665 lines
21 KiB
Python
665 lines
21 KiB
Python
|
#!/usr/bin/env/python
|
||
|
|
||
|
# perfect_hash.py
|
||
|
#
|
||
|
# Outputs C code for a minimal perfect hash.
|
||
|
# The hash is produced using the algorithm described in
|
||
|
# "Optimal algorithms for minimal perfect hashing",
|
||
|
# G. Havas, B.S. Majewski. Available as a technical report
|
||
|
# from the CS department, University of Queensland
|
||
|
# (ftp://ftp.cs.uq.oz.au/).
|
||
|
#
|
||
|
# This is a modified version of Andrew Kuchling's code
|
||
|
# (http://starship.python.net/crew/amk/python/code/perfect-hash.html)
|
||
|
# and generates C fragments suitable for compilation as a Python
|
||
|
# extension module.
|
||
|
#
|
||
|
|
||
|
# Difference between this algorithm and gperf:
|
||
|
# Gperf will complete in finite time with a successful function,
|
||
|
# or by giving up.
|
||
|
# This algorithm may never complete, although it is extremely likely
|
||
|
# when c >= 2.
|
||
|
|
||
|
# The algorithm works like this:
|
||
|
# 0) You have K keys, that you want to perfectly hash to a bunch
|
||
|
# of hash values.
|
||
|
#
|
||
|
# 1) Choose a number N larger than K. This is the number of
|
||
|
# vertices in a graph G, and also the size of the resulting table.
|
||
|
#
|
||
|
# 2) Pick two random hash functions f1, f2, that output values from
|
||
|
# 0...N-1.
|
||
|
#
|
||
|
# 3) for key in keys:
|
||
|
# h1 = f1(key) ; h2 = f2(key)
|
||
|
# Draw an edge between vertices h1 and h2 of the graph.
|
||
|
# Associate the desired hash value with that edge.
|
||
|
#
|
||
|
# 4) Check if G is acyclic; if not, go back to step 1 and pick a bigger N.
|
||
|
#
|
||
|
# 5) Assign values to each vertex such that, for each edge, you can
|
||
|
# add the values for the two vertices and get the desired value
|
||
|
# for that edge -- which is the desired hash key. This task is
|
||
|
# dead easy, because the graph is acyclic. This is done by
|
||
|
# picking a vertex V, and assigning it a value of 0. You then do a
|
||
|
# depth-first search, assigning values to new vertices so that
|
||
|
# they sum up properly.
|
||
|
#
|
||
|
# 6) f1, f2, and G now make up your perfect hash function.
|
||
|
|
||
|
|
||
|
import sys, whrandom, string
|
||
|
import pprint
|
||
|
import perfhash
|
||
|
import time
|
||
|
|
||
|
class Hash:
|
||
|
"""Random hash function
|
||
|
For simplicity and speed, this doesn't implement any byte-level hashing
|
||
|
scheme. Instead, a random string is generated and prefixing to
|
||
|
str(key), and then Python's hashing function is used."""
|
||
|
|
||
|
def __init__(self, N, caseInsensitive=0):
|
||
|
self.N = N
|
||
|
junk = ""
|
||
|
for i in range(10):
|
||
|
junk = junk + whrandom.choice(string.letters + string.digits)
|
||
|
self.junk = junk
|
||
|
self.caseInsensitive = caseInsensitive
|
||
|
self.seed = perfhash.calcSeed(junk)
|
||
|
|
||
|
def __call__(self, key):
|
||
|
key = str(key)
|
||
|
if self.caseInsensitive:
|
||
|
key = string.upper(key)
|
||
|
x = perfhash.hash(self.seed, len(self.junk), key) % self.N
|
||
|
#h = hash(self.junk + key) % self.N
|
||
|
#assert x == h
|
||
|
return x
|
||
|
|
||
|
def generate_code(self):
|
||
|
s = """{
|
||
|
register int len;
|
||
|
register unsigned char *p;
|
||
|
register long x;
|
||
|
|
||
|
len = cch;
|
||
|
p = (unsigned char *) key;
|
||
|
x = %(junkSeed)d;
|
||
|
while (--len >= 0)
|
||
|
x = (1000003*x) ^ """ % \
|
||
|
{
|
||
|
"lenJunk" : len(self.junk),
|
||
|
"junkSeed" : self.seed,
|
||
|
}
|
||
|
|
||
|
if self.caseInsensitive:
|
||
|
s = s + "toupper(*(p++));"
|
||
|
else:
|
||
|
s = s + "*(p++);"
|
||
|
s = s + """
|
||
|
x ^= cch + %(lenJunk)d;
|
||
|
if (x == -1)
|
||
|
x = -2;
|
||
|
x %%= k_cHashElements;
|
||
|
/* ensure the returned value is positive so we mimic Python's %% operator */
|
||
|
if (x < 0)
|
||
|
x += k_cHashElements;
|
||
|
return x;
|
||
|
}
|
||
|
""" % { "lenJunk" : len(self.junk),
|
||
|
"junkSeed" : self.seed, }
|
||
|
return s
|
||
|
|
||
|
|
||
|
WHITE, GREY, BLACK = 0,1,2
|
||
|
class Graph:
|
||
|
"""Graph class. This class isn't particularly efficient or general,
|
||
|
and only has the features I needed to implement this algorithm.
