/**************************************************************************** * * Copyright (c) 2012-2014 PX4 Development Team. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name PX4 nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /** * @file geo.c * * Geo / math functions to perform geodesic calculations * * @author Thomas Gubler * @author Julian Oes * @author Lorenz Meier * @author Anton Babushkin */ #ifdef POSIX_SHARED #include #include #include #include #include #include #include /**************************************************************************** * * Copyright (c) 2014 MAV GEO Library (MAVGEO). All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name MAVGEO nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /** * @file geo_mag_declination.c * * Calculation / lookup table for earth magnetic field declination. * * Lookup table from Scott Ferguson * * XXX Lookup table currently too coarse in resolution (only full degrees) * and lat/lon res - needs extension medium term. * */ #include "geo.h" /** set this always to the sampling in degrees for the table below */ #define SAMPLING_RES 10.0f #define SAMPLING_MIN_LAT -60.0f #define SAMPLING_MAX_LAT 60.0f #define SAMPLING_MIN_LON -180.0f #define SAMPLING_MAX_LON 180.0f static const int8_t declination_table[13][37] = \ { { 46, 45, 44, 42, 41, 40, 38, 36, 33, 28, 23, 16, 10, 4, -1, -5, -9, -14, -19, -26, -33, -40, -48, -55, -61, -66, -71, -74, -75, -72, -61, -25, 22, 40, 45, 47, 46 }, { 30, 30, 30, 30, 29, 29, 29, 29, 27, 24, 18, 11, 3, -3, -9, -12, -15, -17, -21, -26, -32, -39, -45, -51, -55, -57, -56, -53, -44, -31, -14, 0, 13, 21, 26, 29, 30 }, { 21, 22, 22, 22, 22, 22, 22, 22, 21, 18, 13, 5, -3, -11, -17, -20, -21, -22, -23, -25, -29, -35, -40, -44, -45, -44, -40, -32, -22, -12, -3, 3, 9, 14, 18, 20, 21 }, { 16, 17, 17, 17, 17, 17, 16, 16, 16, 13, 8, 0, -9, -16, -21, -24, -25, -25, -23, -20, -21, -24, -28, -31, -31, -29, -24, -17, -9, -3, 0, 4, 7, 10, 13, 15, 16 }, { 12, 13, 13, 13, 13, 13, 12, 12, 11, 9, 3, -4, -12, -19, -23, -24, -24, -22, -17, -12, -9, -10, -13, -17, -18, -16, -13, -8, -3, 0, 1, 3, 6, 8, 10, 12, 12 }, { 10, 10, 10, 10, 10, 10, 10, 9, 9, 6, 0, -6, -14, -20, -22, -22, -19, -15, -10, -6, -2, -2, -4, -7, -8, -8, -7, -4, 0, 1, 1, 2, 4, 6, 8, 10, 10 }, { 9, 9, 9, 9, 9, 9, 8, 8, 7, 4, -1, -8, -15, -19, -20, -18, -14, -9, -5, -2, 0, 1, 0, -2, -3, -4, -3, -2, 0, 0, 0, 1, 3, 5, 7, 8, 9 }, { 8, 8, 8, 9, 9, 9, 8, 8, 6, 2, -3, -9, -15, -18, -17, -14, -10, -6, -2, 0, 1, 2, 2, 0, -1, -1, -2, -1, 0, 0, 0, 0, 1, 3, 5, 7, 8 }, { 8, 9, 9, 10, 10, 10, 10, 8, 5, 0, -5, -11, -15, -16, -15, -12, -8, -4, -1, 0, 2, 3, 2, 1, 0, 0, 0, 0, 0, -1, -2, -2, -1, 0, 3, 6, 8 }, { 6, 9, 10, 11, 12, 12, 11, 9, 5, 0, -7, -12, -15, -15, -13, -10, -7, -3, 0, 1, 2, 3, 3, 3, 2, 1, 0, 0, -1, -3, -4, -5, -5, -2, 0, 3, 6 }, { 5, 8, 11, 13, 15, 15, 14, 11, 5, -1, -9, -14, -17, -16, -14, -11, -7, -3, 0, 1, 3, 4, 5, 5, 5, 4, 3, 1, -1, -4, -7, -8, -8, -6, -2, 1, 5 }, { 4, 8, 12, 15, 17, 18, 16, 12, 5, -3, -12, -18, -20, -19, -16, -13, -8, -4, -1, 1, 4, 6, 8, 9, 9, 9, 7, 3, -1, -6, -10, -12, -11, -9, -5, 0, 4 }, { 3, 9, 14, 17, 20, 21, 19, 14, 4, -8, -19, -25, -26, -25, -21, -17, -12, -7, -2, 1, 5, 9, 13, 15, 16, 16, 13, 7, 0, -7, -12, -15, -14, -11, -6, -1, 3 }, }; static float get_lookup_table_val(unsigned lat, unsigned