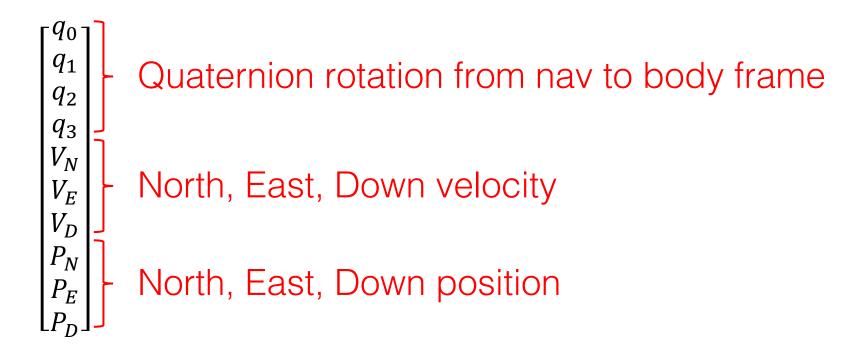
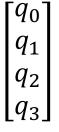
Filter Overview

- •24 State EKF
 - Quaternions (Q0,...,Q3)
 - Velocity (NED)
 - Position (NED)
 - Gyro delta angle bias vector (XYZ)
 - Accelerometer bias (XYZ)
 - Earth magnetic field vector (NED)
 - Magnetometer bias errors (XYZ)
 - Wind Velocity (NE)
- Uses the following sensors
 - Inertial Measurement Unit angular rates and specific forces
 - GPS position (in local NED frame)
 - GPS velocity (in local NED frame)
 - Pressure altitude
 - 3-axis magnetometer

• Pose information is captured in the first 10 states which use a dynamic process model that defines the movement of the body frame (XYZ RH axis system) in a navigation inertial reference frame (North, East, Down)



• The first four states are the quaternions that define the angular position of the XYZ body frame relative to NED navigation frame.



• The rotation matrix from body to navigation frame is given by:

$$[T]_B^N = \begin{bmatrix} q_0^2 + q_1^2 - q_2^2 - q_3^2 & 2(q_1 \cdot q_2 - q_0 \cdot q_3) & 2(q_1 \cdot q_3 + q_0 \cdot q_2) \\ 2(q_1 \cdot q_2 + q_0 \cdot q_3) & q_0^2 - q_1^2 + q_2^2 - q_3^2 & 2(q_2 \cdot q_3 - q_0 \cdot q_1) \\ 2(q_1 \cdot q_3 - q_0 \cdot q_2) & 2(q_2 \cdot q_3 + q_0 \cdot q_1) & q_0^2 - q_1^2 - q_2^2 + q_3^2 \end{bmatrix}$$

• Where the rotation from navigation to **body** frame is required, the transpose will be used and is denoted by $[T]_N^B$

• The truth delta angles are calculated from the IMU measurements and delta angle bias states Δ_{ang_bias}

$$\Delta_{ang_meas} = \begin{bmatrix} \Delta_{ang_x} \\ \Delta_{ang_y} \\ \Delta_{ang_z} \end{bmatrix} = \int_{t_k}^{t_{k+1}} \omega \cdot dt$$
$$\Delta_{ang_bias} = \begin{bmatrix} \Delta_{ang_bias_x} \\ \Delta_{ang_bias_y} \\ \Delta_{ang_bias_z} \end{bmatrix} \text{ Delta angle bias states}$$

$$\Delta_{ang_truth} = \Delta_{ang_meas} - \Delta_{ang_bias}$$

• The truth delta velocities are calculated from the IMU measurements and delta velocity states Δ_{vel_bias}

$$\Delta_{vel_meas} = \begin{bmatrix} \Delta_{vel_x} \\ \Delta_{vel_y} \\ \Delta_{vel_z} \end{bmatrix} \text{ Delta angle IMU measurements}$$
$$\Delta_{vel_bias} = \begin{bmatrix} \Delta_{vel_bias_x} \\ \Delta_{vel_bias_y} \\ \Delta_{vel_bias_z} \end{bmatrix} \text{ Delta angle bias states}$$

$$\Delta_{vel_truth} = \Delta_{vel_meas} - \Delta_{vel_bias}$$

• The quaternion Δ_{quat} that defines the rotation from the quaternion at frame k to k+1 is calculated from the truth delta angle Δ_{ang_truth} using a small angle approximation. The inertial navigation uses the exact method.

$$\Delta_{quat} = \begin{bmatrix} \Delta q_0 \\ \Delta q_1 \\ \Delta q_2 \\ \Delta q_3 \end{bmatrix} = \begin{bmatrix} 1 \\ \frac{\Delta_{ang_truth_x}}{2} \\ \frac{\Delta_{ang_truth_y}}{2} \\ \frac{\Delta_{ang_truth_z}}{2} \end{bmatrix}$$

• The quaternion product rule is used to rotate the quaternion state forward by the delta quaternion Δ_{quat} from frame k to k+1.

$$\begin{bmatrix} q_0 \\ q_1 \\ q_2 \\ q_3 \end{bmatrix}_{k+1} = \begin{bmatrix} q_0 \Delta q_0 - q_1 \Delta q_1 - q_2 \Delta q_2 - q_3 \Delta q_3 \\ q_0 \Delta q_1 + \Delta q_0 q_1 + q_2 \Delta q_3 - \Delta q_2 q_3 \\ q_0 \Delta q_2 + \Delta q_0 q_2 - q_1 \Delta q_3 + \Delta q_1 q_3 \\ q_0 \Delta q_3 + \Delta q_0 q_3 + q_1 \Delta q_2 - \Delta q_1 q_2 \end{bmatrix}$$