|
||
|
|
||
|
num_vertices -- number of vertices
|
||
|
edges -- maps 2-tuples of vertex numbers to the value for this
|
||
|
edge. If there's an edge between v1 and v2 (v1<v2),
|
||
|
(v1,v2) is a key and the value is the edge's value.
|
||
|
reachable_list -- maps a vertex V to the list of vertices
|
||
|
to which V is connected by edges. Used
|
||
|
for traversing the graph.
|
||
|
values -- numeric value for each vertex
|
||
|
"""
|
||
|
|
||
|
def __init__(self, num_vertices):
|
||
|
self.num_vertices = num_vertices
|
||
|
self.edges = {}
|
||
|
self.reachable_list = {}
|
||
|
self.values = [-1] * num_vertices
|
||
|
|
||
|
def connect(self, vertex1, vertex2, value):
|
||
|
"""Connect 'vertex1' and 'vertex2' with an edge, with associated
|
||
|
value 'value'"""
|
||
|
|
||
|
if vertex1 > vertex2: vertex1, vertex2 = vertex2, vertex1
|
||
|
# if self.edges.has_key( (vertex1, vertex2) ):
|
||
|
# raise ValueError, 'Collision: vertices already connected'
|
||
|
self.edges[ (vertex1, vertex2) ] = value
|
||
|
|
||
|
# Add vertices to each other's reachable list
|
||
|
if not self.reachable_list.has_key( vertex1 ):
|
||
|
self.reachable_list[ vertex1 ] = [vertex2]
|
||
|
else:
|
||
|
self.reachable_list[vertex1].append(vertex2)
|
||
|
|
||
|
if not self.reachable_list.has_key( vertex2 ):
|
||
|
self.reachable_list[ vertex2 ] = [vertex1]
|
||
|
else:
|
||
|
self.reachable_list[vertex2].append(vertex1)
|
||
|
|
||
|
def get_edge_value(self, vertex1, vertex2):
|
||
|
"""Retrieve the value corresponding to the edge between
|
||
|
'vertex1' and 'vertex2'. Raises KeyError if no such edge"""
|
||
|
if vertex1 > vertex2:
|
||
|
vertex1, vertex2 = vertex2, vertex1
|
||
|
return self.edges[ (vertex1, vertex2) ]
|
||
|
|
||
|
def is_acyclic(self):
|
||
|
"Returns true if the graph is acyclic, otherwise false"
|
||
|
|
||
|
# This is done by doing a depth-first search of the graph;
|
||
|
# painting each vertex grey and then black. If the DFS
|
||
|
# ever finds a vertex that isn't white, there's a cycle.
|
||
|
colour = {}
|
||
|
for i in range(self.num_vertices): colour[i] = WHITE
|
||
|
|
||
|
# Loop over all vertices, taking white ones as starting
|
||
|
# points for a traversal.
|
||
|
for i in range(self.num_vertices):
|
||
|
if colour[i] == WHITE:
|
||
|
|
||
|
# List of vertices to visit
|
||
|
visit_list = [ (None,i) ]
|
||
|
|
||
|
# Do a DFS
|
||
|
while visit_list:
