cpython/Modules/_sha3/sha3module.c

586 lines
16 KiB
C
Raw Normal View History

/* SHA3 module
*
* This module provides an interface to the SHA3 algorithm
*
* See below for information about the original code this module was
* based upon. Additional work performed by:
*
* Andrew Kuchling (amk@amk.ca)
* Greg Stein (gstein@lyra.org)
* Trevor Perrin (trevp@trevp.net)
* Gregory P. Smith (greg@krypto.org)
*
* Copyright (C) 2012 Christian Heimes (christian@python.org)
* Licensed to PSF under a Contributor Agreement.
*
*/
#include "Python.h"
#include "../hashlib.h"
/* **************************************************************************
* SHA-3 (Keccak)
*
* The code is based on KeccakReferenceAndOptimized-3.2.zip from 29 May 2012.
*
* The reference implementation is altered in this points:
* - C++ comments are converted to ANSI C comments.
* - All functions and globals are declared static.
* - The typedef for UINT64 is commented out.
* - KeccakF-1600-opt[32|64]-settings.h are commented out
* - Some unused functions are commented out to silence compiler warnings.
*
* In order to avoid name clashes with other software I have to declare all
* Keccak functions and global data as static. The C code is directly
* included into this file in order to access the static functions.
*
* Keccak can be tuned with several paramenters. I try to explain all options
* as far as I understand them. The reference implementation also contains
* assembler code for ARM platforms (NEON instructions).
*
* Common
* ======
*
* Options:
* UseBebigokimisa, Unrolling
*
* - Unrolling: loop unrolling (24, 12, 8, 6, 4, 3, 2, 1)
* - UseBebigokimisa: lane complementing
*
* 64bit platforms
* ===============
*
* Additional options:
* UseSSE, UseOnlySIMD64, UseMMX, UseXOP, UseSHLD
*
* Optimized instructions (disabled by default):
* - UseSSE: use Stream SIMD extensions
* o UseOnlySIMD64: limit to 64bit instructions, otherwise 128bit
* o w/o UseOnlySIMD64: requires compiler agument -mssse3 or -mtune
* - UseMMX: use 64bit MMX instructions
* - UseXOP: use AMD's eXtended Operations (128bit SSE extension)
*
* Other:
* - Unrolling: default 24
* - UseBebigokimisa: default 1
*
* When neither UseSSE, UseMMX nor UseXOP is configured, ROL64 (rotate left
* 64) is implemented as:
* - Windows: _rotl64()
* - UseSHLD: use shld (shift left) asm optimization
* - otherwise: shift and xor
*
* UseBebigokimisa can't be used in combination with UseSSE, UseMMX or
* UseXOP. UseOnlySIMD64 has no effect unless UseSSE is specified.
*
* Tests have shown that UseSSE + UseOnlySIMD64 is about three to four
* times SLOWER than UseBebigokimisa. UseSSE and UseMMX are about two times
* slower. (tested by CH and AP)
*
* 32bit platforms
* ===============
*
* Additional options:
* UseInterleaveTables, UseSchedule
*
* - Unrolling: default 2
* - UseBebigokimisa: default n/a
* - UseSchedule: ???, (1, 2, 3; default 3)
* - UseInterleaveTables: use two 64k lookup tables for (de)interleaving
* default: n/a
*
* schedules:
* - 3: no UseBebigokimisa, Unrolling must be 2
* - 2 + 1: ???
