/* * Inter-VM Communication * * Copyright (C) 2014-2016, NVIDIA CORPORATION. All rights reserved. * * This file is licensed under the terms of the GNU General Public License * version 2. This program is licensed "as is" without any warranty of any * kind, whether express or implied. * */ #include #include #include #include #include #include #ifdef CONFIG_SMP static inline void ivc_rmb(void) { smp_rmb(); } static inline void ivc_wmb(void) { smp_wmb(); } static inline void ivc_mb(void) { smp_mb(); } #else static inline void ivc_rmb(void) { rmb(); } static inline void ivc_wmb(void) { wmb(); } static inline void ivc_mb(void) { mb(); } #endif /* * IVC channel reset protocol. * * Each end uses its tx_channel.state to indicate its synchronization state. */ enum ivc_state { /* * This value is zero for backwards compatibility with services that * assume channels to be initially zeroed. Such channels are in an * initially valid state, but cannot be asynchronously reset, and must * maintain a valid state at all times. * * The transmitting end can enter the established state from the sync or * ack state when it observes the receiving endpoint in the ack or * established state, indicating that has cleared the counters in our * rx_channel. */ ivc_state_established = 0, /* * If an endpoint is observed in the sync state, the remote endpoint is * allowed to clear the counters it owns asynchronously with respect to * the current endpoint. Therefore, the current endpoint is no longer * allowed to communicate. */ ivc_state_sync, /* * When the transmitting end observes the receiving end in the sync * state, it can clear the w_count and r_count and transition to the ack * state. If the remote endpoint observes us in the ack state, it can * return to the established state once it has cleared its counters. */ ivc_state_ack }; /* * This structure is divided into two-cache aligned parts, the first is only * written through the tx_channel pointer, while the second is only written * through the rx_channel pointer. This delineates ownership of the cache lines, * which is critical to performance and necessary in non-cache coherent * implementations. */ struct ivc_channel_header { union { struct { /* fields owned by the transmitting end */ uint32_t w_count; uint32_t state; }; uint8_t w_align[IVC_ALIGN]; }; union { /* fields owned by the receiving end */ uint32_t r_count; uint8_t r_align[IVC_ALIGN]; }; }; static inline void ivc_invalidate_counter(struct ivc *ivc, dma_addr_t handle) { if (!ivc->peer_device) return; dma_sync_single_for_cpu(ivc->peer_device, handle, IVC_ALIGN, DMA_FROM_DEVICE); } static inline void ivc_flush_counter(struct ivc *ivc, dma_addr_t handle) { if (!ivc->peer_device) return; dma_sync_single_for_device(ivc->peer_device, handle, IVC_ALIGN, DMA_TO_DEVICE); } static inline int ivc_channel_empty(struct ivc *ivc, struct ivc_channel_header *ch) { /* * This function performs multiple checks on the same values with * security implications, so create snapshots with ACCESS_ONCE() to * ensure that these checks use the same values. */ uint32_t w_count = ACCESS_ONCE(ch->w_count); uint32_t r_count = ACCESS_ONCE(ch->r_count); /* * Perform an over-full check to prevent denial of service attacks where * a server could be easily fooled into believing that there's an * extremely large number of frames ready, since receivers are not * expected to check for full or over-full conditions. * * Although the channel isn't empty, this is an invalid case caused by * a potentially malicious peer, so returning empty is safer, because it * gives the impression that the channel has gone silent. */ if (w_count - r_count > ivc->nframes) return 1; return w_count == r_count; } static inline int ivc_channel_full(struct ivc *ivc, struct ivc_channel_header *ch) { /* * Invalid cases where the counters indicate