/**************************************************************************** * * Copyright (c) 2015 Estimation and Control Library (ECL). All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name ECL nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /** * @file terrain_estimator.cpp * Function for fusing rangefinder measurements to estimate terrain vertical position/ * * @author Paul Riseborough * */ #include "ekf.h" #include #include bool Ekf::initHagl() { bool initialized = false; if (!_control_status.flags.in_air) { // if on ground, do not trust the range sensor, but assume a ground clearance _terrain_vpos = _state.pos(2) + _params.rng_gnd_clearance; // use the ground clearance value as our uncertainty _terrain_var = sq(_params.rng_gnd_clearance); _time_last_fake_hagl_fuse = _time_last_imu; initialized = true; } else if ((_params.terrain_fusion_mode & TerrainFusionMask::TerrainFuseRangeFinder) && _range_sensor.isDataHealthy()) { // if we have a fresh measurement, use it to initialise the terrain estimator _terrain_vpos = _state.pos(2) + _range_sensor.getDistBottom(); // initialise state variance to variance of measurement _terrain_var = sq(_params.range_noise); // success initialized = true; } else if ((_params.terrain_fusion_mode & TerrainFusionMask::TerrainFuseOpticalFlow) && _flow_for_terrain_data_ready) { // initialise terrain vertical position to origin as this is the best guess we have _terrain_vpos = fmaxf(0.0f, _state.pos(2)); _terrain_var = 100.0f; initialized = true; } else { // no information - cannot initialise } if (initialized) { // has initialized with valid data _time_last_hagl_fuse = _time_last_imu; } return initialized; } void Ekf::runTerrainEstimator() { // If we are on ground, store the local position and time to use as a reference if (!_control_status.flags.in_air) { _last_on_ground_posD = _state.pos(2); } // Perform initialisation check and // on ground, continuously reset the terrain estimator if (!_terrain_initialised || !_control_status.flags.in_air) { _terrain_initialised = initHagl(); } else { // predict the state variance growth where the state is the vertical position of the terrain underneath the vehicle // process noise due to errors in vehicle height estimate _terrain_var += sq(_imu_sample_delayed.delta_vel_dt * _params.terrain_p_noise); // process noise due to terrain gradient _terrain_var += sq(_imu_sample_delayed.delta_vel_dt * _params.terrain_gradient) * (sq(_state.vel(0)) + sq(_state.vel(1))); // limit the variance to prevent it becoming badly conditioned _terrain_var = math::constrain(_terrain_var, 0.0f, 1e4f); // Fuse range finder data if available if (_range_sensor.isDataHealthy()) { fuseHagl(); } if (_flow_for_terrain_data_ready) { fuseFlowForTerrain(); _flow_for_terrain_data_ready = false; } // constrain _terrain_vpos to be a minimum of _params.rng_gnd_clearance larger than _state.pos(2) if (_terrain_vpos - _state.pos(2) < _params.rng_gnd_clearance) { _terrain_vpos = _params.rng_gnd_clearance + _state.pos(2); } } updateTerrainValidity(); } void Ekf::fuseHagl() { // get a height above ground measurement from the range finder assuming a flat earth const float meas_hagl = _range_sensor.getDistBottom(); // predict the hagl from the vehicle position and terrain height const float pred_hagl = _terrain_vpos - _state.pos(2); // calculate the innovation _hagl_innov = pred_hagl - meas_hagl; // calculate the observation variance adding the variance of the vehicles own height uncertainty const float obs_variance = fmaxf(P(9,9) * _params.vehicle_variance_scaler, 0.0f) + sq(_params.range_noise) + sq(_params.range_noise_scaler * _range_sensor.getRange()); // calculate the innovation variance - limiting it to prevent a badly conditioned fusion _hagl_innov_var = fmaxf(_terrain_var + obs_variance, obs_variance); // perform an innovation consistency check and only fuse data if it passes const float gate_size = fmaxf(_params.range_innov_gate, 1.0f); _hagl_test_ratio = sq(_hagl_innov) / (sq(gate_size) * _hagl_innov_var); if (_hagl_test_ratio <= 1.0f) { // calculate the Kalman gain float gain = _terrain_var / _hagl_innov_var; // correct the state _terrain_vpos -= gain * _hagl_innov; // correct the variance _terrain_var = fmaxf(_terrain_var * (1.0f - gain), 0.0f); // record last successful fusion event _time_last_hagl_fuse = _time_last_imu; _innov_check_fail_status.flags.reject_hagl = false; } else { // If we have been rejecting range data for too long, reset to measurement if (isTimedOut(_time_last_hagl_fuse, (uint64_t)10E6)) { _terrain_vpos = _state.pos(2) + meas_hagl; _terrain_var = obs_variance; } else { _innov_check_fail_status.flags.reject_hagl = true; } } } void Ekf::fuseFlowForTerrain() { // calculate optical LOS rates using optical