|
||
|
# Colour this vertex grey.
|
||
|
parent, vertex = visit_list[0] ; del visit_list[0]
|
||
|
colour[vertex] = GREY
|
||
|
|
||
|
# Make copy of list of neighbours, removing the vertex
|
||
|
# we arrived here from.
|
||
|
neighbours = self.reachable_list.get(vertex, []) [:]
|
||
|
if parent in neighbours: neighbours.remove( parent )
|
||
|
|
||
|
for neighbour in neighbours:
|
||
|
if colour[neighbour] == WHITE:
|
||
|
visit_list.insert(0, (vertex, neighbour) )
|
||
|
elif colour[neighbour] != WHITE:
|
||
|
# Aha! Already visited this node,
|
||
|
# so the graph isn't acyclic.
|
||
|
return 0
|
||
|
|
||
|
colour[vertex] = BLACK
|
||
|
|
||
|
# We got through, so the graph is acyclic.
|
||
|
return 1
|
||
|
|
||
|
def assign_values(self):
|
||
|
"""Compute values for each vertex, so that they sum up
|
||
|
properly to the associated value for each edge."""
|
||
|
|
||
|
# Also done with a DFS; I simply copied the DFS code
|
||
|
# from is_acyclic(). (Should generalize the logic so
|
||
|
# one function could be used from both methods,
|
||
|
# but I couldn't be bothered.)
|
||
|
|
||
|
colour = {}
|
||
|
for i in range(self.num_vertices): colour[i] = WHITE
|
||
|
|
||
|
# Loop over all vertices, taking white ones as starting
|
||
|
# points for a traversal.
|
||
|
for i in range(self.num_vertices):
|
||
|
if colour[i] == WHITE:
|
||
|
# Set this vertex's value, arbitrarily, to zero.
|
||
|
self.set_vertex_value( i, 0 )
|
||
|
|
||
|
# List of vertices to visit
|
||
|
visit_list = [ (None,i) ]
|
||
|
|
||
|
# Do a DFS
|
||
|
while visit_list:
|
||
|
# Colour this vertex grey.
|
||
|
parent, vertex = visit_list[0] ; del visit_list[0]
|
||
|
colour[vertex] = GREY
|
||
|
|
||
|
# Make copy of list of neighbours, removing the vertex
|
||
|
# we arrived here from.
|
||
|
neighbours = self.reachable_list.get(vertex, []) [:]
|
||
|
if parent in neighbours: neighbours.remove( parent )
|
||
|
|
||
|
for neighbour in self.reachable_list.get(vertex, []):
|
||
|
edge_value = self.get_edge_value( vertex, neighbour )
|
||
|
if colour[neighbour] == WHITE:
|
||
|
visit_list.insert(0, (vertex, neighbour) )
|
||
|
|
||
|
# Set new vertex's value to the desired
|
||
|
# edge value, minus the value of the
|
||
|
# vertex we came here from.
|
||
|
new_val = (edge_value -
|
||
|
self.get_vertex_value( vertex ) )
|
||
|
self.set_vertex_value( neighbour,
|
||
|
new_val % self.num_vertices)
|
||
|
|
||
|
colour[vertex] = BLACK
|
||
|
|
||
|
# Returns nothing
|
||
|
return
|
||
|
|
||
|
def __getitem__(self, index):
|
||
|
if index < self.num_vertices: return index
|
||
|
raise IndexError
|
||
|
|
||
|
def get_vertex_value(self, vertex):
|
||
|
"Get value for a vertex"
|
||
|
return self.values[ vertex ]
|
||
|
|
||
|
def set_vertex_value(self, vertex, value):
|
||
|
"Set value for a vertex"
|
||
|
self.values[ vertex ] = value
|
||
|
|
||
|
def generate_code(self, out, width = 70):
|
||
|
"Return nicely formatted table"
|
||
|
out.write("{ ")
|
||
|
pos = 0
|
||
|
for v in self.values:
|
||
|
v=str(v)+', '
|
||
|
out.write(v)
|
||
|
pos = pos + len(v) + 1
|
||
|
if pos > width: out.write('\n '); pos = 0
|
||
|
out.write('};\n')
|
||
|
|
||
|
|
||
|
class PerfectHash:
|
||
|
