diff --git a/Lib/heapq.py b/Lib/heapq.py index 14a7a86788e..41626c56a73 100644 --- a/Lib/heapq.py +++ b/Lib/heapq.py @@ -141,9 +141,8 @@ def heappop(heap): returnitem = heap[0] heap[0] = lastelt _siftup(heap, 0) - else: - returnitem = lastelt - return returnitem + return returnitem + return lastelt def heapreplace(heap, item): """Pop and return the current smallest value, and add the new item. @@ -357,14 +356,14 @@ def merge(*iterables): # Algorithm notes for nlargest() and nsmallest() # ============================================== # -# Makes just a single pass over the data while keeping the k most extreme values +# Make a single pass over the data while keeping the k most extreme values # in a heap. Memory consumption is limited to keeping k values in a list. # # Measured performance for random inputs: # # number of comparisons # n inputs k-extreme values (average of 5 trials) % more than min() -# ------------- ---------------- - ------------------- ----------------- +# ------------- ---------------- --------------------- ----------------- # 1,000 100 3,317 133.2% # 10,000 100 14,046 40.5% # 100,000 100 105,749 5.7% @@ -542,15 +541,6 @@ def nlargest(n, iterable, key=None): if __name__ == "__main__": - # Simple sanity test - heap = [] - data = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0] - for item in data: - heappush(heap, item) - sort = [] - while heap: - sort.append(heappop(heap)) - print(sort) import doctest doctest.testmod()