flow rates that have had the body angular rate contribution removed // correct for gyro bias errors in the data used to do the motion compensation // Note the sign convention used: A positive LOS rate is a RH rotation of the scene about that axis. const Vector2f opt_flow_rate = Vector2f{_flow_compensated_XY_rad} / _flow_sample_delayed.dt + Vector2f{_flow_gyro_bias}; // get latest estimated orientation const float q0 = _state.quat_nominal(0); const float q1 = _state.quat_nominal(1); const float q2 = _state.quat_nominal(2); const float q3 = _state.quat_nominal(3); // calculate the optical flow observation variance const float R_LOS = calcOptFlowMeasVar(); // get rotation matrix from earth to body const Dcmf earth_to_body = quat_to_invrotmat(_state.quat_nominal); // calculate the sensor position relative to the IMU const Vector3f pos_offset_body = _params.flow_pos_body - _params.imu_pos_body; // calculate the velocity of the sensor relative to the imu in body frame // Note: _flow_sample_delayed.gyro_xyz is the negative of the body angular velocity, thus use minus sign const Vector3f vel_rel_imu_body = Vector3f(-_flow_sample_delayed.gyro_xyz / _flow_sample_delayed.dt) % pos_offset_body; // calculate the velocity of the sensor in the earth frame const Vector3f vel_rel_earth = _state.vel + _R_to_earth * vel_rel_imu_body; // rotate into body frame const Vector3f vel_body = earth_to_body * vel_rel_earth; const float t0 = q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3; // constrain terrain to minimum allowed value and predict height above ground _terrain_vpos = fmaxf(_terrain_vpos, _params.rng_gnd_clearance + _state.pos(2)); const float pred_hagl = _terrain_vpos - _state.pos(2); // Calculate observation matrix for flow around the vehicle x axis const float Hx = vel_body(1) * t0 / (pred_hagl * pred_hagl); // Constrain terrain variance to be non-negative _terrain_var = fmaxf(_terrain_var, 0.0f); // Cacluate innovation variance _flow_innov_var[0] = Hx * Hx * _terrain_var + R_LOS; // calculate the kalman gain for the flow x measurement const float Kx = _terrain_var * Hx / _flow_innov_var[0]; // calculate prediced optical flow about x axis const float pred_flow_x = vel_body(1) * earth_to_body(2, 2) / pred_hagl; // calculate flow innovation (x axis) _flow_innov[0] = pred_flow_x - opt_flow_rate(0); // calculate correction term for terrain variance const float KxHxP = Kx * Hx * _terrain_var; // innovation consistency check const float gate_size = fmaxf(_params.flow_innov_gate, 1.0f); float flow_test_ratio = sq(_flow_innov[0]) / (sq(gate_size) * _flow_innov_var[0]); // do not perform measurement update if badly conditioned if (flow_test_ratio <= 1.0f) { _terrain_vpos += Kx * _flow_innov[0]; // guard against negative variance _terrain_var = fmaxf(_terrain_var - KxHxP, 0.0f); _time_last_of_fuse = _time_last_imu; } // Calculate observation matrix for flow around the vehicle y axis const float Hy = -vel_body(0) * t0 / (pred_hagl * pred_hagl); // Calculuate innovation variance _flow_innov_var[1] = Hy * Hy * _terrain_var + R_LOS; // calculate the kalman gain for the flow y measurement const float Ky = _terrain_var * Hy / _flow_innov_var[1]; // calculate prediced optical flow about y axis const float pred_flow_y = -vel_body(0) * earth_to_body(2, 2) / pred_hagl; // calculate flow innovation (y axis) _flow_innov[1] = pred_flow_y - opt_flow_rate(1); // calculate correction term for terrain variance const float KyHyP = Ky * Hy * _terrain_var; // innovation consistency check flow_test_ratio = sq(_flow_innov[1]) / (sq(gate_size) * _flow_innov_var[1]); if (flow_test_ratio <= 1.0f) { _terrain_vpos += Ky * _flow_innov[1]; // guard against negative variance _terrain_var = fmaxf(_terrain_var - KyHyP, 0.0f); _time_last_of_fuse = _time_last_imu; } } bool Ekf::isTerrainEstimateValid() const { return _hagl_valid; } void Ekf::updateTerrainValidity() { // we have been fusing range finder measurements in the last 5 seconds const bool recent_range_fusion = isRecent(_time_last_hagl_fuse, (uint64_t)5e6); // we have been fusing optical flow measurements for terrain estimation within the last 5 seconds // this can only be the case if the main filter does not fuse optical flow const bool recent_flow_for_terrain_fusion = isRecent(_time_last_of_fuse, (uint64_t)5e6) && !_control_status.flags.opt_flow; _hagl_valid = (_terrain_initialised && (recent_range_fusion || recent_flow_for_terrain_fusion)); _hagl_sensor_status.flags.range_finder = recent_range_fusion && (_time_last_fake_hagl_fuse != _time_last_hagl_fuse); _hagl_sensor_status.flags.flow = recent_flow_for_terrain_fusion; } // get the estimated vertical position of the terrain relative to the NED origin float Ekf::getTerrainVertPos() const { return _terrain_vpos; }