def __init__(self, cchMax, f1, f2, G, cHashElements, cKeys, maxHashValue):
|
||
|
self.cchMax = cchMax
|
||
|
self.f1 = f1
|
||
|
self.f2 = f2
|
||
|
self.G = G
|
||
|
self.cHashElements = cHashElements
|
||
|
self.cKeys = cKeys
|
||
|
# determine the necessary type for storing our hash function
|
||
|
# helper table:
|
||
|
self.type = self.determineType(maxHashValue)
|
||
|
|
||
|
def generate_header(self, structName):
|
||
|
header = """
|
||
|
#include <Python.h>
|
||
|
#include <stdlib.h>
|
||
|
|
||
|
/* --- C API ----------------------------------------------------*/
|
||
|
/* C API for usage by other Python modules */
|
||
|
typedef struct %(structName)s
|
||
|
{
|
||
|
unsigned long cKeys;
|
||
|
unsigned long cchMax;
|
||
|
unsigned long (*hash)(const char *key, unsigned int cch);
|
||
|
const void *(*getValue)(unsigned long iKey);
|
||
|
} %(structName)s;
|
||
|
""" % { "structName" : structName }
|
||
|
return header
|
||
|
|
||
|
def determineType(self, maxHashValue):
|
||
|
if maxHashValue <= 255:
|
||
|
return "unsigned char"
|
||
|
elif maxHashValue <= 65535:
|
||
|
return "unsigned short"
|
||
|
else:
|
||
|
# Take the cheesy way out...
|
||
|
return "unsigned long"
|
||
|
|
||
|
def generate_code(self, moduleName, dataArrayName, dataArrayType, structName):
|
||
|
# Output C code for the hash functions and tables
|
||
|
code = """
|
||
|
/*
|
||
|
* The hash is produced using the algorithm described in
|
||
|
* "Optimal algorithms for minimal perfect hashing",
|
||
|
* G. Havas, B.S. Majewski. Available as a technical report
|
||
|
* from the CS department, University of Queensland
|
||
|
* (ftp://ftp.cs.uq.oz.au/).
|
||
|
*
|
||
|
* Generated using a heavily tweaked version of Andrew Kuchling's
|
||
|
* perfect_hash.py:
|
||
|
* http://starship.python.net/crew/amk/python/code/perfect-hash.html
|
||
|
*
|
||
|
* Generated on: %s
|
||
|
*/
|
||
|
""" % time.ctime(time.time())
|
||
|
# MSVC SP3 was complaining when I actually used a global constant
|
||
|
code = code + """
|
||
|
#define k_cHashElements %i
|
||
|
#define k_cchMaxKey %d
|
||
|
#define k_cKeys %i
|
||
|
|
||
|
""" % (self.cHashElements, self.cchMax, self.cKeys)
|
||
|
|
||
|
code = code + """
|
||
|
static const %s G[k_cHashElements];
|
||
|
static const %s %s[k_cKeys];
|
||
|
""" % (self.type, dataArrayType, dataArrayName)
|
||
|
|
||
|
code = code + """
|
||
|
static long f1(const char *key, unsigned int cch)
|
||
|
"""
|
||
|
code = code + self.f1.generate_code()
|
||
|
code = code + """
|
||
|
|
||
|
static long f2(const char *key, unsigned int cch)
|
||
|
"""
|
||
|
code = code + self.f2.generate_code()
|
||
|
code = code + """
|
||
|
|
||
|
static unsigned long hash(const char *key, unsigned int cch)
|
||
|
{
|
||
|
return ((unsigned long)(G[ f1(key, cch) ]) + (unsigned long)(G[ f2(key, cch) ]) ) %% k_cHashElements;
|
||
|
}
|
||
|
|
||
|
const void *getValue(unsigned long iKey)
|
||
|
{
|
||
|
return &%(dataArrayName)s[iKey];
|
||
|
}
|
||
|
|
||
|
/* Helper for adding objects to dictionaries. Check for errors with
|
||
|
PyErr_Occurred() */
|
||
|
static
|
||
|
void insobj(PyObject *dict,
|
||
|
char *name,
|
||
|
PyObject *v)
|
||
|
{
|
||
|
PyDict_SetItemString(dict, name, v);