lon); float get_mag_declination(float lat, float lon) { /* * If the values exceed valid ranges, return zero as default * as we have no way of knowing what the closest real value * would be. */ if (lat < -90.0f || lat > 90.0f || lon < -180.0f || lon > 180.0f) { return 0.0f; } /* round down to nearest sampling resolution */ int min_lat = (int)(lat / SAMPLING_RES) * SAMPLING_RES; int min_lon = (int)(lon / SAMPLING_RES) * SAMPLING_RES; /* for the rare case of hitting the bounds exactly * the rounding logic wouldn't fit, so enforce it. */ /* limit to table bounds - required for maxima even when table spans full globe range */ if (lat <= SAMPLING_MIN_LAT) { min_lat = SAMPLING_MIN_LAT; } if (lat >= SAMPLING_MAX_LAT) { min_lat = (int)(lat / SAMPLING_RES) * SAMPLING_RES - SAMPLING_RES; } if (lon <= SAMPLING_MIN_LON) { min_lon = SAMPLING_MIN_LON; } if (lon >= SAMPLING_MAX_LON) { min_lon = (int)(lon / SAMPLING_RES) * SAMPLING_RES - SAMPLING_RES; } /* find index of nearest low sampling point */ unsigned min_lat_index = (-(SAMPLING_MIN_LAT) + min_lat) / SAMPLING_RES; unsigned min_lon_index = (-(SAMPLING_MIN_LON) + min_lon) / SAMPLING_RES; float declination_sw = get_lookup_table_val(min_lat_index, min_lon_index); float declination_se = get_lookup_table_val(min_lat_index, min_lon_index + 1); float declination_ne = get_lookup_table_val(min_lat_index + 1, min_lon_index + 1); float declination_nw = get_lookup_table_val(min_lat_index + 1, min_lon_index); /* perform bilinear interpolation on the four grid corners */ float declination_min = ((lon - min_lon) / SAMPLING_RES) * (declination_se - declination_sw) + declination_sw; float declination_max = ((lon - min_lon) / SAMPLING_RES) * (declination_ne - declination_nw) + declination_nw; return ((lat - min_lat) / SAMPLING_RES) * (declination_max - declination_min) + declination_min; } float get_lookup_table_val(unsigned lat_index, unsigned lon_index) { return declination_table[lat_index][lon_index]; } /* * Azimuthal Equidistant Projection * formulas according to: http://mathworld.wolfram.com/AzimuthalEquidistantProjection.html */ static struct map_projection_reference_s mp_ref = {0.0, 0.0, 0.0, 0.0, false, 0}; static struct globallocal_converter_reference_s gl_ref = {0.0f, false}; bool map_projection_global_initialized() { return map_projection_initialized(&mp_ref); } bool map_projection_initialized(const struct map_projection_reference_s *ref) { return ref->init_done; } uint64_t map_projection_global_timestamp() { return map_projection_timestamp(&mp_ref); } uint64_t map_projection_timestamp(const struct map_projection_reference_s *ref) { return ref->timestamp; } int map_projection_global_init(double lat_0, double lon_0, uint64_t timestamp) //lat_0, lon_0 are expected to be in correct format: -> 47.1234567 and not 471234567 { return map_projection_init_timestamped(&mp_ref, lat_0, lon_0, timestamp); } int map_projection_init_timestamped(struct map_projection_reference_s *ref, double lat_0, double lon_0, uint64_t timestamp) //lat_0, lon_0 are expected to be in correct format: -> 47.1234567 and not 471234567 { ref->lat_rad = lat_0 * M_DEG_TO_RAD; ref->lon_rad = lon_0 * M_DEG_TO_RAD; ref->sin_lat = sin(ref->lat_rad); ref->cos_lat = cos(ref->lat_rad); ref->timestamp = timestamp; ref->init_done = true; return 0; } int map_projection_global_reference(double *ref_lat_rad, double *ref_lon_rad) { return map_projection_reference(&mp_ref, ref_lat_rad, ref_lon_rad); } int map_projection_reference(const struct map_projection_reference_s *ref, double *ref_lat_rad, double *ref_lon_rad) { if (!map_projection_initialized(ref)) { return -1; } *ref_lat_rad = ref->lat_rad; *ref_lon_rad = ref->lon_rad; return 0; } int map_projection_global_project(double lat, double lon, float *x, float *y) { return map_projection_project(&mp_ref, lat, lon, x, y); } int map_projection_project(const struct map_projection_reference_s *ref, double lat, double lon, float *x, float *y) { if (!map_projection_initialized(ref)) { return -1; } double lat_rad = lat * M_DEG_TO_RAD; double lon_rad = lon * M_DEG_TO_RAD; double sin_lat = sin(lat_rad); double cos_lat = cos(lat_rad); double cos_d_lon = cos(lon_rad - ref->lon_rad); double arg = ref->sin_lat * sin_lat + ref->cos_lat * cos_lat * cos_d_lon; if (arg > 1.0) { arg = 1.0; } else if (arg < -1.0) { arg = -1.0; } double c = acos(arg); double k = (fabs(c) < DBL_EPSILON) ? 1.0 : (c / sin(c)); *x = k * (ref->cos_lat * sin_lat - ref->sin_lat * cos_lat * cos_d_lon) * CONSTANTS_RADIUS_OF_EARTH; *y = k * cos_lat * sin(lon_rad - ref->lon_rad) * CONSTANTS_RADIUS_OF_EARTH; return 0; } int map_projection_global_reproject(float x, float y, double *lat, double *lon) { return map_projection_reproject(&mp_ref, x, y, lat, lon); } int map_projection_reproject(const struct map_projection_reference_s *ref, float x, float y, double *lat, double *lon) { if (!map_projection_initialized(ref)) { return -1; } double x_rad = x / CONSTANTS_RADIUS_OF_EARTH; double y_rad = y / CONSTANTS_RADIUS_OF_EARTH; double c = sqrtf(x_rad * x_rad + y_rad * y_rad); double sin_c = sin(c); double cos_c = cos(c); double lat_rad; double lon_rad; if (fabs(c) > DBL_EPSILON) { lat_rad = asin(cos_c * ref->sin_lat + (x_rad * sin_c * ref->cos_lat) / c); lon_rad = (ref->lon_rad + atan2(y_rad * sin_c, c * ref->cos_lat * cos_c - x_rad * ref->sin_lat * sin_c)); } else { lat_rad = ref->lat_rad; lon_rad = ref->lon_rad; } *lat = lat_rad * 180.0 / M_PI; *lon = lon_rad * 180.0 / M_PI; return 0; } int map_projection_global_getref(double *lat_0, double *lon_0) { if (!map_projection_global_initialized()) { return -1; } if (lat_0 != NULL) { *lat_0 = M_RAD_TO_DEG * mp_ref.lat_rad; } if (lon_0 != NULL) { *lon_0 = M_RAD_TO_DEG * mp_ref.lon_rad; } return 0; } int globallocalconverter_init(double lat_0, double lon_0, float alt_0, uint64_t timestamp) { gl_ref.alt = alt_0; if (!map_projection_global_init(lat_0, lon_0, timestamp)) { gl_ref.init_done = true; return 0; } else { gl_ref.init_done = false; return -1; } } bool globallocalconverter_initialized() { return gl_ref.init_done && map_projection_global_initialized(); } int globallocalconverter_tolocal(double lat, double lon, float alt, float *x, float *y, float *z) { if (!map_projection_global_initialized()) { return -1; } map_projection_global_project(lat, lon, x, y); *z = gl_ref.alt - alt; return 0; } int globallocalconverter_toglobal(float x, float y, float z, double *lat, double *lon, float *alt) { if (!map_projection_global_initialized()) { return -1; } map_projection_global_reproject(x, y, lat, lon); *alt = gl_ref.alt - z; return 0; } int globallocalconverter_getref(double *lat_0, double *lon_0, float *alt_0) { if (!map_projection_global_initialized()) { return -1; } if (map_projection_global_getref(lat_0, lon_0)) { return -1; } if (alt_0 != NULL) { *alt_0 = gl_ref.alt; } return 0; } float get_distance_to_next_waypoint(double lat_now, double lon_now, double lat_next, double lon_next) { double lat_now_rad = lat_now / (double)180.0 * M_PI; double lon_now_rad = lon_now / (double)180.0 * M_PI; double lat_next_rad = lat_next / (double)180.0 * M_PI; double lon_next_rad = lon_next / (double)180.0 * M_PI; double d_lat = lat_next_rad - lat_now_rad; double d_lon = lon_next_rad - lon_now_rad; double a = sin(d_lat / (double)2.0) * sin(d_lat / (double)2.0) + sin(d_lon / (double)2.0) * sin(d_lon / (double)2.0) * cos(lat_now_rad) * cos(lat_next_rad); double c = (double)2.0 * atan2(sqrt(a), sqrt((double)1.0 - a)); return CONSTANTS_RADIUS_OF_EARTH * c; } void create_waypoint_from_line_and_dist(double lat_A, double lon_A, double lat_B, double lon_B, float dist, double *lat_target, double *lon_target) { if (fabsf(dist) < FLT_EPSILON) { *lat_target = lat_A; *lon_target = lon_A; } else if (dist >= FLT_EPSILON) { float heading = get_bearing_to_next_waypoint(lat_A, lon_A, lat_B, lon_B); waypoint_from_heading_and_distance(lat_A, lon_A, heading, dist, lat_target, lon_target); } else { float heading = get_bearing_to_next_waypoint(lat_A, lon_A, lat_B, lon_B); heading = _wrap_2pi(heading + M_PI_F); waypoint_from_heading_and_distance(lat_A, lon_A, heading, dist, lat_target, lon_target); } } void waypoint_from_heading_and_distance(double lat_start, double lon_start, float bearing, float dist, double *lat_target, double *lon_target) { bearing = _wrap_2pi(bearing); double radius_ratio = (double)(fabs(dist) / CONSTANTS_RADIUS_OF_EARTH); double lat_start_rad = lat_start * M_DEG_TO_RAD; double lon_start_rad = lon_start * M_DEG_TO_RAD; *lat_target = asin(sin(lat_start_rad) * cos(radius_ratio) + cos(lat_start_rad) * sin(radius_ratio) * cos(( double)bearing)); *lon_target = lon_start_rad + atan2(sin((double)bearing) * sin(radius_ratio) * cos(lat_start_rad), cos(radius_ratio) - sin(lat_start_rad) * sin(*lat_target)); *lat_target *= M_RAD_TO_DEG; *lon_target *= M_RAD_TO_DEG; } float get_bearing_to_next_waypoint(double lat_now, double lon_now, double lat_next, double lon_next) { double lat_now_rad = lat_now * M_DEG_TO_RAD; double lon_now_rad = lon_now * M_DEG_TO_RAD; double lat_next_rad = lat_next * M_DEG_TO_RAD; double lon_next_rad = lon_next * M_DEG_TO_RAD; double d_lon = lon_next_rad - lon_now_rad; /* conscious mix of double and float trig function to maximize speed and efficiency */ float theta = atan2f(sin(d_lon) * cos(lat_next_rad) , cos(lat_now_rad) * sin(lat_next_rad) - sin(lat_now_rad) * cos(lat_next_rad) * cos(d_lon)); theta = _wrap_pi(theta); return theta; } void get_vector_to_next_waypoint(double lat_now, double lon_now, double lat_next, double lon_next, float *v_n, float *v_e) { double lat_now_rad = lat_now * M_DEG_TO_RAD; double lon_now_rad = lon_now * M_DEG_TO_RAD; double lat_next_rad = lat_next * M_DEG_TO_RAD; double lon_next_rad = lon_next * M_DEG_TO_RAD; double d_lon = lon_next_rad - lon_now_rad; /* conscious mix of double and float trig function to maximize speed and efficiency */ *v_n = CONSTANTS_RADIUS_OF_EARTH * (cos(lat_now_rad) * sin(lat_next_rad) - sin(lat_now_rad) * cos(lat_next_rad) * cos( d_lon)); *v_e = CONSTANTS_RADIUS_OF_EARTH * sin(d_lon) * cos(lat_next_rad); } void get_vector_to_next_waypoint_fast(double lat_now, double lon_now, double lat_next, double lon_next, float *v_n, float *v_e) { double lat_now_rad = lat_now * M_DEG_TO_RAD; double lon_now_rad = lon_now * M_DEG_TO_RAD; double lat_next_rad = lat_next * M_DEG_TO_RAD; double lon_next_rad = lon_next * M_DEG_TO_RAD; double d_lat = lat_next_rad - lat_now_rad; double d_lon = lon_next_rad - lon_now_rad; /* conscious mix of double and float trig function to maximize speed and efficiency */ *v_n = CONSTANTS_RADIUS_OF_EARTH * d_lat; *v_e = CONSTANTS_RADIUS_OF_EARTH * d_lon * cos(lat_now_rad); } void add_vector_to_global_position(double lat_now, double lon_now, float v_n, float v_e, double *lat_res, double *lon_res) { double lat_now_rad = lat_now * M_DEG_TO_RAD; double lon_now_rad = lon_now * M_DEG_TO_RAD; *lat_res = (lat_now_rad + (double)v_n / CONSTANTS_RADIUS_OF_EARTH) * M_RAD_TO_DEG; *lon_res = (lon_now_rad + (double)v_e / (CONSTANTS_RADIUS_OF_EARTH * cos(lat_now_rad))) * M_RAD_TO_DEG; } // Additional functions - @author Doug Weibel int get_distance_to_line(struct crosstrack_error_s *crosstrack_error, double lat_now, double lon_now, double lat_start, double lon_start, double lat_end, double lon_end) { // This function returns the distance to the nearest point on the track line. Distance is positive if current // position is right of the track and negative if left of the track as seen from a point on the track line // headed towards the end point. float dist_to_end; float bearing_end; float bearing_track; float bearing_diff; int return_value = ERROR; // Set error flag, cleared when valid result calculated. crosstrack_error->past_end = false; crosstrack_error->distance = 0.0f; crosstrack_error->bearing = 0.0f; dist_to_end = get_distance_to_next_waypoint(lat_now, lon_now, lat_end, lon_end); // Return error if arguments are bad if (dist_to_end < 0.1f) { return ERROR; } bearing_end = get_bearing_to_next_waypoint(lat_now, lon_now, lat_end, lon_end); bearing_track = get_bearing_to_next_waypoint(lat_start, lon_start, lat_end, lon_end); bearing_diff = bearing_track - bearing_end; bearing_diff = _wrap_pi(bearing_diff); // Return past_end = true if past end point of line if (bearing_diff > M_PI_2_F || bearing_diff < -M_PI_2_F) { crosstrack_error->past_end = true; return_value = OK; return return_value; } crosstrack_error->distance = (dist_to_end) * sinf(bearing_diff); if (sin(bearing_diff) >= 0) { crosstrack_error->bearing = _wrap_pi(bearing_track - M_PI_2_F); } else { crosstrack_error->bearing = _wrap_pi(bearing_track + M_PI_2_F); } return_value = OK; return return_value; } int get_distance_to_arc(struct crosstrack_error_s *crosstrack_error, double lat_now, double lon_now, double lat_center, double lon_center, float radius, float arc_start_bearing, float arc_sweep) { // This function returns the distance to the nearest point on the track arc. Distance is positive if current // position is right of the arc and negative if left of the arc as seen from the closest point on the arc and // headed towards the end point. // Determine if the current position is inside or outside the sector between the line from the center // to the arc start and the line from the center to the arc end float