• The truth delta velocity vector is rotated from body frame to earth frame and gravity is subtracted to calculate the change in velocity states from frame k to k+1

$$\begin{bmatrix} V_N \\ V_E \\ V_D \end{bmatrix}_{k+1} = \begin{bmatrix} V_N \\ V_E \\ V_D \end{bmatrix}_k + [T]_B^N \cdot \Delta_{vel_truth} + \begin{bmatrix} 0 \\ 0 \\ g \end{bmatrix} \cdot \Delta t$$

• The position states are updated using Euler integration (the inertial navigation uses a more accurate trapezoidal integration method)

$$\begin{bmatrix} P_N \\ P_E \\ P_D \end{bmatrix}_{k+1} = \begin{bmatrix} P_N \\ P_E \\ P_D \end{bmatrix}_k + \begin{bmatrix} V_N \\ V_E \\ V_D \end{bmatrix}_k \cdot \Delta t$$

• The IMU sensor bias, magnetic field and wind states all use a static process model

$\begin{bmatrix} \Delta_{ang_bias_x} \\ \Delta_{ang_bias_y} \\ \Delta_{ang_bias_z} \end{bmatrix}$	$\begin{bmatrix} \Delta_{ang_bias_x} \\ \Delta_{ang_bias_y} \\ \Delta_{ang_bias_z} \end{bmatrix}$ IMU delta angle bias
$\begin{array}{c} \Delta_{vel_bias_x} \\ \Delta_{vel_bias_y} \end{array}$	$\Delta_{vel_{bias_x}}$ $\Delta_{vel_{bias_y}}$ - IMU delta velocity bias
$\begin{vmatrix} \Delta_{vel_bias_z} \\ M_N \\ M_E \\ M_D \end{vmatrix} =$	$\begin{bmatrix} \Delta_{vel_bias_z} \\ M_N \\ M_E \\ M_D \end{bmatrix} = Mag \text{ field } - navigation \text{ frame}$
M_D M_X M_Y M_Z	M_X M_Y M_Z Mag field – body frame bias
$\begin{bmatrix} Vwind_N \\ Vwind_E \end{bmatrix}_{k+1}$	$\begin{bmatrix} Vwind_N \\ Vwind_E \end{bmatrix}_{\mathcal{R}}^{\mathcal{L}} Wind velocity - nav frame$

- The GPS position, Baro height and GPS velocity involve direct observation of states, so the observation model is trivial.
- The magnetomer is assumed to be aligned with the body frame and experiences a magnetic field vector which is the sum of a navigation frame filed rotted into body frame and a body frame fixed field.

$$\begin{bmatrix} M_X \\ M_Y \\ M_Z \end{bmatrix}_{meas} = [T]_N^B \cdot \begin{bmatrix} M_N \\ M_E \\ M_D \end{bmatrix} + \begin{bmatrix} M_X \\ M_Y \\ M_Z \end{bmatrix}_{bias}$$

• We can also use the earth frame magnetic field declination as an observation

$$\psi_{DECLINATION} = \tan^{-1} \left(\frac{M_E}{M_N} \right)$$

This can be used to prevent unwanted yaw rotation of the earth field estimates during periods when heading is poorly observable.

• We can also use the rotation matrix elements to provide a direct yaw observation model using either a 321 or 312 Euler sequence

$$\psi_{321} = \tan^{-1} \left(\frac{2(q_1 \cdot q_2 + q_0 \cdot q_3)}{q_0^2 + q_1^2 - q_2^2 - q_3^2} \right)$$
$$\psi_{312} = \tan^{-1} \left(\frac{-2(q_1 \cdot q_2 - q_0 \cdot q_3)}{q_0^2 - q_1^2 + q_2^2 - q_3^2} \right)$$

By selecting the appropriate transformation, a direct heading measurement can be used that avoids gimbal lock.

• The optical flow observation equation assumes a sensor aligned with the Z body frame at a distance R from a stationary scene in the navigation frame.

$$\begin{bmatrix} V_X \\ V_Y \\ V_Z \end{bmatrix} = [T]_N^B \cdot \begin{bmatrix} V_N \\ V_E \\ V_D \end{bmatrix}$$

$$\begin{bmatrix} LOS_X \\ LOS_Y \end{bmatrix}_{meas} = \begin{bmatrix} \frac{-V_Y}{R} \\ \frac{V_X}{R} \end{bmatrix}$$

• The visual odometry observation equation assumes measurement of velocity states rotated into the body frame:

$$\begin{bmatrix} V_X \\ V_Y \\ V_Z \end{bmatrix}_{meas} = [T]_N^B \cdot \begin{bmatrix} V_N \\ V_E \\ V_D \end{bmatrix}$$

• The airspeed observation equation assumes a sensor that measures the magnitude of velocity relative to the wind field:

$$\begin{bmatrix} Vrel_{N} \\ Vrel_{E} \\ Vrel_{D} \end{bmatrix} = \begin{bmatrix} V_{N} \\ V_{E} \\ V_{D} \end{bmatrix} - \begin{bmatrix} Vwind_{N} \\ Vwind_{E} \\ 0 \end{bmatrix}$$
$$TAS_{meas} = \sqrt{\left(Vrel_{N}^{2} + Vrel_{E}^{2} + Vrel_{D}^{2}\right)}$$