/**************************************************************************** * * Copyright (c) 2015 Estimation and Control Library (ECL). All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name ECL nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /** * @file control.cpp * Control functions for ekf attitude and position estimator. * * @author Paul Riseborough * */ #include "ekf.h" void Ekf::controlFusionModes() { // Store the status to enable change detection _control_status_prev.value = _control_status.value; // Get the magnetic declination calcMagDeclination(); // Once the angular uncertainty has reduced sufficiently, initialise the yaw and magnetic field states float total_angle_variance = P[0][0] + P[1][1] + P[2][2] + P[3][3]; if (total_angle_variance < 0.002f && !_control_status.flags.tilt_align) { _control_status.flags.tilt_align = true; _control_status.flags.yaw_align = resetMagHeading(_mag_sample_delayed.mag); } // control use of various external souces for positon and velocity aiding controlExternalVisionAiding(); controlOpticalFlowAiding(); controlGpsAiding(); controlHeightAiding(); controlMagAiding(); } void Ekf::controlExternalVisionAiding() { // external vision position aiding selection logic if ((_params.fusion_mode & MASK_USE_EVPOS) && !_control_status.flags.ev_pos && _control_status.flags.tilt_align && _control_status.flags.yaw_align) { // check for a exernal vision measurement that has fallen behind the fusion time horizon if (_time_last_imu - _time_last_ext_vision < 2 * EV_MAX_INTERVAL) { // turn on use of external vision measurements for position and height _control_status.flags.ev_pos = true; printf("EKF switching to external vision position fusion\n"); // turn off other forms of height aiding _control_status.flags.baro_hgt = false; _control_status.flags.gps_hgt = false; _control_status.flags.rng_hgt = false; // reset the position, height and velocity resetPosition(); resetVelocity(); resetHeight(); } } // external vision yaw aiding selection logic if ((_params.fusion_mode & MASK_USE_EVYAW) && !_control_status.flags.ev_yaw && _control_status.flags.tilt_align) { // check for a exernal vision measurement that has fallen behind the fusion time horizon if (_time_last_imu - _time_last_ext_vision < 2 * EV_MAX_INTERVAL) { // reset the yaw angle to the value from the observaton quaternion // get the roll, pitch, yaw estimates from the quaternion states matrix::Quaternion q_init(_state.quat_nominal(0), _state.quat_nominal(1), _state.quat_nominal(2), _state.quat_nominal(3)); matrix::Euler euler_init(q_init); // get initial yaw from the observation quaternion extVisionSample ev_newest = _ext_vision_buffer.get_newest(); matrix::Quaternion q_obs(ev_newest.quat(0), ev_newest.quat(1), ev_newest.quat(2), ev_newest.quat(3)); matrix::Euler euler_obs(q_obs); euler_init(2) = euler_obs(2); // calculate initial quaternion states for the ekf _state.quat_nominal = Quaternion(euler_init); // flag the yaw as aligned _control_status.flags.yaw_align = true; // turn on fusion of external vision yaw measurements and disable all magnetoemter fusion _control_status.flags.ev_yaw = true; _control_status.flags.mag_hdg = false; _control_status.flags.mag_3D = false; _control_status.flags.mag_dec = false; printf("EKF switching to external vision yaw fusion\n"); } } } void Ekf::controlOpticalFlowAiding() { // optical flow fusion mode selection logic // to start using optical flow data we need angular alignment complete, and fresh optical flow and height above terrain data if ((_params.fusion_mode & MASK_USE_OF) && !_control_status.flags.opt_flow && _control_status.flags.tilt_align && (_time_last_imu - _time_last_optflow) < 5e5 && (_time_last_imu - _time_last_hagl_fuse) < 5e5) { // If the heading is not aligned, reset the yaw and magnetic field states if (!