/** * RC2 implementation. * * @author Stefan Siegl * * Copyright (c) 2012 Stefan Siegl <stesie@brokenpipe.de> * * Information on the RC2 cipher is available from RFC #2268, * http://www.ietf.org/rfc/rfc2268.txt */ var forge = require('./forge'); require('./util'); var piTable = [ 0xd9, 0x78, 0xf9, 0xc4, 0x19, 0xdd, 0xb5, 0xed, 0x28, 0xe9, 0xfd, 0x79, 0x4a, 0xa0, 0xd8, 0x9d, 0xc6, 0x7e, 0x37, 0x83, 0x2b, 0x76, 0x53, 0x8e, 0x62, 0x4c, 0x64, 0x88, 0x44, 0x8b, 0xfb, 0xa2, 0x17, 0x9a, 0x59, 0xf5, 0x87, 0xb3, 0x4f, 0x13, 0x61, 0x45, 0x6d, 0x8d, 0x09, 0x81, 0x7d, 0x32, 0xbd, 0x8f, 0x40, 0xeb, 0x86, 0xb7, 0x7b, 0x0b, 0xf0, 0x95, 0x21, 0x22, 0x5c, 0x6b, 0x4e, 0x82, 0x54, 0xd6, 0x65, 0x93, 0xce, 0x60, 0xb2, 0x1c, 0x73, 0x56, 0xc0, 0x14, 0xa7, 0x8c, 0xf1, 0xdc, 0x12, 0x75, 0xca, 0x1f, 0x3b, 0xbe, 0xe4, 0xd1, 0x42, 0x3d, 0xd4, 0x30, 0xa3, 0x3c, 0xb6, 0x26, 0x6f, 0xbf, 0x0e, 0xda, 0x46, 0x69, 0x07, 0x57, 0x27, 0xf2, 0x1d, 0x9b, 0xbc, 0x94, 0x43, 0x03, 0xf8, 0x11, 0xc7, 0xf6, 0x90, 0xef, 0x3e, 0xe7, 0x06, 0xc3, 0xd5, 0x2f, 0xc8, 0x66, 0x1e, 0xd7, 0x08, 0xe8, 0xea, 0xde, 0x80, 0x52, 0xee, 0xf7, 0x84, 0xaa, 0x72, 0xac, 0x35, 0x4d, 0x6a, 0x2a, 0x96, 0x1a, 0xd2, 0x71, 0x5a, 0x15, 0x49, 0x74, 0x4b, 0x9f, 0xd0, 0x5e, 0x04, 0x18, 0xa4, 0xec, 0xc2, 0xe0, 0x41, 0x6e, 0x0f, 0x51, 0xcb, 0xcc, 0x24, 0x91, 0xaf, 0x50, 0xa1, 0xf4, 0x70, 0x39, 0x99, 0x7c, 0x3a, 0x85, 0x23, 0xb8, 0xb4, 0x7a, 0xfc, 0x02, 0x36, 0x5b, 0x25, 0x55, 0x97, 0x31, 0x2d, 0x5d, 0xfa, 0x98, 0xe3, 0x8a, 0x92, 0xae, 0x05, 0xdf, 0x29, 0x10, 0x67, 0x6c, 0xba, 0xc9, 0xd3, 0x00, 0xe6, 0xcf, 0xe1, 0x9e, 0xa8, 0x2c, 0x63, 0x16, 0x01, 0x3f, 0x58, 0xe2, 0x89, 0xa9, 0x0d, 0x38, 0x34, 0x1b, 0xab, 0x33, 0xff, 0xb0, 0xbb, 0x48, 0x0c, 0x5f, 0xb9, 0xb1, 0xcd, 0x2e, 0xc5, 0xf3, 0xdb, 0x47, 0xe5, 0xa5, 0x9c, 0x77, 0x0a, 0xa6, 0x20, 0x68, 0xfe, 0x7f, 0xc1, 0xad ]; var s = [1, 2, 3, 5]; /** * Rotate a word left by given number of bits. * * Bits that are shifted out on the left are put back in on the right * hand side. * * @param word The word to shift left. * @param bits The number of bits to shift by. * @return The rotated word. */ var rol = function(word, bits) { return ((word << bits) & 0xffff) | ((word & 0xffff) >> (16 - bits)); }; /** * Rotate a word right by given number of bits. * * Bits that are shifted out on the right are put back in on the left * hand side. * * @param word The word to shift right. * @param bits The number of bits to shift by. * @return The rotated word. */ var ror = function(word, bits) { return ((word & 0xffff) >> bits) | ((word << (16 - bits)) & 0xffff); }; /* RC2 API */ module.exports = forge.rc2 = forge.rc2 || {}; /** * Perform RC2 key expansion as per RFC #2268, section 2. * * @param key variable-length user key (between 1 and 128 bytes) * @param effKeyBits number of effective key bits (default: 128) * @return the expanded RC2 key (ByteBuffer of 128 bytes) */ forge.rc2.expandKey = function(key, effKeyBits) { if(typeof key === 'string') { key = forge.util.createBuffer(key); } effKeyBits = effKeyBits || 128; /* introduce variables that match the names used in RFC #2268 */ var L = key; var T = key.length(); var T1 = effKeyBits; var T8 = Math.ceil(T1 / 8); var TM = 0xff >> (T1 & 0x07); var i; for(i = T; i < 128; i++) { L.putByte(piTable[(L.at(i - 1) + L.at(i - T)) & 0xff]); } L.setAt(128 - T8, piTable[L.at(128 - T8) & TM]); for(i = 127 - T8; i >= 0; i--) { L.setAt(i, piTable[L.at(i + 1) ^ L.at(i + T8)]); } return L; }; /** * Creates a RC2 cipher object. * * @param key the