2012-03-21 14:25:23 -03:00
|
|
|
/*
|
2020-06-05 14:43:01 -03:00
|
|
|
* Copyright (c) 2008-2020 Stefan Krah. All rights reserved.
|
2012-03-21 14:25:23 -03:00
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
*
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
*
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
|
|
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
|
|
* SUCH DAMAGE.
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
|
|
#include "mpdecimal.h"
|
2020-06-05 14:43:01 -03:00
|
|
|
|
2012-03-21 14:25:23 -03:00
|
|
|
#include <assert.h>
|
2020-06-05 14:43:01 -03:00
|
|
|
|
|
|
|
#include "constants.h"
|
|
|
|
#include "fourstep.h"
|
2012-03-21 14:25:23 -03:00
|
|
|
#include "numbertheory.h"
|
|
|
|
#include "sixstep.h"
|
|
|
|
#include "umodarith.h"
|
|
|
|
|
|
|
|
|
|
|
|
/* Bignum: Cache efficient Matrix Fourier Transform for arrays of the
|
|
|
|
form 3 * 2**n (See literature/matrix-transform.txt). */
|
|
|
|
|
|
|
|
|
|
|
|
#ifndef PPRO
|
|
|
|
static inline void
|
|
|
|
std_size3_ntt(mpd_uint_t *x1, mpd_uint_t *x2, mpd_uint_t *x3,
|
|
|
|
mpd_uint_t w3table[3], mpd_uint_t umod)
|
|
|
|
{
|
|
|
|
mpd_uint_t r1, r2;
|
|
|
|
mpd_uint_t w;
|
|
|
|
mpd_uint_t s, tmp;
|
|
|
|
|
|
|
|
|
|
|
|
/* k = 0 -> w = 1 */
|
|
|
|
s = *x1;
|
|
|
|
s = addmod(s, *x2, umod);
|
|
|
|
s = addmod(s, *x3, umod);
|
|
|
|
|
|
|
|
r1 = s;
|
|
|
|
|
|
|
|
/* k = 1 */
|
|
|
|
s = *x1;
|
|
|
|
|
|
|
|
w = w3table[1];
|
|
|
|
tmp = MULMOD(*x2, w);
|
|
|
|
s = addmod(s, tmp, umod);
|
|
|
|
|
|
|
|
w = w3table[2];
|
|
|
|
tmp = MULMOD(*x3, w);
|
|
|
|
s = addmod(s, tmp, umod);
|
|
|
|
|
|
|
|
r2 = s;
|
|
|
|
|
|
|
|
/* k = 2 */
|
|
|
|
s = *x1;
|
|
|
|
|
|
|
|
w = w3table[2];
|
|
|
|
tmp = MULMOD(*x2, w);
|
|
|
|
s = addmod(s, tmp, umod);
|
|
|
|
|
|
|
|
w = w3table[1];
|
|
|
|
tmp = MULMOD(*x3, w);
|
|
|
|
s = addmod(s, tmp, umod);
|
|
|
|
|
|
|
|
*x3 = s;
|
|
|
|
*x2 = r2;
|
|
|
|
*x1 = r1;
|
|
|
|
}
|
|
|
|
#else /* PPRO */
|
|
|
|
static inline void
|
|
|
|
ppro_size3_ntt(mpd_uint_t *x1, mpd_uint_t *x2, mpd_uint_t *x3, mpd_uint_t w3table[3],
|
|
|
|
mpd_uint_t umod, double *dmod, uint32_t dinvmod[3])
|
|
|
|
{
|
|
|
|
mpd_uint_t r1, r2;
|
|
|
|
mpd_uint_t w;
|
|
|
|
mpd_uint_t s, tmp;
|
|
|
|
|
|
|
|
|
|
|
|
/* k = 0 -> w = 1 */
|
|
|
|
s = *x1;
|
|
|
|
s = addmod(s, *x2, umod);
|
|
|
|
s = addmod(s, *x3, umod);
|
|
|
|
|
|
|
|
r1 = s;
|
|
|
|
|
|
|
|
/* k = 1 */
|
|
|
|
s = *x1;
|
|
|
|
|
|
|
|
w = w3table[1];
|
|
|
|
tmp = ppro_mulmod(*x2, w, dmod, dinvmod);
|
|
|
|
s = addmod(s, tmp, umod);
|
|
|
|
|
|
|
|
w = w3table[2];
|
|
|
|
tmp = ppro_mulmod(*x3, w, dmod, dinvmod);
|
|
|
|
s = addmod(s, tmp, umod);
|
|
|
|
|
|
|
|
r2 = s;
|
|
|
|
|
|
|
|
/* k = 2 */
|
|
|
|
s = *x1;
|
|
|
|
|
|
|
|
w = w3table[2];
|
|
|
|
tmp = ppro_mulmod(*x2, w, dmod, dinvmod);
|
|
|
|
s = addmod(s, tmp, umod);
|
|
|
|
|
|
|
|
w = w3table[1];
|
|
|
|
tmp = ppro_mulmod(*x3, w, dmod, dinvmod);
|
|
|
|
s = addmod(s, tmp, umod);
|
|
|
|
|
|
|
|
*x3 = s;
|
|
|
|
*x2 = r2;
|
|
|
|
*x1 = r1;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
/* forward transform, sign = -1; transform length = 3 * 2**n */
|
|
|
|
int
|
|
|
|
four_step_fnt(mpd_uint_t *a, mpd_size_t n, int modnum)
|
|
|
|
{
|
|
|
|
mpd_size_t R = 3; /* number of rows */
|
|
|
|
mpd_size_t C = n / 3; /* number of columns */
|
|
|
|
mpd_uint_t w3table[3];
|
|
|
|
mpd_uint_t kernel, w0, w1, wstep;
|
|
|
|
mpd_uint_t *s, *p0, *p1, *p2;
|
|
|
|
mpd_uint_t umod;
|
|
|
|
#ifdef PPRO
|
|
|
|
double dmod;
|
|
|
|
uint32_t dinvmod[3];