*
* *************************************************************************/
#ifdef __sparc
/* opt64 uses un-aligned memory access that causes a BUS error with msg
* 'invalid address alignment' on SPARC. */
#define KeccakOpt 32
#elif SIZEOF_VOID_P == 8 && defined(PY_UINT64_T)
/* opt64 works only for 64bit platforms with unsigned int64 */
#define KeccakOpt 64
#else
/* opt32 is used for the remaining 32 and 64bit platforms */
#define KeccakOpt 32
#endif
#if KeccakOpt == 64 && defined(PY_UINT64_T)
/* 64bit platforms with unsigned int64 */
#define Unrolling 24
#define UseBebigokimisa
typedef PY_UINT64_T UINT64;
#elif KeccakOpt == 32 && defined(PY_UINT64_T)
/* 32bit platforms with unsigned int64 */
#define Unrolling 2
#define UseSchedule 3
typedef PY_UINT64_T UINT64;
#else
/* 32 or 64bit platforms without unsigned int64 */
#define Unrolling 2
#define UseSchedule 3
#define UseInterleaveTables
#endif
/* replacement for brg_endian.h */
#define IS_BIG_ENDIAN 4321
#define IS_LITTLE_ENDIAN 1234
#if PY_BIG_ENDIAN
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
#else
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
#endif
/* inline all Keccak dependencies */
#include "keccak/KeccakNISTInterface.h"
#include "keccak/KeccakNISTInterface.c"
#include "keccak/KeccakSponge.c"
#if KeccakOpt == 64
#include "keccak/KeccakF-1600-opt64.c"
#elif KeccakOpt == 32
#include "keccak/KeccakF-1600-opt32.c"
#endif
/* #define SHA3_BLOCKSIZE 200 // 1600 bits */
#define SHA3_MAX_DIGESTSIZE 64 /* 512 bits */
#define SHA3_state hashState
#define SHA3_init Init
#define SHA3_process Update
#define SHA3_done Final
#define SHA3_copystate(dest, src) memcpy(&(dest), &(src), sizeof(SHA3_state))
#define SHA3_clearstate(state) memset(&(state), 0, sizeof(SHA3_state))
/* The structure for storing SHA3 info */
typedef struct {
PyObject_HEAD
int hashbitlen;
SHA3_state hash_state;
#ifdef WITH_THREAD
PyThread_type_lock lock;
#endif
} SHA3object;
static PyTypeObject SHA3type;
static SHA3object *
newSHA3object(int hashbitlen)
{
SHA3object *newobj;
/* check hashbitlen */
switch(hashbitlen) {
/* supported hash length */
case 224:
break;
case 256:
break;
case 384:
break;
case 512:
break;
case 0:
/* arbitrarily-long output isn't supported by this module */
default:
/* everything else is an error */
PyErr_SetString(PyExc_ValueError,
"hashbitlen must be one of 224, 256, 384 or 512.");
return NULL;
}
newobj = (SHA3object *)PyObject_New(SHA3object, &SHA3type);
if (newobj == NULL) {
return NULL;
}
newobj->hashbitlen = hashbitlen;
#ifdef WITH_THREAD
newobj->lock = NULL;
#endif
return newobj;
}
/* Internal methods for a hash object */
static void
SHA3_dealloc(SHA3object *self)
{
SHA3_clearstate(self->hash_state);
#ifdef WITH_THREAD
if (self->lock) {
PyThread_free_lock(self->lock);
}
#endif
PyObject_Del(self);
}
/* External methods for a hash object */
PyDoc_STRVAR(SHA3_copy__doc__, "Return a copy of the hash object.");
static PyObject *
SHA3_copy(SHA3object *self, PyObject *unused)
{
SHA3object *newobj;
if ((newobj = newSHA3object(self->hashbitlen)) == NULL) {
return NULL;
}
ENTER_HASHLIB(self);
SHA3_copystate(newobj->hash_state, self->hash_state);
LEAVE_HASHLIB(self);
return (PyObject *)newobj;
}
PyDoc_STRVAR(SHA3_digest__doc__,
"Return the digest value as a string of binary data.");
static PyObject *
SHA3_digest(SHA3object *self, PyObject *unused)
{
unsigned char digest[SHA3_MAX_DIGESTSIZE];
SHA3_state temp;
HashReturn res;
ENTER_HASHLIB(self);
SHA3_copystate(temp, self->hash_state);
LEAVE_HASHLIB(self);
res = SHA3_done(&temp, digest);
SHA3_clearstate(temp);
if (res != SUCCESS) {
PyErr_SetString(PyExc_RuntimeError, "internal error in SHA3 Final()");
return NULL;
}
return PyBytes_FromStringAndSize((const char *)digest,
self->hashbitlen / 8);
}
PyDoc_STRVAR(SHA3_hexdigest__doc__,
"Return the digest value as a string of hexadecimal digits.");
static PyObject *
SHA3_hexdigest(SHA3object *self, PyObject *unused)
{
unsigned char digest[SHA3_MAX_DIGESTSIZE];
SHA3_state temp;
HashReturn res;
PyObject *retval;
Py_UCS1 *hex_digest;
int digestlen, i, j;
/* Get the raw (binary) digest value */
ENTER_HASHLIB(self);
SHA3_copystate(temp, self->hash_state);
LEAVE_HASHLIB(self);
res = SHA3_done(&temp, digest);
SHA3_clearstate(temp);
if (res != SUCCESS) {