|
||
|
Py_XDECREF(v);
|
||
|
}
|
||
|
|
||
|
static const %(structName)s hashAPI =
|
||
|
{
|
||
|
k_cKeys,
|
||
|
k_cchMaxKey,
|
||
|
&hash,
|
||
|
&getValue,
|
||
|
};
|
||
|
|
||
|
static
|
||
|
PyMethodDef Module_methods[] =
|
||
|
{
|
||
|
{NULL, NULL},
|
||
|
};
|
||
|
|
||
|
static char *Module_docstring = "%(moduleName)s hash function module";
|
||
|
|
||
|
/* Error reporting for module init functions */
|
||
|
|
||
|
#define Py_ReportModuleInitError(modname) { \\
|
||
|
PyObject *exc_type, *exc_value, *exc_tb; \\
|
||
|
PyObject *str_type, *str_value; \\
|
||
|
\\
|
||
|
/* Fetch error objects and convert them to strings */ \\
|
||
|
PyErr_Fetch(&exc_type, &exc_value, &exc_tb); \\
|
||
|
if (exc_type && exc_value) { \\
|
||
|
str_type = PyObject_Str(exc_type); \\
|
||
|
str_value = PyObject_Str(exc_value); \\
|
||
|
} \\
|
||
|
else { \\
|
||
|
str_type = NULL; \\
|
||
|
str_value = NULL; \\
|
||
|
} \\
|
||
|
/* Try to format a more informative error message using the \\
|
||
|
original error */ \\
|
||
|
if (str_type && str_value && \\
|
||
|
PyString_Check(str_type) && PyString_Check(str_value)) \\
|
||
|
PyErr_Format( \\
|
||
|
PyExc_ImportError, \\
|
||
|
"initialization of module "modname" failed " \\
|
||
|
"(%%s:%%s)", \\
|
||
|
PyString_AS_STRING(str_type), \\
|
||
|
PyString_AS_STRING(str_value)); \\
|
||
|
else \\
|
||
|
PyErr_SetString( \\
|
||
|
PyExc_ImportError, \\
|
||
|
"initialization of module "modname" failed"); \\
|
||
|
Py_XDECREF(str_type); \\
|
||
|
Py_XDECREF(str_value); \\
|
||
|
Py_XDECREF(exc_type); \\
|
||
|
Py_XDECREF(exc_value); \\
|
||
|
Py_XDECREF(exc_tb); \\
|
||
|
}
|
||
|
|
||
|
|
||
|
/* Create PyMethodObjects and register them in the module\'s dict */
|
||
|
DL_EXPORT(void)
|
||
|
init%(moduleName)s(void)
|
||
|
{
|
||
|
PyObject *module, *moddict;
|
||
|
/* Create module */
|
||
|
module = Py_InitModule4("%(moduleName)s", /* Module name */
|
||
|
Module_methods, /* Method list */
|
||
|
Module_docstring, /* Module doc-string */
|
||
|
(PyObject *)NULL, /* always pass this as *self */
|
||
|
PYTHON_API_VERSION); /* API Version */
|
||
|
if (module == NULL)
|
||
|
goto onError;
|
||
|
/* Add some constants to the module\'s dict */
|
||
|
moddict = PyModule_GetDict(module);
|
||
|
if (moddict == NULL)
|
||
|
goto onError;
|
||
|
|
||
|
/* Export C API */
|
||
|
insobj(
|
||
|
moddict,
|
||
|
"%(moduleName)sAPI",
|
||
|
PyCObject_FromVoidPtr((void *)&hashAPI, NULL));
|
||
|
|
||
|
onError:
|
||
|
/* Check for errors and report them */
|
||
|
if (PyErr_Occurred())
|
||
|
Py_ReportModuleInitError("%(moduleName)s");
|
||
|
return;
|
||
|
}
|
||
|
""" % { "moduleName" : moduleName,
|
||
|
"dataArrayName" : dataArrayName,
|
||
|
"structName" : structName, }
|
||
|
|
||
|
return code
|
||
|
|
||
|
def generate_graph(self, out):
|
||
|
out.write("""
|
||
|
static const unsigned short G[] =
|
||
|
""")
|
||
|
self.G.generate_code(out)
|
||
|
|
||
|
|
||
|
def generate_hash(keys, caseInsensitive=0,
|
||
|
minC=None, initC=None,
|
||
|
f1Seed=None, f2Seed=None,
|
||
|
cIncrement=None, cTries=None):
|
||
|
"""Print out code for a perfect minimal hash. Input is a list of
|
||
|
(key, desired hash value) tuples. """
