||
|
||||
* If `Any` is present it is the sole survivor, e.g.::
|
||||
* If :class:`Any` is present it is the sole survivor, e.g.::
|
||||
|
||||
Union[int, Any] == Any
|
||||
|
||||
* You cannot subclass or instantiate a union.
|
||||
|
||||
* You cannot write `Union[X][Y]`
|
||||
* You cannot write ``Union[X][Y]``
|
||||
|
||||
* You can use `Optional[X]` as a shorthand for `Union[X, None]`.
|
||||
* You can use ``Optional[X]`` as a shorthand for ``Union[X, None]``.
|
||||
|
||||
.. class:: Optional
|
||||
|
||||
Optional type.
|
||||
|
||||
`Optional[X]` is equivalent to `Union[X, type(None)]`.
|
||||
``Optional[X]`` is equivalent to ``Union[X, type(None)]``.
|
||||
|
||||
.. class:: Tuple
|
||||
|
||||
Tuple type; `Tuple[X, Y]` is the is the type of a tuple of two items
|
||||
Tuple type; ``Tuple[X, Y]`` is the is the type of a tuple of two items
|
||||
with the first item of type X and the second of type Y.
|
||||
|
||||
Example: `Tuple[T1, T2]` is a tuple of two elements corresponding
|
||||
to type variables T1 and T2. `Tuple[int, float, str]` is a tuple
|
||||
Example: ``Tuple[T1, T2]`` is a tuple of two elements corresponding
|
||||
to type variables T1 and T2. ``Tuple[int, float, str]`` is a tuple
|
||||
of an int, a float and a string.
|
||||
|
||||
To specify a variable-length tuple of homogeneous type,
|
||||
use literal ellipsis, e.g. `Tuple[int, ...]`.
|
||||
use literal ellipsis, e.g. ``Tuple[int, ...]``.
|
||||
|
||||
.. class:: Callable
|
||||
|
||||
Callable type; `Callable[[int], str]` is a function of (int) -> str.
|
||||
Callable type; ``Callable[[int], str]`` is a function of (int) -> str.
|
||||
|
||||
The subscription syntax must always be used with exactly two
|
||||
values: the argument list and the return type. The argument list
|
||||
|
@ -297,9 +300,9 @@ The module defines the following classes, functions and decorators:
|
|||
|
||||
There is no syntax to indicate optional or keyword arguments,
|
||||
such function types are rarely used as callback types.
|
||||
`Callable[..., ReturnType]` could be used to type hint a callable
|
||||
taking any number of arguments and returning `ReturnType`.
|
||||
A plain `Callable` is equivalent to `Callable[..., Any]`.
|
||||
``Callable[..., ReturnType]`` could be used to type hint a callable
|
||||
taking any number of arguments and returning ``ReturnType``.
|
||||
A plain :class:`Callable` is equivalent to ``Callable[..., Any]``.
|
||||
|
||||
.. class:: Generic
|
||||
|
||||
|
|
Loading…
Reference in New Issue