PyErr_SetString(PyExc_RuntimeError, "internal error in SHA3 Final()");
return NULL;
}
/* Create a new string */
digestlen = self->hashbitlen / 8;
retval = PyUnicode_New(digestlen * 2, 127);
if (!retval)
return NULL;
hex_digest = PyUnicode_1BYTE_DATA(retval);
/* Make hex version of the digest */
for(i=j=0; i < digestlen; i++) {
unsigned char c;
c = (digest[i] >> 4) & 0xf;
hex_digest[j++] = Py_hexdigits[c];
c = (digest[i] & 0xf);
hex_digest[j++] = Py_hexdigits[c];
}
#ifdef Py_DEBUG
assert(_PyUnicode_CheckConsistency(retval, 1));
#endif
return retval;
}
PyDoc_STRVAR(SHA3_update__doc__,
"Update this hash object's state with the provided string.");
static PyObject *
SHA3_update(SHA3object *self, PyObject *args)
{
PyObject *obj;
Py_buffer buf;
HashReturn res;
if (!PyArg_ParseTuple(args, "O:update", &obj))
return NULL;
GET_BUFFER_VIEW_OR_ERROUT(obj, &buf);
/* add new data, the function takes the length in bits not bytes */
#ifdef WITH_THREADS
if (self->lock == NULL && buf.len >= HASHLIB_GIL_MINSIZE) {
self->lock = PyThread_allocate_lock();
}
/* Once a lock exists all code paths must be synchronized. We have to
* release the GIL even for small buffers as acquiring the lock may take
* an unlimited amount of time when another thread updates this object
* with lots of data. */
if (self->lock) {
Py_BEGIN_ALLOW_THREADS
PyThread_acquire_lock(self->lock, 1);
res = SHA3_process(&self->hash_state, buf.buf, buf.len * 8);
PyThread_release_lock(self->lock);
Py_END_ALLOW_THREADS
}
else {
res = SHA3_process(&self->hash_state, buf.buf, buf.len * 8);
}
#else
res = SHA3_process(&self->hash_state, buf.buf, buf.len * 8);
#endif
LEAVE_HASHLIB(self);
if (res != SUCCESS) {
PyBuffer_Release(&buf);
PyErr_SetString(PyExc_RuntimeError,
"internal error in SHA3 Update()");
return NULL;
}
PyBuffer_Release(&buf);
Py_INCREF(Py_None);
return Py_None;
}
static PyMethodDef SHA3_methods[] = {
{"copy", (PyCFunction)SHA3_copy, METH_NOARGS,
SHA3_copy__doc__},
{"digest", (PyCFunction)SHA3_digest, METH_NOARGS,
SHA3_digest__doc__},
{"hexdigest", (PyCFunction)SHA3_hexdigest, METH_NOARGS,
SHA3_hexdigest__doc__},
{"update", (PyCFunction)SHA3_update, METH_VARARGS,
SHA3_update__doc__},
{NULL, NULL} /* sentinel */
};
static PyObject *
SHA3_get_block_size(SHA3object *self, void *closure)
{
/* HMAC-SHA3 hasn't been specified yet and no official test vectors are
* available. Thus block_size returns NotImplemented to prevent people
* from using SHA3 with the hmac module.
*/
Py_RETURN_NOTIMPLEMENTED;
}
static PyObject *
SHA3_get_name(SHA3object *self, void *closure)
{
return PyUnicode_FromFormat("sha3_%i", self->hashbitlen);
}
static PyObject *
SHA3_get_digest_size(SHA3object *self, void *closure)
{
return PyLong_FromLong(self->hashbitlen / 8);
}
static PyGetSetDef SHA3_getseters[] = {
{"block_size", (getter)SHA3_get_block_size, NULL, NULL, NULL},
{"name", (getter)SHA3_get_name, NULL, NULL, NULL},
{"digest_size", (getter)SHA3_get_digest_size, NULL, NULL, NULL},
{NULL} /* Sentinel */
};
static PyTypeObject SHA3type = {
PyVarObject_HEAD_INIT(NULL, 0)
"_sha3.SHA3", /* tp_name */
sizeof(SHA3object), /* tp_size */
0, /* tp_itemsize */
/* methods */
(destructor)SHA3_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
0, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
0, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT, /* tp_flags */
0, /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
SHA3_methods, /* tp_methods */
NULL, /* tp_members */
SHA3_getseters, /* tp_getset */
};
/* constructor helper */
static PyObject *
SHA3_factory(PyObject *args, PyObject *kwdict, const char *fmt,
int hashbitlen)
{
SHA3object *newobj = NULL;
static char *kwlist[] = {"string", NULL};
PyObject *data_obj = NULL;
Py_buffer buf;
HashReturn res;
if (!PyArg_ParseTupleAndKeywords(args, kwdict, fmt, kwlist,
&data_obj)) {
return NULL;
}
if (data_obj)
GET_BUFFER_VIEW_OR_ERROUT(data_obj, &buf);
if ((newobj = newSHA3object(hashbitlen)) == NULL) {
goto error;
}
if (SHA3_init(&newobj->hash_state, hashbitlen) != SUCCESS) {
PyErr_SetString(PyExc_RuntimeError,
"internal error in SHA3 Update()");
goto error;
}
if (data_obj) {
#ifdef WITH_THREADS
if (buf.len >= HASHLIB_GIL_MINSIZE) {
/* invariant: New objects can't be accessed by other code yet,
* thus it's safe to release the GIL without locking the object.