|
||
|
|
||
|
# K is the number of keys.
|
||
|
K = len(keys)
|
||
|
|
||
|
# We will be generating graphs of size N, where N = c * K.
|
||
|
# The larger C is, the fewer trial graphs will need to be made, but
|
||
|
# the resulting table is also larger. Increase this starting value
|
||
|
# if you're impatient. After 50 failures, c will be increased by 0.025.
|
||
|
if initC is None:
|
||
|
initC = 1.5
|
||
|
|
||
|
c = initC
|
||
|
if cIncrement is None:
|
||
|
cIncrement = 0.0025
|
||
|
|
||
|
if cTries is None:
|
||
|
cTries = 50
|
||
|
|
||
|
# Number of trial graphs so far
|
||
|
num_graphs = 0
|
||
|
sys.stderr.write('Generating graphs... ')
|
||
|
|
||
|
while 1:
|
||
|
# N is the number of vertices in the graph G
|
||
|
N = int(c*K)
|
||
|
num_graphs = num_graphs + 1
|
||
|
if (num_graphs % cTries) == 0:
|
||
|
# Enough failures at this multiplier,
|
||
|
# increase the multiplier and keep trying....
|
||
|
c = c + cIncrement
|
||
|
|
||
|
# Whats good with searching for a better
|
||
|
# hash function if we exceed the size
|
||
|
# of a function we've generated in the past....
|
||
|
if minC is not None and \
|
||
|
c > minC:
|
||
|
c = initC
|
||
|
sys.stderr.write(' -- c > minC, resetting c to %0.4f\n' % c)
|
||
|
else:
|
||
|
sys.stderr.write(' -- increasing c to %0.4f\n' % c)
|
||
|
sys.stderr.write('Generating graphs... ')
|
||
|
|
||
|
# Output a progress message
|
||
|
sys.stderr.write( str(num_graphs) + ' ')
|
||
|
sys.stderr.flush()
|
||
|
|
||
|
# Create graph w/ N vertices
|
||
|
G = Graph(N)
|
||
|
# Save the seeds used to generate
|
||
|
# the following two hash functions.
|
||
|
_seeds = whrandom._inst._seed
|
||
|
|
||
|
# Create 2 random hash functions
|
||
|
f1 = Hash(N, caseInsensitive)
|
||
|
f2 = Hash(N, caseInsensitive)
|
||
|
|
||
|
# Set the initial hash function seed values if passed in.
|
||
|
# Doing this protects our hash functions from
|
||
|
# changes to whrandom's behavior.
|
||
|
if f1Seed is not None:
|
||
|
f1.seed = f1Seed
|
||
|
f1Seed = None
|
||
|
fSpecifiedSeeds = 1
|
||
|
if f2Seed is not None:
|
||
|
f2.seed = f2Seed
|
||
|
f2Seed = None
|
||
|
fSpecifiedSeeds = 1
|
||
|
|
||
|
# Connect vertices given by the values of the two hash functions
|
||
|
# for each key. Associate the desired hash value with each
|
||
|
# edge.
|
||
|
for k, v in keys:
|
||
|
h1 = f1(k) ; h2 = f2(k)
|
||
|
G.connect( h1,h2, v)
|
||
|
|
||
|
# Check if the resulting graph is acyclic; if it is,
|
||
|
# we're done with step 1.
|
||
|
if G.is_acyclic():
|
||
|
break
|
||
|
elif fSpecifiedSeeds:
|
||
|
sys.stderr.write('\nThe initial f1/f2 seeds you specified didn\'t generate a perfect hash function: \n')
|
||
|
sys.stderr.write('f1 seed: %s\n' % f1.seed)
|
||
|
sys.stderr.write('f2 seed: %s\n' % f2.seed)
|
||
|
sys.stderr.write('multipler: %s\n' % c)
|
||
|
sys.stderr.write('Your data has likely changed, or you forgot what your initial multiplier should be.\n')
|
||
|
sys.stderr.write('continuing the search for a perfect hash function......\n')