_control_status.flags.yaw_align) { _control_status.flags.yaw_align = resetMagHeading(_mag_sample_delayed.mag); } // If the heading is valid, start using optical flow aiding if (_control_status.flags.yaw_align) { // set the flag and reset the fusion timeout _control_status.flags.opt_flow = true; _time_last_of_fuse = _time_last_imu; // if we are not using GPS then the velocity and position states and covariances need to be set if (!_control_status.flags.gps) { // constrain height above ground to be above minimum possible float heightAboveGndEst = fmaxf((_terrain_vpos - _state.pos(2)), _params.rng_gnd_clearance); // calculate absolute distance from focal point to centre of frame assuming a flat earth float range = heightAboveGndEst / _R_to_earth(2, 2); if ((range - _params.rng_gnd_clearance) > 0.3f && _flow_sample_delayed.dt > 0.05f) { // we should ahve reliable OF measurements so // calculate X and Y body relative velocities from OF measurements Vector3f vel_optflow_body; vel_optflow_body(0) = - range * _flow_sample_delayed.flowRadXYcomp(1) / _flow_sample_delayed.dt; vel_optflow_body(1) = range * _flow_sample_delayed.flowRadXYcomp(0) / _flow_sample_delayed.dt; vel_optflow_body(2) = 0.0f; // rotate from body to earth frame Vector3f vel_optflow_earth; vel_optflow_earth = _R_to_earth * vel_optflow_body; // take x and Y components _state.vel(0) = vel_optflow_earth(0); _state.vel(1) = vel_optflow_earth(1); } else { _state.vel(0) = 0.0f; _state.vel(1) = 0.0f; } // reset the velocity covariance terms zeroRows(P,4,5); zeroCols(P,4,5); // reset the horizontal velocity variance using the optical flow noise variance P[5][5] = P[4][4] = sq(range) * calcOptFlowMeasVar(); if (!_control_status.flags.in_air) { // we are likely starting OF for the first time so reset the horizontal position and vertical velocity states _state.pos(0) = 0.0f; _state.pos(1) = 0.0f; // reset the coresponding covariances // we are by definition at the origin at commencement so variances are also zeroed zeroRows(P,7,8); zeroCols(P,7,8); // align the output observer to the EKF states alignOutputFilter(); } } } } else if (!(_params.fusion_mode & MASK_USE_OF)) { _control_status.flags.opt_flow = false; } // handle the case when we are relying on optical flow fusion and lose it if (_control_status.flags.opt_flow && !_control_status.flags.gps) { // We are relying on flow aiding to constrain attitude drift so after 5s without aiding we need to do something if ((_time_last_imu - _time_last_of_fuse > 5e6)) { // Switch to the non-aiding mode, zero the velocity states // and set the synthetic position to the current estimate _control_status.flags.opt_flow = false; _last_known_posNE(0) = _state.pos(0); _last_known_posNE(1) = _state.pos(1); _state.vel.setZero(); } } } void Ekf::controlGpsAiding() { // GPS fusion mode selection logic // To start use GPS we need angular alignment completed, the local NED origin set and fresh GPS data if ((_params.fusion_mode & MASK_USE_GPS) && !_control_status.flags.gps) { if (_control_status.flags.tilt_align && (_time_last_imu - _time_last_gps) < 5e5 && _NED_origin_initialised && (_time_last_imu - _last_gps_fail_us > 5e6)) { // If the heading is not aligned, reset the yaw and magnetic field states if (!_control_status.flags.yaw_align) { _control_status.flags.yaw_align = resetMagHeading(_mag_sample_delayed.mag); } // If the heading is valid start using gps aiding if (_control_status.flags.yaw_align) { _control_status.flags.gps = true; _time_last_gps = _time_last_imu; // if we are not already aiding with optical flow, then we need to reset the position and velocity if (!