*/
Py_BEGIN_ALLOW_THREADS
res = SHA3_process(&newobj->hash_state, buf.buf, buf.len * 8);
Py_END_ALLOW_THREADS
}
else {
res = SHA3_process(&newobj->hash_state, buf.buf, buf.len * 8);
}
#else
res = SHA3_process(&newobj->hash_state, buf.buf, buf.len * 8);
#endif
if (res != SUCCESS) {
PyErr_SetString(PyExc_RuntimeError,
"internal error in SHA3 Update()");
goto error;
}
PyBuffer_Release(&buf);
}
return (PyObject *)newobj;
error:
if (newobj) {
SHA3_dealloc(newobj);
}
if (data_obj) {
PyBuffer_Release(&buf);
}
return NULL;
}
PyDoc_STRVAR(sha3_224__doc__,
"sha3_224([string]) -> SHA3 object\n\
\n\
Return a new SHA3 hash object with a hashbit length of 28 bytes.");
static PyObject *
sha3_224(PyObject *self, PyObject *args, PyObject *kwdict)
{
return SHA3_factory(args, kwdict, "|O:sha3_224", 224);
}
PyDoc_STRVAR(sha3_256__doc__,
"sha3_256([string]) -> SHA3 object\n\
\n\
Return a new SHA3 hash object with a hashbit length of 32 bytes.");
static PyObject *
sha3_256(PyObject *self, PyObject *args, PyObject *kwdict)
{
return SHA3_factory(args, kwdict, "|O:sha3_256", 256);
}
PyDoc_STRVAR(sha3_384__doc__,
"sha3_384([string]) -> SHA3 object\n\
\n\
Return a new SHA3 hash object with a hashbit length of 48 bytes.");
static PyObject *
sha3_384(PyObject *self, PyObject *args, PyObject *kwdict)
{
return SHA3_factory(args, kwdict, "|O:sha3_384", 384);
}
PyDoc_STRVAR(sha3_512__doc__,
"sha3_512([string]) -> SHA3 object\n\
\n\
Return a new SHA3 hash object with a hashbit length of 64 bytes.");
static PyObject *
sha3_512(PyObject *self, PyObject *args, PyObject *kwdict)
{
return SHA3_factory(args, kwdict, "|O:sha3_512", 512);
}
/* List of functions exported by this module */
static struct PyMethodDef SHA3_functions[] = {
{"sha3_224", (PyCFunction)sha3_224, METH_VARARGS|METH_KEYWORDS,
sha3_224__doc__},
{"sha3_256", (PyCFunction)sha3_256, METH_VARARGS|METH_KEYWORDS,
sha3_256__doc__},
{"sha3_384", (PyCFunction)sha3_384, METH_VARARGS|METH_KEYWORDS,
sha3_384__doc__},
{"sha3_512", (PyCFunction)sha3_512, METH_VARARGS|METH_KEYWORDS,
sha3_512__doc__},
{NULL, NULL} /* Sentinel */
};
/* Initialize this module. */
static struct PyModuleDef _SHA3module = {
PyModuleDef_HEAD_INIT,
"_sha3",
NULL,
-1,
SHA3_functions,
NULL,
NULL,
NULL,
NULL
};
PyMODINIT_FUNC
PyInit__sha3(void)
{
Py_TYPE(&SHA3type) = &PyType_Type;
if (PyType_Ready(&SHA3type) < 0) {
return NULL;
}
return PyModule_Create(&_SHA3module);
}