/**************************************************************************** * * Copyright (c) 2019 ECL Development Team. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name PX4 nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ #include #include #include #include "EKF/ekf.h" #include "sensor_simulator/sensor_simulator.h" #include "sensor_simulator/ekf_wrapper.h" class EkfBasicsTest : public ::testing::Test { public: EkfBasicsTest(): ::testing::Test(), _ekf{std::make_shared()}, _sensor_simulator(_ekf), _ekf_wrapper(_ekf) {}; std::shared_ptr _ekf; SensorSimulator _sensor_simulator; EkfWrapper _ekf_wrapper; // Duration of initalization with only providing baro,mag and IMU const uint32_t _init_duration_s{2}; // Setup the Ekf with synthetic measurements void SetUp() override { _ekf->init(0); _sensor_simulator.runSeconds(_init_duration_s); } // Use this method to clean up any memory, network etc. after each test void TearDown() override { } }; TEST_F(EkfBasicsTest, tiltAlign) { // GIVEN: reasonable static sensor data for some duration // THEN: EKF should tilt align EXPECT_TRUE(_ekf->attitude_valid()); } TEST_F(EkfBasicsTest, initialControlMode) { // GIVEN: reasonable static sensor data for some duration // THEN: EKF control status should be reasonable filter_control_status_u control_status; _ekf->get_control_mode(&control_status.value); EXPECT_EQ(1, (int) control_status.flags.tilt_align); EXPECT_EQ(1, (int) control_status.flags.yaw_align); EXPECT_EQ(0, (int) control_status.flags.gps); EXPECT_EQ(0, (int) control_status.flags.opt_flow); EXPECT_EQ(1, (int) control_status.flags.mag_hdg); EXPECT_EQ(0, (int) control_status.flags.mag_3D); EXPECT_EQ(0, (int) control_status.flags.mag_dec); EXPECT_EQ(0, (int) control_status.flags.in_air); EXPECT_EQ(0, (int) control_status.flags.wind); EXPECT_EQ(1, (int) control_status.flags.baro_hgt); EXPECT_EQ(0, (int) control_status.flags.rng_hgt); EXPECT_EQ(0, (int) control_status.flags.gps_hgt); EXPECT_EQ(0, (int) control_status.flags.ev_pos); EXPECT_EQ(0, (int) control_status.flags.ev_yaw); EXPECT_EQ(0, (int) control_status.flags.ev_hgt); EXPECT_EQ(0, (int) control_status.flags.fuse_beta); EXPECT_EQ(0, (int) control_status.flags.mag_field_disturbed); EXPECT_EQ(0, (int) control_status.flags.fixed_wing); EXPECT_EQ(0, (int) control_status.flags.mag_fault); EXPECT_EQ(0, (int) control_status.flags.gnd_effect); EXPECT_EQ(0, (int) control_status.flags.rng_stuck); EXPECT_EQ(0, (int) control_status.flags.gps_yaw); EXPECT_EQ(0, (int) control_status.flags.mag_aligned_in_flight); EXPECT_EQ(0, (int) control_status.flags.ev_vel); EXPECT_EQ(0, (int) control_status.flags.synthetic_mag_z); } TEST_F(EkfBasicsTest, convergesToZero) { // GIVEN: initialized EKF with default IMU, baro and mag input _sensor_simulator.runSeconds(4); Vector3f pos = _ekf_wrapper.getPosition(); Vector3f vel = _ekf_wrapper.getVelocity(); Vector3f accel_bias = _ekf_wrapper.getAccelBias(); Vector3f gyro_bias = _ekf_wrapper.getGyroBias(); Vector3f ref{0.0f, 0.0f, 0.0f}; // THEN: EKF should stay or converge to zero EXPECT_TRUE(matrix::isEqual(pos, ref, 0.001f)); EXPECT_TRUE(matrix::isEqual(vel, ref, 0.001f)); EXPECT_TRUE(matrix::isEqual(accel_bias, ref, 0.001f)); EXPECT_TRUE(matrix::isEqual(gyro_bias, ref, 0.001f)); } TEST_F(EkfBasicsTest, gpsFusion) { // GIVEN: initialized EKF with default IMU, baro and mag input for // WHEN: setting GPS measurements for 11s, minimum GPS health time is set to 10 sec _sensor_simulator.startGps(); _sensor_simulator.runSeconds(11); // THEN: EKF should fuse GPS, but no other position sensor filter_control_status_u control_status; _ekf->get_control_mode(&control_status.value); EXPECT_EQ(1, (int) control_status.flags.tilt_align); EXPECT_EQ(1, (int) control_status.flags.yaw_align); EXPECT_EQ(1, (int) control_status.flags.gps); EXPECT_EQ(0, (int) control_status.flags.opt_flow); EXPECT_EQ(1, (int) control_status.flags.mag_hdg); EXPECT_EQ(0, (int) control_status.flags.mag_3D); EXPECT_EQ(0, (int) control_status.flags.mag_dec); EXPECT_EQ(0, (int) control_status.flags.in_air); EXPECT_EQ(0, (int) control_status.flags.wind); EXPECT_EQ(1, (int) control_status.flags.baro_hgt); EXPECT_EQ(0, (int) control_status.flags.rng_hgt); EXPECT_EQ(0, (int) control_status.flags.gps_hgt); EXPECT_EQ(0, (int) control_status.flags.ev_pos); EXPECT_EQ(0, (int) control_status.flags.ev_yaw); EXPECT_EQ(0, (int) control_status.flags.ev_hgt); EXPECT_EQ(0, (int) control_status.flags.fuse_beta); EXPECT_EQ(0, (int) control_status.flags.mag_field_disturbed); EXPECT_EQ(0, (int) control_status.flags.fixed_wing); EXPECT_EQ(0, (int) control_status.flags.mag_fault); EXPECT_EQ(0, (int) control_status.flags.gnd_effect); EXPECT_EQ(0, (int) control_status.flags.rng_stuck); EXPECT_EQ(0, (int) control_status.flags.gps_yaw); EXPECT_EQ(0, (int) control_status.flags.mag_aligned_in_flight); EXPECT_EQ(0, (int) control_status.flags.ev_vel); EXPECT_EQ(0, (int) control_status.flags.synthetic_mag_z); } TEST_F(EkfBasicsTest, accleBiasEstimation) { // GIVEN: initialized EKF with default IMU, baro and mag input for 2s // WHEN: Added more sensor measurements with accel bias and gps measurements Vector3f accel_bias_sim = {0.0f,0.0f,0.1f}; _sensor_simulator.startGps(); _sensor_simulator.setImuBias(accel_bias_sim, Vector3f{0.0f,0.0f,0.0f}); _sensor_simulator.runSeconds(10); Vector3f pos = _ekf_wrapper.getPosition(); Vector3f vel = _ekf_wrapper.getVelocity(); Vector3f accel_bias = _ekf_wrapper.getAccelBias(); Vector3f gyro_bias = _ekf_wrapper.getGyroBias(); Vector3f zero{0.0f, 0.0f, 0.0f}; // THEN: EKF should stay or converge to zero EXPECT_TRUE(matrix::isEqual(pos, zero, 0.001f)); EXPECT_TRUE(matrix::isEqual(vel, zero, 0.001f)); EXPECT_TRUE(matrix::isEqual(accel_bias, accel_bias_sim, 0.001f)); EXPECT_TRUE(matrix::isEqual(gyro_bias, zero, 0.001f)); } // TODO: Add sampling tests