_control_status.flags.opt_flow) { _control_status.flags.gps = resetPosition(); _control_status.flags.gps = resetVelocity(); } } } } else if (!(_params.fusion_mode & MASK_USE_GPS)) { _control_status.flags.gps = false; } // handle the case when we are relying on GPS fusion and lose it if (_control_status.flags.gps && !_control_status.flags.opt_flow) { // We are relying on GPS aiding to constrain attitude drift so after 10 seconds without aiding we need to do something if ((_time_last_imu - _time_last_pos_fuse > 10e6) && (_time_last_imu - _time_last_vel_fuse > 10e6)) { if (_time_last_imu - _time_last_gps > 5e5) { // if we don't have gps then we need to switch to the non-aiding mode, zero the veloity states // and set the synthetic GPS position to the current estimate _control_status.flags.gps = false; _last_known_posNE(0) = _state.pos(0); _last_known_posNE(1) = _state.pos(1); _state.vel.setZero(); } else { // Reset states to the last GPS measurement resetPosition(); resetVelocity(); // Reset the timeout counters _time_last_pos_fuse = _time_last_imu; _time_last_vel_fuse = _time_last_imu; } } } } void Ekf::controlHeightSensorTimeouts() { /* * Handle the case where we have not fused height measurements recently and * uncertainty exceeds the max allowable. Reset using the best available height * measurement source, continue using it after the reset and declare the current * source failed if we have switched. */ // check for inertial sensing errors as evidenced by the vertical innovations having the same sign and not stale bool bad_vert_accel = (_control_status.flags.baro_hgt && // we can only run this check if vertical position and velocity observations are indepedant (_vel_pos_innov[5] * _vel_pos_innov[2] > 0.0f) && // vertical position and velocity sensors are in agreement ((_imu_sample_delayed.time_us - _baro_sample_delayed.time_us) < 2 * BARO_MAX_INTERVAL) && // vertical position data is fresh ((_imu_sample_delayed.time_us - _gps_sample_delayed.time_us) < 2 * GPS_MAX_INTERVAL) && // vertical velocity data is freshs _vel_pos_test_ratio[2] > 1.0f && // vertical velocty innovations have failed innovation consistency checks _vel_pos_test_ratio[5] > 1.0f); // vertical position innovations have failed innovation consistency checks // record time of last bad vert accel if (bad_vert_accel) { _time_bad_vert_accel = _time_last_imu; } if ((P[8][8] > sq(_params.hgt_reset_lim)) && ((_time_last_imu - _time_last_hgt_fuse) > 5e6)) { // boolean that indicates we will do a height reset bool reset_height = false; // handle the case where we are using baro for height if (_control_status.flags.baro_hgt) { // check if GPS height is available gpsSample gps_init = _gps_buffer.get_newest(); bool gps_hgt_available = ((_time_last_imu - gps_init.time_us) < 2 * GPS_MAX_INTERVAL); bool gps_hgt_accurate = (gps_init.vacc < _params.req_vacc); baroSample baro_init = _baro_buffer.get_newest(); bool baro_hgt_available = ((_time_last_imu - baro_init.time_us) < 2 * BARO_MAX_INTERVAL); // check for inertial sensing errors in the last 10 seconds bool prev_bad_vert_accel = (_time_last_imu - _time_bad_vert_accel < 10E6); // reset to GPS if adequate GPS data is available and the timeout cannot be blamed on IMU data bool reset_to_gps = gps_hgt_available && gps_hgt_accurate && !