symmetric key to use (as base for key generation). * @param bits the number of effective key bits. * @param encrypt false for decryption, true for encryption. * * @return the cipher. */ var createCipher = function(key, bits, encrypt) { var _finish = false, _input = null, _output = null, _iv = null; var mixRound, mashRound; var i, j, K = []; /* Expand key and fill into K[] Array */ key = forge.rc2.expandKey(key, bits); for(i = 0; i < 64; i++) { K.push(key.getInt16Le()); } if(encrypt) { /** * Perform one mixing round "in place". * * @param R Array of four words to perform mixing on. */ mixRound = function(R) { for(i = 0; i < 4; i++) { R[i] += K[j] + (R[(i + 3) % 4] & R[(i + 2) % 4]) + ((~R[(i + 3) % 4]) & R[(i + 1) % 4]); R[i] = rol(R[i], s[i]); j++; } }; /** * Perform one mashing round "in place". * * @param R Array of four words to perform mashing on. */ mashRound = function(R) { for(i = 0; i < 4; i++) { R[i] += K[R[(i + 3) % 4] & 63]; } }; } else { /** * Perform one r-mixing round "in place". * * @param R Array of four words to perform mixing on. */ mixRound = function(R) { for(i = 3; i >= 0; i--) { R[i] = ror(R[i], s[i]); R[i] -= K[j] + (R[(i + 3) % 4] & R[(i + 2) % 4]) + ((~R[(i + 3) % 4]) & R[(i + 1) % 4]); j--; } }; /** * Perform one r-mashing round "in place". * * @param R Array of four words to perform mashing on. */ mashRound = function(R) { for(i = 3; i >= 0; i--) { R[i] -= K[R[(i + 3) % 4] & 63]; } }; } /** * Run the specified cipher execution plan. * * This function takes four words from the input buffer, applies the IV on * it (if requested) and runs the provided execution plan. * * The plan must be put together in form of a array of arrays. Where the * outer one is simply a list of steps to perform and the inner one needs * to have two elements: the first one telling how many rounds to perform, * the second one telling what to do (i.e. the function to call). * * @param {Array} plan The plan to execute. */ var runPlan = function(plan) { var R = []; /* Get data from input buffer and fill the four words into R */ for(i = 0; i < 4; i++) { var val = _input.getInt16Le(); if(_iv !== null) { if(encrypt) { /* We're encrypting, apply the IV first. */ val ^= _iv.getInt16Le(); } else { /* We're decryption, keep cipher text for next block. */ _iv.putInt16Le(val); } } R.push(val & 0xffff); } /* Reset global "j" variable as per spec. */ j = encrypt ? 0 : 63; /* Run execution plan. */ for(var ptr = 0; ptr < plan.length; ptr++) { for(var ctr = 0; ctr < plan[ptr][0]; ctr++) { plan[ptr][1](R); } } /* Write back result to output buffer. */ for(i = 0; i < 4; i++) { if(_iv !== null) { if(encrypt) { /* We're encrypting in CBC-mode, feed back encrypted bytes into IV buffer to carry it forward to next block. */ _iv.putInt16Le(R[i]); } else { R[i] ^= _iv.getInt16Le(); } } _output.putInt16Le(R[i]); } }; /* Create cipher object */ var cipher = null; cipher = { /** * Starts or restarts the encryption or decryption process, whichever * was previously configured. * * To use the cipher in CBC mode, iv may be given either as a string * of bytes, or as a byte buffer. For ECB mode, give null as iv. * * @param iv the initialization vector to use, null for ECB mode. * @param output the output the buffer to write to, null to create one. */ start: function(iv, output) { if(iv) { /* CBC mode */ if(typeof iv === 'string') { iv = forge.util.createBuffer(iv); } } _finish = false; _input = forge.util.createBuffer(); _output = output || new forge.util.createBuffer(); _iv = iv; cipher.output = _output; }, /** * Updates the next block. * * @param input the buffer to read from. */ update: function(input) { if(!