/**************************************************************************** * * Copyright (c) 2015 Estimation and Control Library (ECL). All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name ECL nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /** * @file ekf.h * Class for core functions for ekf attitude and position estimator. * * @author Roman Bast * @author Paul Riseborough * */ #include "estimator_interface.h" class Ekf : public EstimatorInterface { public: Ekf(); ~Ekf(); // initialise variables to sane values (also interface class) bool init(uint64_t timestamp); // should be called every time new data is pushed into the filter bool update(); // gets the innovations of velocity and position measurements // 0-2 vel, 3-5 pos void get_vel_pos_innov(float vel_pos_innov[6]); // gets the innovations of the earth magnetic field measurements void get_mag_innov(float mag_innov[3]); // gets the innovations of the heading measurement void get_heading_innov(float *heading_innov); // gets the innovation variances of velocity and position measurements // 0-2 vel, 3-5 pos void get_vel_pos_innov_var(float vel_pos_innov_var[6]); // gets the innovation variances of the earth magnetic field measurements void get_mag_innov_var(float mag_innov_var[3]); // gets the innovation variance of the heading measurement void get_heading_innov_var(float *heading_innov_var); // get the state vector at the delayed time horizon void get_state_delayed(float *state); // get the diagonal elements of the covariance matrix void get_covariances(float *covariances); // ask estimator for sensor data collection decision and do any preprocessing if required, returns true if not defined bool collect_gps(uint64_t time_usec, struct gps_message *gps); bool collect_imu(imuSample &imu); // this is the current status of the filter control modes filter_control_status_u _control_status = {}; // this is the previous status of the filter control modes - used to detect mode transitions filter_control_status_u _control_status_prev = {}; // get the ekf WGS-84 origin position and height and the system time it was last set void get_ekf_origin(uint64_t *origin_time, map_projection_reference_s *origin_pos, float *origin_alt); private: static const uint8_t _k_num_states = 24; static constexpr float _k_earth_rate = 0.000072921f; stateSample _state; // state struct of the ekf running at the delayed time horizon bool _filter_initialised; bool _earth_rate_initialised; bool _fuse_height; // baro height data should be fused bool _fuse_pos; // gps position data should be fused bool _fuse_hor_vel; // gps horizontal velocity measurement should be fused bool _fuse_vert_vel; // gps vertical velocity measurement should be fused uint64_t _time_last_fake_gps; // last time in us at which we have faked gps measurement for static mode uint64_t _time_last_pos_fuse; // time the last fusion of horizotal position measurements was performed (usec) uint64_t _time_last_vel_fuse; // time the last fusion of velocity measurements was performed (usec) uint64_t _time_last_hgt_fuse; // time the last fusion of height measurements was performed (usec) uint64_t _time_last_of_fuse; // time the last fusion of optical flow measurements were performed (usec) Vector2f _last_known_posNE; // last known local NE position vector (m) float _last_disarmed_posD; // vertical position recorded at arming (m) Vector3f _earth_rate_NED; // earth rotation vector (NED) in rad/s matrix::Dcm _R_prev; // transformation matrix from earth frame to body frame of previous ekf step float P[_k_num_states][_k_num_states]; // state covariance matrix float _vel_pos_innov[6]; // innovations: 0-2 vel, 3-5 pos float _mag_innov[3]; // earth magnetic field innovations float _heading_innov; // heading measurement innovation float _vel_pos_innov_var[6]; // innovation variances: 0-2 vel, 3-5 pos float _mag_innov_var[3]; // earth magnetic field innovation variance float _heading_innov_var; // heading measurement innovation variance float _mag_declination = 0.0f; // magnetic declination used by reset and fusion functions (rad) // complementary filter states Vector3f _delta_angle_corr; // delta angle correction vector Vector3f _delta_vel_corr; // delta velocity correction vector Vector3f _vel_corr; // velocity correction vector imuSample _imu_down_sampled; // down sampled imu data (sensor rate -> filter update rate) Quaternion _q_down_sampled; // down sampled quaternion (tracking delta angles between ekf update steps) // variables used for the GPS quality checks float _gpsDriftVelN = 0.0f; // GPS north position derivative (m/s) float _gpsDriftVelE = 0.0f; // GPS east position derivative (m/s) float _gps_drift_velD = 0.0f; // GPS down position derivative (m/s) float _gps_velD_diff_filt = 0.0f; // GPS filtered Down velocity (m/s) float _gps_velN_filt = 0.0f; // GPS filtered North velocity (m/s) float _gps_velE_filt = 0.0f; // GPS filtered East velocity (m/s) uint64_t _last_gps_fail_us = 0; // last system time in usec that the GPS failed it's checks // Variables used to publish the WGS-84 location of the EKF local NED origin uint64_t _last_gps_origin_time_us = 0; // time the origin was last set (uSec) float _gps_alt_ref = 0.0f; // WGS-84 height (m) // Variables used to initialise the filter states uint8_t _baro_counter = 0; // number of baro samples averaged float _baro_sum = 0.0f; // summed baro measurement uint8_t _mag_counter = 0; // number of magnetometer samples averaged Vector3f _mag_sum = {}; // summed magnetometer measurement Vector3f _delVel_sum = {}; // summed delta velocity float _baro_at_alignment; // baro offset relative to alignment position gps_check_fail_status_u _gps_check_fail_status; // update the real time complementary filter states. This includes the prediction // and the correction step void calculateOutputStates(); // initialise filter states of both the delayed ekf and the real time complementary filter bool initialiseFilter(void); // initialise ekf covariance matrix void initialiseCovariance(); // predict ekf state void predictState(); // predict ekf covariance void predictCovariance(); // ekf sequential fusion of magnetometer measurements void fuseMag(); // fuse magnetometer heading measurement void fuseHeading(); // fuse magnetometer declination measurement void fuseDeclination(); // fuse airspeed measurement void fuseAirspeed(); // fuse range measurements void fuseRange(); // fuse velocity and position measurements (also barometer height) void fuseVelPosHeight(); // reset velocity states of the ekf void resetVelocity(); // reset the heading and magnetic field states using the declination and magnetometer measurements // return true if successful bool resetMagHeading(Vector3f &mag_init); // calculate the magnetic declination to be used by the alignment and fusion processing void calcMagDeclination(); // reset position states of the ekf (only vertical position) void resetPosition(); // reset height state of the ekf void resetHeight(); void makeCovSymetrical(); // limit the diagonal of the covariance matrix void limitCov(); // make ekf covariance matrix symmetric void makeSymmetrical(); // constrain the ekf states void constrainStates(); // generic function which will perform a fusion step given a kalman gain K // and a scalar innovation value void fuse(float *K, float innovation); // calculate the earth rotation vector from a given latitude void calcEarthRateNED(Vector3f &omega, double lat_rad) const; // return true id the GPS quality is good enough to set an origin and start aiding bool gps_is_good(struct gps_message *gps); // Control the filter fusion modes void controlFusionModes(); // Determine if we are airborne or motors are armed void calculateVehicleStatus(); // return the square of two foating point numbers - used in autocoded sections inline float sq(float var) { return var * var; } // zero the specified range of rows in the state covariance matricx void zeroRows(float (&cov_mat)[_k_num_states][_k_num_states], uint8_t first, uint8_t last); // zero the specified range of columns in the state covariance matricx void zeroCols(float (&cov_mat)[_k_num_states][_k_num_states], uint8_t first, uint8_t last); };