that the queue is over * capacity also appear full. */ return ACCESS_ONCE(ch->w_count) - ACCESS_ONCE(ch->r_count) >= ivc->nframes; } static inline uint32_t ivc_channel_avail_count(struct ivc *ivc, struct ivc_channel_header *ch) { /* * This function isn't expected to be used in scenarios where an * over-full situation can lead to denial of service attacks. See the * comment in ivc_channel_empty() for an explanation about special * over-full considerations. */ return ACCESS_ONCE(ch->w_count) - ACCESS_ONCE(ch->r_count); } static inline void ivc_advance_tx(struct ivc *ivc) { ACCESS_ONCE(ivc->tx_channel->w_count) = ACCESS_ONCE(ivc->tx_channel->w_count) + 1; if (ivc->w_pos == ivc->nframes - 1) ivc->w_pos = 0; else ivc->w_pos++; } static inline void ivc_advance_rx(struct ivc *ivc) { ACCESS_ONCE(ivc->rx_channel->r_count) = ACCESS_ONCE(ivc->rx_channel->r_count) + 1; if (ivc->r_pos == ivc->nframes - 1) ivc->r_pos = 0; else ivc->r_pos++; } static inline int ivc_check_read(struct ivc *ivc) { /* * tx_channel->state is set locally, so it is not synchronized with * state from the remote peer. The remote peer cannot reset its * transmit counters until we've acknowledged its synchronization * request, so no additional synchronization is required because an * asynchronous transition of rx_channel->state to ivc_state_ack is not * allowed. */ if (ivc->tx_channel->state != ivc_state_established) return -ECONNRESET; /* * Avoid unnecessary invalidations when performing repeated accesses to * an IVC channel by checking the old queue pointers first. * Synchronization is only necessary when these pointers indicate empty * or full. */ if (!ivc_channel_empty(ivc, ivc->rx_channel)) return 0; ivc_invalidate_counter(ivc, ivc->rx_handle + offsetof(struct ivc_channel_header, w_count)); return ivc_channel_empty(ivc, ivc->rx_channel) ? -ENOMEM : 0; } static inline int ivc_check_write(struct ivc *ivc) { if (ivc->tx_channel->state != ivc_state_established) return -ECONNRESET; if (!ivc_channel_full(ivc, ivc->tx_channel)) return 0; ivc_invalidate_counter(ivc, ivc->tx_handle + offsetof(struct ivc_channel_header, r_count)); return ivc_channel_full(ivc, ivc->tx_channel) ? -ENOMEM : 0; } int tegra_ivc_can_read(struct ivc *ivc) { return ivc_check_read(ivc) == 0; } EXPORT_SYMBOL(tegra_ivc_can_read); int tegra_ivc_can_write(struct ivc *ivc) { return ivc_check_write(ivc) == 0; } EXPORT_SYMBOL(tegra_ivc_can_write); int tegra_ivc_tx_empty(struct ivc *ivc) { ivc_invalidate_counter(ivc, ivc->tx_handle + offsetof(struct ivc_channel_header, r_count)); return ivc_channel_empty(ivc, ivc->tx_channel); } EXPORT_SYMBOL(tegra_ivc_tx_empty); uint32_t tegra_ivc_tx_frames_available(struct ivc *ivc) { ivc_invalidate_counter(ivc, ivc->tx_handle + offsetof(struct ivc_channel_header, r_count)); return ivc->nframes - (ACCESS_ONCE(ivc->tx_channel->w_count) - ACCESS_ONCE(ivc->tx_channel->r_count)); } EXPORT_SYMBOL(tegra_ivc_tx_frames_available); static void *ivc_frame_pointer(struct ivc *ivc, struct ivc_channel_header *ch, uint32_t frame) { BUG_ON(frame >= ivc->nframes); return (void *)((uintptr_t)(ch + 1) + ivc->frame_size * frame); } static inline dma_addr_t ivc_frame_handle(struct ivc *ivc, dma_addr_t channel_handle, uint32_t frame) { BUG_ON(!ivc->peer_device); BUG_ON(frame >= ivc->nframes); return channel_handle + sizeof(struct ivc_channel_header) + ivc->frame_size * frame; } static inline void ivc_invalidate_frame(struct ivc *ivc, dma_addr_t channel_handle, unsigned frame, int offset, int len) { if (!ivc->peer_device) return; dma_sync_single_for_cpu(ivc->peer_device, ivc_frame_handle(ivc, channel_handle, frame) + offset, len, DMA_FROM_DEVICE); } static inline void ivc_flush_frame(struct ivc *ivc, dma_addr_t channel_handle, unsigned frame, int offset, int len) { if (!ivc->peer_device) return; dma_sync_single_for_device(ivc->peer_device, ivc_frame_handle(ivc, channel_handle, frame) + offset, len, DMA_TO_DEVICE); } static int ivc_read_frame(struct ivc *ivc, void *buf, void __user *user_buf, size_t max_read) { const void *src; int result; BUG_ON(buf && user_buf); if (max_read > ivc->frame_size) return -E2BIG; result = ivc_check_read(ivc); if (result) return result; /* * Order observation of w_pos potentially indicating new data before * data read. */ ivc_rmb(); ivc_invalidate_frame(ivc, ivc->rx_handle, ivc->r_pos, 0, max_read); src = ivc_frame_pointer(ivc, ivc->rx_channel, ivc->r_pos); /* * When compiled with optimizations, different versions of this * function should be inlined into tegra_ivc_read_frame() or * tegra_ivc_read_frame_user(). This should ensure that the user * version does not add overhead to the kernel version. */ if (buf) { memcpy(buf, src, max_read); } else if (user_buf) { if (copy_to_user(user_buf, src, max_read)) return -EFAULT; } else BUG(); ivc_advance_rx(ivc); ivc_flush_counter(ivc, ivc->rx_handle + offsetof(struct ivc_channel_header, r_count)); /* * Ensure our write to r_pos occurs before our read from w_pos. */ ivc_mb(); /* * Notify only upon transition from full to non-full. * The available count can only asynchronously increase, so the * worst possible side-effect will be a spurious notification. */ ivc_invalidate_counter(ivc, ivc->rx_handle + offsetof(struct ivc_channel_header, w_count)); if (ivc_channel_avail_count(ivc, ivc->rx_channel) == ivc->nframes - 1) ivc->notify(ivc); return (int)max_read; } int tegra_ivc_read(struct ivc *ivc, void *buf, size_t max_read) { return ivc_read_frame(ivc, buf, NULL, max_read); } EXPORT_SYMBOL(tegra_ivc_read); int tegra_ivc_read_user(struct ivc *ivc, void __user *buf, size_t max_read) { return ivc_read_frame(ivc, NULL, buf, max_read); } EXPORT_SYMBOL(tegra_ivc_read_user); /* peek in the next rx buffer at offset off, the count bytes */ int tegra_ivc_read_peek(struct ivc *ivc, void *buf, size_t off, size_t count) { const void *src; int result; if (off > ivc->frame_size || off + count > ivc->frame_size) return -E2BIG; result = ivc_check_read(ivc); if (result) return result; /* * Order observation of w_pos potentially indicating new data before * data read. */ ivc_rmb(); ivc_invalidate_frame(ivc, ivc->rx_handle, ivc->r_pos, off, count); src = ivc_frame_pointer(ivc, ivc->rx_channel, ivc->r_pos); memcpy(buf, (void *)((uintptr_t)src + off), count); /* note, no interrupt is generated */ return (int)count; } EXPORT_SYMBOL(tegra_ivc_read_peek); /* directly peek at the next frame rx'ed */ void *tegra_ivc_read_get_next_frame(struct ivc *ivc) { int result = ivc_check_read(ivc); if (result) return ERR_PTR(result); /* * Order observation of w_pos potentially indicating new data before * data read. */ ivc_rmb(); ivc_invalidate_frame(ivc, ivc->rx_handle, ivc->r_pos, 0, ivc->frame_size); return ivc_frame_pointer(ivc, ivc->rx_channel, ivc->r_pos); } EXPORT_SYMBOL(tegra_ivc_read_get_next_frame); int tegra_ivc_read_advance(struct ivc *ivc) { /* * No read barriers or synchronization here: the caller is expected to * have already observed the channel non-empty. This check is just to * catch programming errors. */ int result = ivc_check_read(ivc); if (result) return result; ivc_advance_rx(ivc); ivc_flush_counter(ivc, ivc->rx_handle + offsetof(struct ivc_channel_header, r_count)); /* * Ensure our write to r_pos occurs before our read from w_pos. */ ivc_mb(); /* * Notify only upon transition from full to non-full. * The available count can only asynchronously increase, so the * worst possible side-effect will be a spurious notification. */ ivc_invalidate_counter(ivc, ivc->rx_handle + offsetof(struct ivc_channel_header, w_count)); if (ivc_channel_avail_count(ivc, ivc->rx_channel) == ivc->nframes - 1) ivc->notify(ivc); return 