_finish) { // not finishing, so fill the input buffer with more input _input.putBuffer(input); } while(_input.length() >= 8) { runPlan([ [ 5, mixRound ], [ 1, mashRound ], [ 6, mixRound ], [ 1, mashRound ], [ 5, mixRound ] ]); } }, /** * Finishes encrypting or decrypting. * * @param pad a padding function to use, null for PKCS#7 padding, * signature(blockSize, buffer, decrypt). * * @return true if successful, false on error. */ finish: function(pad) { var rval = true; if(encrypt) { if(pad) { rval = pad(8, _input, !encrypt); } else { // add PKCS#7 padding to block (each pad byte is the // value of the number of pad bytes) var padding = (_input.length() === 8) ? 8 : (8 - _input.length()); _input.fillWithByte(padding, padding); } } if(rval) { // do final update _finish = true; cipher.update(); } if(!encrypt) { // check for error: input data not a multiple of block size rval = (_input.length() === 0); if(rval) { if(pad) { rval = pad(8, _output, !encrypt); } else { // ensure padding byte count is valid var len = _output.length(); var count = _output.at(len - 1); if(count > len) { rval = false; } else { // trim off padding bytes _output.truncate(count); } } } } return rval; } }; return cipher; }; /** * Creates an RC2 cipher object to encrypt data in ECB or CBC mode using the * given symmetric key. The output will be stored in the 'output' member * of the returned cipher. * * The key and iv may be given as a string of bytes or a byte buffer. * The cipher is initialized to use 128 effective key bits. * * @param key the symmetric key to use. * @param iv the initialization vector to use. * @param output the buffer to write to, null to create one. * * @return the cipher. */ forge.rc2.startEncrypting = function(key, iv, output) { var cipher = forge.rc2.createEncryptionCipher(key, 128); cipher.start(iv, output); return cipher; }; /** * Creates an RC2 cipher object to encrypt data in ECB or CBC mode using the * given symmetric key. * * The key may be given as a string of bytes or a byte buffer. * * To start encrypting call start() on the cipher with an iv and optional * output buffer. * * @param key the symmetric key to use. * * @return the cipher. */ forge.rc2.createEncryptionCipher = function(key, bits) { return createCipher(key, bits, true); }; /** * Creates an RC2 cipher object to decrypt data in ECB or CBC mode using the * given symmetric key. The output will be stored in the 'output' member * of the returned cipher. * * The key and iv may be given as a string of bytes or a byte buffer. * The cipher is initialized to use 128 effective key bits. * * @param key the symmetric key to use. * @param iv the initialization vector to use. * @param output the buffer to write to, null to create one. * * @return the cipher. */ forge.rc2.startDecrypting = function(key, iv, output) { var cipher = forge.rc2.createDecryptionCipher(key, 128); cipher.start(iv, output); return cipher; }; /** * Creates an RC2 cipher object to decrypt data in ECB or CBC mode using the * given symmetric key. * * The key may be given as a string of bytes or a byte buffer. * * To start decrypting call start() on the cipher with an iv and optional * output buffer. * * @param key the symmetric key to use. * * @return the cipher. */ forge.rc2.createDecryptionCipher = function(key, bits) { return createCipher(key, bits, false); };