/**************************************************************************** * * Copyright (c) 2013 Estimation and Control Library (ECL). All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name ECL nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /** * @file ecl_pitch_controller.cpp * Implementation of a simple orthogonal pitch PID controller. * * Authors and acknowledgements in header. */ #include "ecl_pitch_controller.h" #include #include #include #include #include #include #include ECL_PitchController::ECL_PitchController() : ECL_Controller("pitch"), _max_rate_neg(0.0f), _roll_ff(0.0f) { } ECL_PitchController::~ECL_PitchController() { } float ECL_PitchController::control_attitude(const struct ECL_ControlData &ctl_data) { /* Do not calculate control signal with bad inputs */ if (!(PX4_ISFINITE(ctl_data.pitch_setpoint) && PX4_ISFINITE(ctl_data.roll) && PX4_ISFINITE(ctl_data.pitch) && PX4_ISFINITE(ctl_data.airspeed))) { warnx("not controlling pitch"); return _rate_setpoint; } /* Calculate the error */ float pitch_error = ctl_data.pitch_setpoint - ctl_data.pitch; /* Apply P controller: rate setpoint from current error and time constant */ _rate_setpoint = pitch_error / _tc; /* limit the rate */ if (_max_rate > 0.01f && _max_rate_neg > 0.01f) { if (_rate_setpoint > 0.0f) { _rate_setpoint = (_rate_setpoint > _max_rate) ? _max_rate : _rate_setpoint; } else { _rate_setpoint = (_rate_setpoint < -_max_rate_neg) ? -_max_rate_neg : _rate_setpoint; } } return _rate_setpoint; } float ECL_PitchController::control_bodyrate(const struct ECL_ControlData &ctl_data) { /* Do not calculate control signal with bad inputs */ if (!(PX4_ISFINITE(ctl_data.roll) && PX4_ISFINITE(ctl_data.pitch) && PX4_ISFINITE(ctl_data.pitch_rate) && PX4_ISFINITE(ctl_data.yaw_rate) && PX4_ISFINITE(ctl_data.yaw_rate_setpoint) && PX4_ISFINITE(ctl_data.airspeed_min) && PX4_ISFINITE(ctl_data.airspeed_max) && PX4_ISFINITE(ctl_data.scaler))) { return math::constrain(_last_output, -1.0f, 1.0f); } /* get the usual dt estimate */ uint64_t dt_micros = ecl_elapsed_time(&_last_run); _last_run = ecl_absolute_time(); float dt = (float)dt_micros * 1e-6f; /* lock integral for long intervals */ bool lock_integrator = ctl_data.lock_integrator; if (dt_micros > 500000) { lock_integrator = true; } /* Transform setpoint to body angular rates (jacobian) */ _bodyrate_setpoint = cosf(ctl_data.roll) * _rate_setpoint + cosf(ctl_data.pitch) * sinf(ctl_data.roll) * ctl_data.yaw_rate_setpoint; /* apply turning offset to desired bodyrate setpoint*/ /* flying inverted (wings upside down)*/ bool inverted = false; float constrained_roll; /* roll is used as feedforward term and inverted flight needs to be considered */ if (fabsf(ctl_data.roll) < math::radians(90.0f)) { /* not inverted, but numerically still potentially close to infinity */ constrained_roll = math::constrain(ctl_data.roll, math::radians(-80.0f), math::radians(80.0f)); } else { /* inverted flight, constrain on the two extremes of -pi..+pi to avoid infinity */ inverted = true; /* note: the ranges are extended by 10 deg here to avoid numeric resolution effects */ if (ctl_data.roll > 0.0f) { /* right hemisphere */ constrained_roll = math::constrain(ctl_data.roll, math::radians(100.0f), math::radians(180.0f)); } else { /* left hemisphere */ constrained_roll = math::constrain(ctl_data.roll, math::radians(-100.0f), math::radians(-180.0f)); } } /* input conditioning */ float airspeed = constrain_airspeed(ctl_data.airspeed, ctl_data.airspeed_min, ctl_data.airspeed_max); /* Calculate desired body fixed y-axis angular rate needed to compensate for roll angle. For reference see Automatic Control of Aircraft and Missiles by John H. Blakelock, pg. 175 Availible on google books 8/11/2015: https://books.google.com/books?id=ubcczZUDCsMC&pg=PA175#v=onepage&q&f=false*/ float body_fixed_turn_offset = (fabsf((CONSTANTS_ONE_G / airspeed) * tanf(constrained_roll) * sinf(constrained_roll))); if (inverted) { body_fixed_turn_offset = -body_fixed_turn_offset; } /* Finally add the turn offset to your bodyrate setpoint*/ _bodyrate_setpoint += body_fixed_turn_offset; _rate_error = _bodyrate_setpoint - ctl_data.pitch_rate; if (!lock_integrator && _k_i > 0.0f) { float id = _rate_error * dt * ctl_data.scaler; /* * anti-windup: do not allow integrator to increase if actuator is at limit */ if (_last_output < -1.0f) { /* only allow motion to center: increase value */ id = math::max(id, 0.0f); } else if (_last_output > 1.0f) { /* only allow motion to center: decrease value */ id = math::min(id, 0.0f); } _integrator += id * _k_i; } /* integrator limit */ //xxx: until start detection is available: integral part in control signal is limited here float integrator_constrained = math::constrain(_integrator, -_integrator_max, _integrator_max); /* Apply PI rate controller and store non-limited output */ _last_output = _bodyrate_setpoint * _k_ff * ctl_data.scaler + _rate_error * _k_p * ctl_data.scaler * ctl_data.scaler + integrator_constrained; //scaler is proportional to 1/airspeed // warnx("pitch: _integrator: %.4f, _integrator_max: %.4f, airspeed %.4f, _k_i %.4f, _k_p: %.4f", (double)_integrator, (double)_integrator_max, (double)airspeed, (double)_k_i, (double)_k_p); // warnx("roll: _last_output %.4f", (double)_last_output); return math::constrain(_last_output, -1.0f, 1.0f); }