0; } EXPORT_SYMBOL(tegra_ivc_read_advance); static int ivc_write_frame(struct ivc *ivc, const void *buf, const void __user *user_buf, size_t size) { void *p; int result; BUG_ON(buf && user_buf); if (size > ivc->frame_size) return -E2BIG; result = ivc_check_write(ivc); if (result) return result; p = ivc_frame_pointer(ivc, ivc->tx_channel, ivc->w_pos); /* * When compiled with optimizations, different versions of this * function should be inlined into tegra_ivc_write_frame() or * tegra_ivc_write_frame_user(). This should ensure that the user * version does not add overhead to the kernel version. */ if (buf) { memcpy(p, buf, size); } else if (user_buf) { if (copy_from_user(p, user_buf, size)) return -EFAULT; } else BUG(); memset(p + size, 0, ivc->frame_size - size); ivc_flush_frame(ivc, ivc->tx_handle, ivc->w_pos, 0, size); /* * Ensure that updated data is visible before the w_pos counter * indicates that it is ready. */ ivc_wmb(); ivc_advance_tx(ivc); ivc_flush_counter(ivc, ivc->tx_handle + offsetof(struct ivc_channel_header, w_count)); /* * Ensure our write to w_pos occurs before our read from r_pos. */ ivc_mb(); /* * Notify only upon transition from empty to non-empty. * The available count can only asynchronously decrease, so the * worst possible side-effect will be a spurious notification. */ ivc_invalidate_counter(ivc, ivc->tx_handle + offsetof(struct ivc_channel_header, r_count)); if (ivc_channel_avail_count(ivc, ivc->tx_channel) == 1) ivc->notify(ivc); return (int)size; } int tegra_ivc_write(struct ivc *ivc, const void *buf, size_t size) { return ivc_write_frame(ivc, buf, NULL, size); } EXPORT_SYMBOL(tegra_ivc_write); int tegra_ivc_write_user(struct ivc *ivc, const void __user *user_buf, size_t size) { return ivc_write_frame(ivc, NULL, user_buf, size); } EXPORT_SYMBOL(tegra_ivc_write_user); /* poke in the next tx buffer at offset off, the count bytes */ int tegra_ivc_write_poke(struct ivc *ivc, const void *buf, size_t off, size_t count) { void *dest; int result; if (off > ivc->frame_size || off + count > ivc->frame_size) return -E2BIG; result = ivc_check_write(ivc); if (result) return result; dest = ivc_frame_pointer(ivc, ivc->tx_channel, ivc->w_pos); memcpy(dest + off, buf, count); return (int)count; } EXPORT_SYMBOL(tegra_ivc_write_poke); /* directly poke at the next frame to be tx'ed */ void *tegra_ivc_write_get_next_frame(struct ivc *ivc) { int result = ivc_check_write(ivc); if (result) return ERR_PTR(result); return ivc_frame_pointer(ivc, ivc->tx_channel, ivc->w_pos); } EXPORT_SYMBOL(tegra_ivc_write_get_next_frame); /* advance the tx buffer */ int tegra_ivc_write_advance(struct ivc *ivc) { int result = ivc_check_write(ivc); if (result) return result; ivc_flush_frame(ivc, ivc->tx_handle, ivc->w_pos, 0, ivc->frame_size); /* * Order any possible stores to the frame before update of w_pos. */ ivc_wmb(); ivc_advance_tx(ivc); ivc_flush_counter(ivc, ivc->tx_handle + offsetof(struct ivc_channel_header, w_count)); /* * Ensure our write to w_pos occurs before our read from r_pos. */ ivc_mb(); /* * Notify only upon transition from empty to non-empty. * The available count can only asynchronously decrease, so the * worst possible side-effect will be a spurious notification. */ ivc_invalidate_counter(ivc, ivc->tx_handle + offsetof(struct ivc_channel_header, r_count)); if (ivc_channel_avail_count(ivc, ivc->tx_channel) == 1) ivc->notify(ivc); return 0; } EXPORT_SYMBOL(tegra_ivc_write_advance); void tegra_ivc_channel_reset(struct ivc *ivc) { ivc->tx_channel->state = ivc_state_sync; ivc_flush_counter(ivc, ivc->tx_handle + offsetof(struct ivc_channel_header, w_count)); ivc->notify(ivc); } EXPORT_SYMBOL(tegra_ivc_channel_reset); /* * =============================================================== * IVC State Transition Table - see tegra_ivc_channel_notified() * =============================================================== * * local