_gps_hgt_faulty && !prev_bad_vert_accel; // reset to GPS if GPS data is available and there is no Baro data reset_to_gps = reset_to_gps || (gps_hgt_available && !baro_hgt_available); // reset to Baro if we are not doing a GPS reset and baro data is available bool reset_to_baro = !reset_to_gps && baro_hgt_available; if (reset_to_gps) { // set height sensor health _baro_hgt_faulty = true; _gps_hgt_faulty = false; // declare the GPS height healthy _gps_hgt_faulty = false; // reset the height mode _control_status.flags.baro_hgt = false; _control_status.flags.gps_hgt = true; _control_status.flags.rng_hgt = false; // request a reset reset_height = true; printf("EKF baro hgt timeout - reset to GPS\n"); } else if (reset_to_baro){ // set height sensor health _baro_hgt_faulty = false; // reset the height mode _control_status.flags.baro_hgt = true; _control_status.flags.gps_hgt = false; _control_status.flags.rng_hgt = false; // request a reset reset_height = true; printf("EKF baro hgt timeout - reset to baro\n"); } else { // we have nothing we can reset to // deny a reset reset_height = false; } } // handle the case we are using GPS for height if (_control_status.flags.gps_hgt) { // check if GPS height is available gpsSample gps_init = _gps_buffer.get_newest(); bool gps_hgt_available = ((_time_last_imu - gps_init.time_us) < 2 * GPS_MAX_INTERVAL); bool gps_hgt_accurate = (gps_init.vacc < _params.req_vacc); // check the baro height source for consistency and freshness baroSample baro_init = _baro_buffer.get_newest(); bool baro_data_fresh = ((_time_last_imu - baro_init.time_us) < 2 * BARO_MAX_INTERVAL); float baro_innov = _state.pos(2) - (_hgt_sensor_offset - baro_init.hgt + _baro_hgt_offset); bool baro_data_consistent = fabsf(baro_innov) < (sq(_params.baro_noise) + P[8][8]) * sq(_params.baro_innov_gate); // if baro data is acceptable and GPS data is inaccurate, reset height to baro bool reset_to_baro = baro_data_consistent && baro_data_fresh && !_baro_hgt_faulty && !gps_hgt_accurate; // if GPS height is unavailable and baro data is available, reset height to baro reset_to_baro = reset_to_baro || (!gps_hgt_available && baro_data_fresh); // if we cannot switch to baro and GPs data is available, reset height to GPS bool reset_to_gps = !reset_to_baro && gps_hgt_available; if (reset_to_baro) { // set height sensor health _gps_hgt_faulty = true; _baro_hgt_faulty = false; // reset the height mode _control_status.flags.baro_hgt = true; _control_status.flags.gps_hgt = false; _control_status.flags.rng_hgt = false; // request a reset reset_height = true; printf("EKF gps hgt timeout - reset to baro\n"); } else if (reset_to_gps) { // set height sensor health _gps_hgt_faulty = false; // reset the height mode _control_status.flags.baro_hgt = false; _control_status.flags.gps_hgt = true; _control_status.flags.rng_hgt = false; // request a reset reset_height = true; printf("EKF gps hgt timeout - reset to GPS\n"); } else { // we have nothing to reset to reset_height = false; } } // handle the case we are using range finder for height if (_control_status.flags.rng_hgt) { // check if range finder data is available rangeSample rng_init = _range_buffer.get_newest(); bool rng_data_available = ((_time_last_imu - rng_init.time_us) < 2 * RNG_MAX_INTERVAL); // check if baro data is available baroSample baro_init = _baro_buffer.get_newest(); bool baro_data_available = ((_time_last_imu - baro_init.time_us) < 2 * BARO_MAX_INTERVAL); // reset to baro if we have no range data and baro data is available bool reset_to_baro = !rng_data_available && baro_data_available; // reset to range data if it is available bool reset_to_rng = rng_data_available; if (reset_to_baro) { // set height sensor health _rng_hgt_faulty = true; _baro_hgt_faulty = false; // reset the height mode _control_status.flags.baro_hgt = true; _control_status.flags.gps_hgt = false; _control_status.flags.rng_hgt = false; // request a reset reset_height = true; printf("EKF rng hgt timeout - reset to baro\n"); } else if (reset_to_rng) { // set height sensor health _rng_hgt_faulty = false; // reset the height mode _control_status.flags.baro_hgt = false; _control_status.flags.gps_hgt = false; _control_status.flags.rng_hgt = true; // request a reset reset_height = true; printf("EKF rng hgt timeout - reset to rng hgt\n"); } else { // we have nothing to reset to reset_height = false; } } // Reset vertical position and velocity states to the last measurement if (reset_height) { resetHeight(); // Reset the timout timer _time_last_hgt_fuse = _time_last_imu; } } } void Ekf::controlHeightAiding() { // check for height sensor timeouts and reset and change sensor if necessary controlHeightSensorTimeouts(); // Control the soure of height measurements for the main filter if (_control_status.flags.ev_pos) { _control_status.flags.baro_hgt = false; _control_status.flags.gps_hgt = false; _control_status.flags.rng_hgt = false; } else if ((_params.vdist_sensor_type == VDIST_SENSOR_BARO && !_baro_hgt_faulty) || _control_status.flags.baro_hgt) { _control_status.flags.baro_hgt = true; _control_status.flags.gps_hgt = false; _control_status.flags.rng_hgt = false; } else if ((_params.vdist_sensor_type == VDIST_SENSOR_GPS && !_gps_hgt_faulty) || _control_status.flags.gps_hgt) { _control_status.flags.baro_hgt = false; _control_status.flags.gps_hgt = true; _control_status.flags.rng_hgt = false; } else if (_params.vdist_sensor_type == VDIST_SENSOR_RANGE && !_rng_hgt_faulty) { _control_status.flags.baro_hgt = false; _control_status.flags.gps_hgt = false; _control_status.flags.rng_hgt = true; } } void Ekf::controlMagAiding() { // If we are using external vision data for heading then no magnetometer fusion is used if (_control_status.flags.ev_yaw) { return; } // Determine if we should use simple magnetic heading fusion which works better when there are large external disturbances // or the more accurate 3-axis fusion if (_params.mag_fusion_type == MAG_FUSE_TYPE_AUTO) { if (_control_status.flags.in_air) { // if transitioning into 3-axis fusion mode, we need to initialise the yaw angle and field states if (!_control_status.flags.mag_3D) { _control_status.flags.yaw_align = resetMagHeading(_mag_sample_delayed.mag); } // use 3D mag fusion when airborne _control_status.flags.mag_hdg = false; _control_status.flags.mag_3D = true; } else { // use heading fusion when on the ground _control_status.flags.mag_hdg = true; _control_status.flags.mag_3D = false; } } else if (_params.mag_fusion_type == MAG_FUSE_TYPE_HEADING) { // always use heading fusion _control_status.flags.mag_hdg = true; _control_status.flags.mag_3D = false; } else if (_params.mag_fusion_type == MAG_FUSE_TYPE_3D) { // if transitioning into 3-axis fusion mode, we need to initialise the yaw angle and field states if (!_control_status.flags.mag_3D) { _control_status.flags.yaw_align = resetMagHeading(_mag_sample_delayed.mag); } // always use 3-axis mag fusion _control_status.flags.mag_hdg = false; _control_status.flags.mag_3D = true; } else { // do no magnetometer fusion at all _control_status.flags.mag_hdg = false; _control_status.flags.mag_3D = false; } // if we are using 3-axis magnetometer fusion, but without external aiding, then the declination must be fused as an observation to prevent long term heading drift // fusing declination when gps aiding is available is optional, but recommneded to prevent problem if the vehicle is static for extended periods of time if (_control_status.flags.mag_3D && (!_control_status.flags.gps || (_params.mag_declination_source & MASK_FUSE_DECL))) { _control_status.flags.mag_dec = true; } else { _control_status.flags.mag_dec = false; } // if the airspeed measurements have timed out for 10 seconds we declare the wind estimate to be invalid if (_time_last_imu - _time_last_arsp_fuse > 10e6 || _time_last_arsp_fuse == 0) { _control_status.flags.wind = false; } else { _control_status.flags.wind = true; } }