Update documentation to include the new functions, and use the more
explicitly-named bisect_right() in the example code. This closes SF bug #127055.
This commit is contained in:
parent
9c15fa7a0f
commit
2a72712efe
|
@ -19,18 +19,45 @@ algorithm (i.e., the boundary conditions are already right!).
|
|||
|
||||
The following functions are provided:
|
||||
|
||||
\begin{funcdesc}{bisect}{list, item\optional{, lo\optional{, hi}}}
|
||||
\begin{funcdesc}{bisect_left}{list, item\optional{, lo\optional{, hi}}}
|
||||
Locate the proper insertion point for \var{item} in \var{list} to
|
||||
maintain sorted order. The parameters \var{lo} and \var{hi} may be
|
||||
used to specify a subset of the list which should be considered. The
|
||||
return value is suitable for use as the first parameter to
|
||||
\code{\var{list}.insert()}.
|
||||
used to specify a subset of the list which should be considered; by
|
||||
default the entire list is used. If \var{item} is already present
|
||||
in \var{list}, the insertion point will be before (to the left of)
|
||||
any existing entries. The return value is suitable for use as the
|
||||
first parameter to \code{\var{list}.insert()}. This assumes that
|
||||
\var{list} is already sorted.
|
||||
\versionadded{2.1}
|
||||
\end{funcdesc}
|
||||
|
||||
\begin{funcdesc}{insort}{list, item\optional{, lo\optional{, hi}}}
|
||||
\begin{funcdesc}{bisect_right}{list, item\optional{, lo\optional{, hi}}}
|
||||
Similar to \function{bisect_left()}, but returns an insertion point
|
||||
which comes after (to the right of) any existing entries of
|
||||
\var{item} in \var{list}.
|
||||
\versionadded{2.1}
|
||||
\end{funcdesc}
|
||||
|
||||
\begin{funcdesc}{bisect}{\unspecified}
|
||||
Alias for \function{bisect_right()} for backward compatibility.
|
||||
\end{funcdesc}
|
||||
|
||||
\begin{funcdesc}{insort_left}{list, item\optional{, lo\optional{, hi}}}
|
||||
Insert \var{item} in \var{list} in sorted order. This is equivalent
|
||||
to \code{\var{list}.insert(bisect.bisect(\var{list}, \var{item},
|
||||
\var{lo}, \var{hi}), \var{item})}.
|
||||
to \code{\var{list}.insert(bisect.bisect_left(\var{list}, \var{item},
|
||||
\var{lo}, \var{hi}), \var{item})}. This assumes that \var{list} is
|
||||
already sorted.
|
||||
\versionadded{2.1}
|
||||
\end{funcdesc}
|
||||
|
||||
\begin{funcdesc}{insort_right}{list, item\optional{, lo\optional{, hi}}}
|
||||
Similar to \function{insort_left()}, but inserting \var{item} in
|
||||
\var{list} after any existing entries of \var{item}.
|
||||
\versionadded{2.1}
|
||||
\end{funcdesc}
|
||||
|
||||
\begin{funcdesc}{insort}{\unspecified}
|
||||
Alias for \function{insort_right()} for backward compatibility.
|
||||
\end{funcdesc}
|
||||
|
||||
|
||||
|
@ -38,16 +65,16 @@ to \code{\var{list}.insert(bisect.bisect(\var{list}, \var{item},
|
|||
\nodename{bisect-example}
|
||||
|
||||
The \function{bisect()} function is generally useful for categorizing
|
||||
numeric data. This example uses \function{bisect()} to look up a
|
||||
numeric data. This example uses \function{bisect_right()} to look up a
|
||||
letter grade for an exam total (say) based on a set of ordered numeric
|
||||
breakpoints: 85 and up is an `A', 75..84 is a `B', etc.
|
||||
|
||||
\begin{verbatim}
|
||||
>>> grades = "FEDCBA"
|
||||
>>> breakpoints = [30, 44, 66, 75, 85]
|
||||
>>> from bisect import bisect
|
||||
>>> from bisect import bisect_right
|
||||
>>> def grade(total):
|
||||
... return grades[bisect(breakpoints, total)]
|
||||
... return grades[bisect_right(breakpoints, total)]
|
||||
...
|
||||
>>> grade(66)
|
||||
'C'
|
||||
|
|
Loading…
Reference in New Issue