remote action * ----- ------ ----------------------------------- * SYNC EST * SYNC ACK reset counters; move to EST; notify * SYNC SYNC reset counters; move to ACK; notify * ACK EST move to EST; notify * ACK ACK move to EST; notify * ACK SYNC reset counters; move to ACK; notify * EST EST * EST ACK * EST SYNC reset counters; move to ACK; notify * * =============================================================== */ int tegra_ivc_channel_notified(struct ivc *ivc) { enum ivc_state peer_state; /* Copy the receiver's state out of shared memory. */ ivc_invalidate_counter(ivc, ivc->rx_handle + offsetof(struct ivc_channel_header, w_count)); peer_state = ACCESS_ONCE(ivc->rx_channel->state); if (peer_state == ivc_state_sync) { /* * Order observation of ivc_state_sync before stores clearing * tx_channel. */ ivc_rmb(); /* * Reset tx_channel counters. The remote end is in the SYNC * state and won't make progress until we change our state, * so the counters are not in use at this time. */ ivc->tx_channel->w_count = 0; ivc->rx_channel->r_count = 0; ivc->w_pos = 0; ivc->r_pos = 0; /* * Ensure that counters appear cleared before new state can be * observed. */ ivc_wmb(); /* * Move to ACK state. We have just cleared our counters, so it * is now safe for the remote end to start using these values. */ ivc->tx_channel->state = ivc_state_ack; ivc_flush_counter(ivc, ivc->tx_handle + offsetof(struct ivc_channel_header, w_count)); /* * Notify remote end to observe state transition. */ ivc->notify(ivc); } else if (ivc->tx_channel->state == ivc_state_sync && peer_state == ivc_state_ack) { /* * Order observation of ivc_state_sync before stores clearing * tx_channel. */ ivc_rmb(); /* * Reset tx_channel counters. The remote end is in the ACK * state and won't make progress until we change our state, * so the counters are not in use at this time. */ ivc->tx_channel->w_count = 0; ivc->rx_channel->r_count = 0; ivc->w_pos = 0; ivc->r_pos = 0; /* * Ensure that counters appear cleared before new state can be * observed. */ ivc_wmb(); /* * Move to ESTABLISHED state. We know that the remote end has * already cleared its counters, so it is safe to start * writing/reading on this channel. */ ivc->tx_channel->state = ivc_state_established; ivc_flush_counter(ivc, ivc->tx_handle + offsetof(struct ivc_channel_header, w_count)); /* * Notify remote end to observe state transition. */ ivc->notify(ivc); } else if (ivc->tx_channel->state == ivc_state_ack) { /* * At this point, we have observed the peer to be in either * the ACK or ESTABLISHED state. Next, order observation of * peer state before storing to tx_channel. */ ivc_rmb(); /* * Move to ESTABLISHED state. We know that we have previously * cleared our counters, and we know that the remote end has * cleared its counters, so it is safe to start writing/reading * on this channel. */ ivc->tx_channel->state = ivc_state_established; ivc_flush_counter(ivc, ivc->tx_handle + offsetof(struct ivc_channel_header, w_count)); /* * Notify remote end to observe state transition. */ ivc->notify(ivc); } else { /* * There is no need to handle any further action. Either the * channel is already fully established, or we are waiting for * the remote end to catch up with our current state. Refer * to the diagram in "IVC State Transition Table" above. */ } return ivc->tx_channel->state == ivc_state_established ? 