|
|
|
|
#endif
|
|
|
|
mpd_size_t i, k;
|
|
|
|
|
|
|
|
|
|
|
|
assert(n >= 48);
|
|
|
|
assert(n <= 3*MPD_MAXTRANSFORM_2N);
|
|
|
|
|
|
|
|
|
|
|
|
/* Length R transform on the columns. */
|
|
|
|
SETMODULUS(modnum);
|
|
|
|
_mpd_init_w3table(w3table, -1, modnum);
|
|
|
|
for (p0=a, p1=p0+C, p2=p0+2*C; p0<a+C; p0++,p1++,p2++) {
|
|
|
|
|
|
|
|
SIZE3_NTT(p0, p1, p2, w3table);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Multiply each matrix element (addressed by i*C+k) by r**(i*k). */
|
|
|
|
kernel = _mpd_getkernel(n, -1, modnum);
|
|
|
|
for (i = 1; i < R; i++) {
|
|
|
|
w0 = 1; /* r**(i*0): initial value for k=0 */
|
|
|
|
w1 = POWMOD(kernel, i); /* r**(i*1): initial value for k=1 */
|
|
|
|
wstep = MULMOD(w1, w1); /* r**(2*i) */
|
|
|
|
for (k = 0; k < C-1; k += 2) {
|
|
|
|
mpd_uint_t x0 = a[i*C+k];
|
|
|
|
mpd_uint_t x1 = a[i*C+k+1];
|
|
|
|
MULMOD2(&x0, w0, &x1, w1);
|
|
|
|
MULMOD2C(&w0, &w1, wstep); /* r**(i*(k+2)) = r**(i*k) * r**(2*i) */
|
|
|
|
a[i*C+k] = x0;
|
|
|
|
a[i*C+k+1] = x1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Length C transform on the rows. */
|
|
|
|
for (s = a; s < a+n; s += C) {
|
|
|
|
if (!six_step_fnt(s, C, modnum)) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2012-03-23 12:34:41 -03:00
|
|
|
#if 0
|
|
|
|
/* An unordered transform is sufficient for convolution. */
|
2012-03-21 14:25:23 -03:00
|
|
|
/* Transpose the matrix. */
|
2020-06-05 14:43:01 -03:00
|
|
|
#include "transpose.h"
|
2012-03-21 14:25:23 -03:00
|
|
|
transpose_3xpow2(a, R, C);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* backward transform, sign = 1; transform length = 3 * 2**n */
|
|
|
|
int
|
|
|
|
inv_four_step_fnt(mpd_uint_t *a, mpd_size_t n, int modnum)
|
|
|
|
{
|
|
|
|
mpd_size_t R = 3; /* number of rows */
|
|
|
|
mpd_size_t C = n / 3; /* number of columns */
|
|
|
|
mpd_uint_t w3table[3];
|
|
|
|
mpd_uint_t kernel, w0, w1, wstep;
|
|
|
|
mpd_uint_t *s, *p0, *p1, *p2;
|
|
|
|
mpd_uint_t umod;
|
|
|
|
#ifdef PPRO
|
|
|
|
double dmod;
|
|
|
|
uint32_t dinvmod[3];
|
|
|
|
#endif
|
|
|
|
mpd_size_t i, k;
|
|
|
|
|
|
|
|
|
|
|
|
assert(n >= 48);
|
|
|
|
assert(n <= 3*MPD_MAXTRANSFORM_2N);
|
|
|
|
|
|
|
|
|
2012-03-23 12:34:41 -03:00
|
|
|
#if 0
|
|
|
|
/* An unordered transform is sufficient for convolution. */
|
2012-03-21 14:25:23 -03:00
|
|
|
/* Transpose the matrix, producing an R*C matrix. */
|
2020-06-05 14:43:01 -03:00
|
|
|
#include "transpose.h"
|
2012-03-21 14:25:23 -03:00
|
|
|
transpose_3xpow2(a, C, R);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* Length C transform on the rows. */
|
|
|
|
for (s = a; s < a+n; s += C) {
|
|
|
|
if (!inv_six_step_fnt(s, C, modnum)) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Multiply each matrix element (addressed by i*C+k) by r**(i*k). */
|
|
|
|
SETMODULUS(modnum);
|
|
|
|
kernel = _mpd_getkernel(n, 1, modnum);
|
|
|
|
for (i = 1; i < R; i++) {
|
|
|
|
w0 = 1;
|
|
|
|
w1 = POWMOD(kernel, i);
|
|
|
|
wstep = MULMOD(w1, w1);
|
|
|
|
for (k = 0; k < C; k += 2) {
|
|
|
|
mpd_uint_t x0 = a[i*C+k];
|
|
|
|
mpd_uint_t x1 = a[i*C+k+1];
|
|
|
|
MULMOD2(&x0, w0, &x1, w1);
|
|
|
|
MULMOD2C(&w0, &w1, wstep);
|
|
|
|
a[i*C+k] = x0;
|
|
|
|
a[i*C+k+1] = x1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Length R transform on the columns. */
|
|
|
|
_mpd_init_w3table(w3table, 1, modnum);
|
|
|
|
for (p0=a, p1=p0+C, p2=p0+2*C; p0<a+C; p0++,p1++,p2++) {
|
|
|
|
|
|
|
|
SIZE3_NTT(p0, p1, p2, w3table);
|
|
|
|
}
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
}
|