From 9c91eb844c63a2d86bb845cd41d2662af0866a8b Mon Sep 17 00:00:00 2001 From: Mark Dickinson Date: Wed, 7 Jul 2010 16:17:31 +0000 Subject: [PATCH] Minor refactoring in lgamma code, for clarity. --- Modules/mathmodule.c | 24 ++++++++++-------------- 1 file changed, 10 insertions(+), 14 deletions(-) diff --git a/Modules/mathmodule.c b/Modules/mathmodule.c index 4ef10d3d389..7911251a763 100644 --- a/Modules/mathmodule.c +++ b/Modules/mathmodule.c @@ -69,6 +69,7 @@ extern double copysign(double, double); static const double pi = 3.141592653589793238462643383279502884197; static const double sqrtpi = 1.772453850905516027298167483341145182798; +static const double logpi = 1.144729885849400174143427351353058711647; static double sinpi(double x) @@ -356,20 +357,15 @@ m_lgamma(double x) if (absx < 1e-20) return -log(absx); - /* Lanczos' formula */ - if (x > 0.0) { - /* we could save a fraction of a ulp in accuracy by having a - second set of numerator coefficients for lanczos_sum that - absorbed the exp(-lanczos_g) term, and throwing out the - lanczos_g subtraction below; it's probably not worth it. */ - r = log(lanczos_sum(x)) - lanczos_g + - (x-0.5)*(log(x+lanczos_g-0.5)-1); - } - else { - r = log(pi) - log(fabs(sinpi(absx))) - log(absx) - - (log(lanczos_sum(absx)) - lanczos_g + - (absx-0.5)*(log(absx+lanczos_g-0.5)-1)); - } + /* Lanczos' formula. We could save a fraction of a ulp in accuracy by + having a second set of numerator coefficients for lanczos_sum that + absorbed the exp(-lanczos_g) term, and throwing out the lanczos_g + subtraction below; it's probably not worth it. */ + r = log(lanczos_sum(absx)) - lanczos_g; + r += (absx - 0.5) * (log(absx + lanczos_g - 0.5) - 1); + if (x < 0.0) + /* Use reflection formula to get value for negative x. */ + r = logpi - log(fabs(sinpi(absx))) - log(absx) - r; if (Py_IS_INFINITY(r)) errno = ERANGE; return r;