0 : -EAGAIN; } EXPORT_SYMBOL(tegra_ivc_channel_notified); /* * Temporary routine for re-synchronizing the channel across a reboot. */ int tegra_ivc_channel_sync(struct ivc *ivc) { if ((ivc == NULL) || (ivc->nframes == 0)) { return -EINVAL; } else { ivc->w_pos = ivc->tx_channel->w_count % ivc->nframes; ivc->r_pos = ivc->rx_channel->r_count % ivc->nframes; } return 0; } EXPORT_SYMBOL(tegra_ivc_channel_sync); size_t tegra_ivc_align(size_t size) { return (size + (IVC_ALIGN - 1)) & ~(IVC_ALIGN - 1); } EXPORT_SYMBOL(tegra_ivc_align); unsigned tegra_ivc_total_queue_size(unsigned queue_size) { if (queue_size & (IVC_ALIGN - 1)) { pr_err("%s: queue_size (%u) must be %u-byte aligned\n", __func__, queue_size, IVC_ALIGN); return 0; } return queue_size + sizeof(struct ivc_channel_header); } EXPORT_SYMBOL(tegra_ivc_total_queue_size); static int check_ivc_params(uintptr_t queue_base1, uintptr_t queue_base2, unsigned nframes, unsigned frame_size) { BUG_ON(offsetof(struct ivc_channel_header, w_count) & (IVC_ALIGN - 1)); BUG_ON(offsetof(struct ivc_channel_header, r_count) & (IVC_ALIGN - 1)); BUG_ON(sizeof(struct ivc_channel_header) & (IVC_ALIGN - 1)); if ((uint64_t)nframes * (uint64_t)frame_size >= 0x100000000) { pr_err("nframes * frame_size overflows\n"); return -EINVAL; } /* * The headers must at least be aligned enough for counters * to be accessed atomically. */ if (queue_base1 & (IVC_ALIGN - 1)) { pr_err("ivc channel start not aligned: %lx\n", queue_base1); return -EINVAL; } if (queue_base2 & (IVC_ALIGN - 1)) { pr_err("ivc channel start not aligned: %lx\n", queue_base2); return -EINVAL; } if (frame_size & (IVC_ALIGN - 1)) { pr_err("frame size not adequately aligned: %u\n", frame_size); return -EINVAL; } if (queue_base1 < queue_base2) { if (queue_base1 + frame_size * nframes > queue_base2) { pr_err("queue regions overlap: %lx + %x, %x\n", queue_base1, frame_size, frame_size * nframes); return -EINVAL; } } else { if (queue_base2 + frame_size * nframes > queue_base1) { pr_err("queue regions overlap: %lx + %x, %x\n", queue_base2, frame_size, frame_size * nframes); return -EINVAL; } } return 0; } static int tegra_ivc_init_body(struct ivc *ivc, uintptr_t rx_base, dma_addr_t rx_handle, uintptr_t tx_base, dma_addr_t tx_handle, unsigned nframes, unsigned frame_size, struct device *peer_device, void (*notify)(struct ivc *)) { size_t queue_size; int result = check_ivc_params(rx_base, tx_base, nframes, frame_size); if (result) return result; BUG_ON(!ivc); BUG_ON(!notify); queue_size = tegra_ivc_total_queue_size(nframes * frame_size); /* * All sizes that can be returned by communication functions should * fit in an int. */ if (frame_size > INT_MAX) return -E2BIG; ivc->rx_channel = (struct ivc_channel_header *)rx_base; ivc->tx_channel = (struct ivc_channel_header *)tx_base; if (peer_device) { if (rx_handle != DMA_ERROR_CODE) { ivc->rx_handle = rx_handle; ivc->tx_handle = tx_handle; } else { ivc->rx_handle = dma_map_single(peer_device, ivc->rx_channel, queue_size, DMA_BIDIRECTIONAL); if (ivc->rx_handle == DMA_ERROR_CODE) return -ENOMEM; ivc->tx_handle = dma_map_single(peer_device, ivc->tx_channel, queue_size, DMA_BIDIRECTIONAL); if (ivc->tx_handle == DMA_ERROR_CODE) { dma_unmap_single(peer_device, ivc->rx_handle, queue_size, DMA_BIDIRECTIONAL); return -ENOMEM; } } } ivc->notify = notify; ivc->frame_size = frame_size; ivc->nframes = nframes; ivc->peer_device = peer_device; /* * These values aren't necessarily correct until the channel has been * reset. */ ivc->w_pos = 0; ivc->r_pos = 0; return 0; } int tegra_ivc_init(struct ivc *ivc, uintptr_t rx_base, uintptr_t tx_base, unsigned nframes, unsigned frame_size, struct device *peer_device, void (*notify)(struct ivc *)) { return tegra_ivc_init_body(ivc, rx_base, DMA_ERROR_CODE, tx_base, DMA_ERROR_CODE, nframes, frame_size, peer_device, notify); } EXPORT_SYMBOL(tegra_ivc_init); int tegra_ivc_init_with_dma_handle(struct ivc *ivc, uintptr_t rx_base, dma_addr_t rx_handle, uintptr_t tx_base, dma_addr_t tx_handle, unsigned nframes, unsigned frame_size, struct device *peer_device, void (*notify)(struct ivc *)) { return tegra_ivc_init_body(ivc, rx_base, rx_handle, tx_base, tx_handle, nframes, frame_size, peer_device, notify); } EXPORT_SYMBOL(tegra_ivc_init_with_dma_handle);