/**************************************************************************** * * Copyright (c) 2015 PX4 Development Team. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name PX4 nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /** * @file data_validator_group.cpp * * A data validation group to identify anomalies in data streams * * @author Lorenz Meier */ #include "data_validator_group.h" #include DataValidatorGroup::DataValidatorGroup(unsigned siblings) : _first(nullptr), _curr_best(-1), _prev_best(-1), _first_failover_time(0), _toggle_count(0) { DataValidator *next = _first; for (unsigned i = 0; i < siblings; i++) { next = new DataValidator(next); } _first = next; _timeout_interval_us = _first->get_timeout(); } DataValidatorGroup::~DataValidatorGroup() { while (_first) { DataValidator* next = _first->sibling(); delete (_first); _first = next; } } DataValidator *DataValidatorGroup::add_new_validator() { DataValidator *validator = new DataValidator(_first); if (!validator) { return nullptr; } _first = validator; _first->set_timeout(_timeout_interval_us); return _first; } void DataValidatorGroup::set_timeout(uint32_t timeout_interval_us) { DataValidator *next = _first; while (next != nullptr) { next->set_timeout(timeout_interval_us); next = next->sibling(); } _timeout_interval_us = timeout_interval_us; } void DataValidatorGroup::set_equal_value_threshold(uint32_t threshold) { DataValidator *next = _first; while (next != nullptr) { next->set_equal_value_threshold(threshold); next = next->sibling(); } } void DataValidatorGroup::put(unsigned index, uint64_t timestamp, float val[3], uint64_t error_count, int priority) { DataValidator *next = _first; unsigned i = 0; while (next != nullptr) { if (i == index) { next->put(timestamp, val, error_count, priority); break; } next = next->sibling(); i++; } } float* DataValidatorGroup::get_best(uint64_t timestamp, int *index) { DataValidator *next = _first; // XXX This should eventually also include voting int pre_check_best = _curr_best; float pre_check_confidence = 1.0f; int pre_check_prio = -1; float max_confidence = -1.0f; int max_priority = -1000; int max_index = -1; DataValidator *best = nullptr; unsigned i = 0; while (next != nullptr) { float confidence = next->confidence(timestamp); if (static_cast(i) == pre_check_best) { pre_check_prio = next->priority(); pre_check_confidence = confidence; } /* * Switch if: * 1) the confidence is higher and priority is equal or higher * 2) the confidence is no less than 1% different and the priority is higher */ if (((max_confidence < MIN_REGULAR_CONFIDENCE) && (confidence >= MIN_REGULAR_CONFIDENCE)) || (confidence > max_confidence && (next->priority() >= max_priority)) || (fabsf(confidence - max_confidence) < 0.01f && (next->priority() > max_priority)) ) { max_index = i; max_confidence = confidence; max_priority = next->priority(); best = next; } next = next->sibling(); i++; } /* the current best sensor is not matching the previous best sensor */ if (max_index != _curr_best) { bool true_failsafe = true; /* check whether the switch was a failsafe or preferring a higher priority sensor */ if (pre_check_prio != -1 && pre_check_prio < max_priority && fabsf(pre_check_confidence - max_confidence) < 0.1f) { /* this is not a failover */ true_failsafe = false; /* reset error flags, this is likely a hotplug sensor coming online late */ best->reset_state(); } /* if we're no initialized, initialize the bookkeeping but do not count a failsafe */ if (_curr_best < 0) { _prev_best = max_index; } else { /* we were initialized before, this is a real failsafe */ _prev_best = pre_check_best; if (true_failsafe) { _toggle_count++; /* if this is the first time, log when we failed */ if (_first_failover_time == 0) { _first_failover_time = timestamp; } } } /* for all cases we want to keep a record of the best index */ _curr_best = max_index; } *index = max_index; return (best) ? best->value() : nullptr; } float DataValidatorGroup::get_vibration_factor(uint64_t timestamp) { DataValidator *next = _first; float vibe = 0.0f; /* find the best RMS value of a non-timed out sensor */ while (next != nullptr) { if (next->confidence(timestamp) > 0.5f) { float* rms = next->rms(); for (unsigned j = 0; j < 3; j++) { if (rms[j] > vibe) { vibe = rms[j]; } } } next = next->sibling(); } return vibe; } float DataValidatorGroup::get_vibration_offset(uint64_t timestamp, int axis) { DataValidator *next = _first; float vibe = -1.0f; /* find the best vibration value of a non-timed out sensor */ while (next != nullptr) { if (next->confidence(timestamp) > 0.5f) { float* vibration_offset = next->vibration_offset(); if (vibe < 0.0f || vibration_offset[axis] < vibe) { vibe = vibration_offset[axis]; } } next = next->sibling(); } return vibe; } void DataValidatorGroup::print() { /* print the group's state */ ECL_INFO("validator: best: %d, prev best: %d, failsafe: %s (%u events)", _curr_best, _prev_best, (_toggle_count > 0) ? "YES" : "NO", _toggle_count); DataValidator *next = _first; unsigned i = 0; while (next != nullptr) { if (next->used()) { uint32_t flags = next->state(); ECL_INFO("sensor #%u, prio: %d, state:%s%s%s%s%s%s", i, next->priority(), ((flags & DataValidator::ERROR_FLAG_NO_DATA) ? " NO_DATA" : ""), ((flags & DataValidator::ERROR_FLAG_STALE_DATA) ? " STALE_DATA" : ""), ((flags & DataValidator::ERROR_FLAG_TIMEOUT) ? " DATA_TIMEOUT" : ""), ((flags & DataValidator::ERROR_FLAG_HIGH_ERRCOUNT) ? " HIGH_ERRCOUNT" : ""), ((flags & DataValidator::ERROR_FLAG_HIGH_ERRDENSITY) ? " HIGH_ERRDENSITY" : ""), ((flags == DataValidator::ERROR_FLAG_NO_ERROR) ? " OK" : "")); next->print(); } next = next->sibling(); i++; } } unsigned DataValidatorGroup::failover_count() { return _toggle_count; } int DataValidatorGroup::failover_index() { DataValidator *next = _first; unsigned i = 0; while (next != nullptr) { if (next->used() && (next->state() != DataValidator::ERROR_FLAG_NO_ERROR) && (i == (unsigned)_prev_best)) { return i; } next = next->sibling(); i++; } return -1; } uint32_t DataValidatorGroup::failover_state() { DataValidator *next = _first; unsigned i = 0; while (next != nullptr) { if (next->used() && (next->state() != DataValidator::ERROR_FLAG_NO_ERROR) && (i == (unsigned)_prev_best)) { return next->state(); } next = next->sibling(); i++; } return DataValidator::ERROR_FLAG_NO_ERROR; }