|
||
|
fSpecifiedSeeds = 0
|
||
|
|
||
|
# Now we have an acyclic graph, so we assign values to each vertex
|
||
|
# such that, for each edge, you can add the values for the two vertices
|
||
|
# involved and get the desired value for that edge -- which is the
|
||
|
# desired hash key. This task is dead easy, because the graph is acyclic.
|
||
|
sys.stderr.write('\nAcyclic graph found; computing vertex values...\n')
|
||
|
G.assign_values()
|
||
|
|
||
|
sys.stderr.write('Checking uniqueness of hash values...\n')
|
||
|
|
||
|
# Sanity check the result by actually verifying that all the keys
|
||
|
# hash to the right value.
|
||
|
cchMaxKey = 0
|
||
|
maxHashValue = 0
|
||
|
|
||
|
for k, v in keys:
|
||
|
hash1 = G.values[ f1(k) ]
|
||
|
hash2 = G.values[ f2(k) ]
|
||
|
if hash1 > maxHashValue:
|
||
|
maxHashValue = hash1
|
||
|
if hash2 > maxHashValue:
|
||
|
maxHashValue = hash2
|
||
|
perfecthash = (hash1 + hash2) % N
|
||
|
assert perfecthash == v
|
||
|
cch = len(k)
|
||
|
if cch > cchMaxKey:
|
||
|
cchMaxKey = cch
|
||
|
|
||
|
sys.stderr.write('Found perfect hash function!\n')
|
||
|
sys.stderr.write('\nIn order to regenerate this hash function, \n')
|
||
|
sys.stderr.write('you need to pass these following values back in:\n')
|
||
|
sys.stderr.write('f1 seed: %s\n' % repr(f1.seed))
|
||
|
sys.stderr.write('f2 seed: %s\n' % repr(f2.seed))
|
||
|
sys.stderr.write('initial multipler: %s\n' % c)
|
||
|
|
||
|
return PerfectHash(cchMaxKey, f1, f2, G, N, len(keys), maxHashValue)
|
||
|
|
||
|
"""
|
||
|
static
|
||
|
PyObject *codec_tuple(PyObject *unicode,
|
||
|
int len)
|
||
|
{
|
||
|
PyObject *v,*w;
|
||
|
|
||
|
if (unicode == NULL)
|
||
|
return NULL;
|
||
|
v = PyTuple_New(2);
|
||
|
if (v == NULL) {
|
||
|
Py_DECREF(unicode);
|
||
|
return NULL;
|
||
|
}
|
||
|
PyTuple_SET_ITEM(v,0,unicode);
|
||
|
w = PyInt_FromLong(len);
|
||
|
if (w == NULL) {
|
||
|
Py_DECREF(v);
|
||
|
return NULL;
|
||
|
}
|
||
|
PyTuple_SET_ITEM(v,1,w);
|
||
|
return v;
|
||
|
}
|
||
|
|
||
|
static PyObject *
|
||
|
ucn_decode(PyObject *self,
|
||
|
PyObject *args)
|
||
|
{
|
||
|
const char *data;
|
||
|
int size;
|
||
|
const char *errors = NULL;
|
||
|
PyObject *mapping = NULL;
|
||
|
|
||
|
if (!PyArg_ParseTuple(args, "t#|z:ucn_decode",
|
||
|
&data, &size, &errors))
|
||
|
return NULL;
|
||
|
if (mapping == Py_None)
|
||
|
mapping = NULL;
|
||
|
|
||
|
return codec_tuple(PyUnicode_DecodeNamedUnicodeEscape(data, size, errors),
|
||
|
size);
|
||
|
}
|
||
|
|
||
|
|
||
|
static PyMethodDef _codecs_functions[] = {
|
||
|
{ "ucn_decode", ucn_decode, 1 },
|
||
|
};
|
||
|
|
||
|
DL_EXPORT(void)
|
||
|
init_ucn()
|
||
|
{
|
||
|
Py_InitModule("_ucn", _codecs_functions);
|
||
|
}
|
||
|
|
||
|
"""
|
||
|
|
||
|
|
||
|
|