/**************************************************************************** * * Copyright (c) 2013-2016 Estimation and Control Library (ECL). All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name ECL nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /** * @file ecl_wheel_controller.cpp * Implementation of a simple PID wheel controller for heading tracking. * * Authors and acknowledgements in header. */ #include "ecl_wheel_controller.h" #include #include #include #include #include #include #include ECL_WheelController::ECL_WheelController() : ECL_Controller("wheel") { } ECL_WheelController::~ECL_WheelController() { } float ECL_WheelController::control_bodyrate(const struct ECL_ControlData &ctl_data) { /* Do not calculate control signal with bad inputs */ if (!(PX4_ISFINITE(ctl_data.yaw_rate) && PX4_ISFINITE(ctl_data.groundspeed) && PX4_ISFINITE(ctl_data.groundspeed_scaler))) { return math::constrain(_last_output, -1.0f, 1.0f); } /* get the usual dt estimate */ uint64_t dt_micros = ecl_elapsed_time(&_last_run); _last_run = ecl_absolute_time(); float dt = (float)dt_micros * 1e-6f; /* lock integral for long intervals */ bool lock_integrator = ctl_data.lock_integrator; if (dt_micros > 500000) { lock_integrator = true; } /* input conditioning */ float min_speed = 1.0f; /* Calculate body angular rate error */ _rate_error = _rate_setpoint - ctl_data.yaw_rate; //body angular rate error if (!lock_integrator && _k_i > 0.0f && ctl_data.groundspeed > min_speed) { float id = _rate_error * dt * ctl_data.groundspeed_scaler; /* * anti-windup: do not allow integrator to increase if actuator is at limit */ if (_last_output < -1.0f) { /* only allow motion to center: increase value */ id = math::max(id, 0.0f); } else if (_last_output > 1.0f) { /* only allow motion to center: decrease value */ id = math::min(id, 0.0f); } _integrator += id * _k_i; } /* integrator limit */ //xxx: until start detection is available: integral part in control signal is limited here float integrator_constrained = math::constrain(_integrator, -_integrator_max, _integrator_max); /* Apply PI rate controller and store non-limited output */ _last_output = _rate_setpoint * _k_ff * ctl_data.groundspeed_scaler + _rate_error * _k_p * ctl_data.groundspeed_scaler * ctl_data.groundspeed_scaler + integrator_constrained; /*warnx("wheel: _last_output: %.4f, _integrator: %.4f, scaler %.4f", (double)_last_output, (double)_integrator, (double)ctl_data.groundspeed_scaler);*/ return math::constrain(_last_output, -1.0f, 1.0f); } float ECL_WheelController::control_attitude(const struct ECL_ControlData &ctl_data) { /* Do not calculate control signal with bad inputs */ if (!(PX4_ISFINITE(ctl_data.yaw_setpoint) && PX4_ISFINITE(ctl_data.yaw))) { return _rate_setpoint; } /* Calculate the error */ float yaw_error = ctl_data.yaw_setpoint - ctl_data.yaw; /* shortest angle (wrap around) */ yaw_error = (float)fmod((float)fmod((yaw_error + M_PI_F), M_TWOPI_F) + M_TWOPI_F, M_TWOPI_F) - M_PI_F; /*warnx("yaw_error: %.4f", (double)yaw_error);*/ /* Apply P controller: rate setpoint from current error and time constant */ _rate_setpoint = yaw_error / _tc; /* limit the rate */ if (_max_rate > 0.01f) { if (_rate_setpoint > 0.0f) { _rate_setpoint = (_rate_setpoint > _max_rate) ? _max_rate : _rate_setpoint; } else { _rate_setpoint = (_rate_setpoint < -_max_rate) ? -_max_rate : _rate_setpoint; } } return _rate_setpoint; }