bearing_sector_start; float bearing_sector_end; float bearing_now = get_bearing_to_next_waypoint(lat_now, lon_now, lat_center, lon_center); bool in_sector; int return_value = ERROR; // Set error flag, cleared when valid result calculated. crosstrack_error->past_end = false; crosstrack_error->distance = 0.0f; crosstrack_error->bearing = 0.0f; // Return error if arguments are bad if (radius < 0.1f) { return return_value; } if (arc_sweep >= 0.0f) { bearing_sector_start = arc_start_bearing; bearing_sector_end = arc_start_bearing + arc_sweep; if (bearing_sector_end > 2.0f * M_PI_F) { bearing_sector_end -= M_TWOPI_F; } } else { bearing_sector_end = arc_start_bearing; bearing_sector_start = arc_start_bearing - arc_sweep; if (bearing_sector_start < 0.0f) { bearing_sector_start += M_TWOPI_F; } } in_sector = false; // Case where sector does not span zero if (bearing_sector_end >= bearing_sector_start && bearing_now >= bearing_sector_start && bearing_now <= bearing_sector_end) { in_sector = true; } // Case where sector does span zero if (bearing_sector_end < bearing_sector_start && (bearing_now > bearing_sector_start || bearing_now < bearing_sector_end)) { in_sector = true; } // If in the sector then calculate distance and bearing to closest point if (in_sector) { crosstrack_error->past_end = false; float dist_to_center = get_distance_to_next_waypoint(lat_now, lon_now, lat_center, lon_center); if (dist_to_center <= radius) { crosstrack_error->distance = radius - dist_to_center; crosstrack_error->bearing = bearing_now + M_PI_F; } else { crosstrack_error->distance = dist_to_center - radius; crosstrack_error->bearing = bearing_now; } // If out of the sector then calculate dist and bearing to start or end point } else { // Use the approximation that 111,111 meters in the y direction is 1 degree (of latitude) // and 111,111 * cos(latitude) meters in the x direction is 1 degree (of longitude) to // calculate the position of the start and end points. We should not be doing this often // as this function generally will not be called repeatedly when we are out of the sector. double start_disp_x = (double)radius * sin(arc_start_bearing); double start_disp_y = (double)radius * cos(arc_start_bearing); double end_disp_x = (double)radius * sin(_wrap_pi((double)(arc_start_bearing + arc_sweep))); double end_disp_y = (double)radius * cos(_wrap_pi((double)(arc_start_bearing + arc_sweep))); double lon_start = lon_now + start_disp_x / 111111.0; double lat_start = lat_now + start_disp_y * cos(lat_now) / 111111.0; double lon_end = lon_now + end_disp_x / 111111.0; double lat_end = lat_now + end_disp_y * cos(lat_now) / 111111.0; double dist_to_start = get_distance_to_next_waypoint(lat_now, lon_now, lat_start, lon_start); double dist_to_end = get_distance_to_next_waypoint(lat_now, lon_now, lat_end, lon_end); if (dist_to_start < dist_to_end) { crosstrack_error->distance = dist_to_start; crosstrack_error->bearing = get_bearing_to_next_waypoint(lat_now, lon_now, lat_start, lon_start); } else { crosstrack_error->past_end = true; crosstrack_error->distance = dist_to_end; crosstrack_error->bearing = get_bearing_to_next_waypoint(lat_now, lon_now, lat_end, lon_end); } } crosstrack_error->bearing = _wrap_pi((double)crosstrack_error->bearing); return_value = OK; return return_value; } float get_distance_to_point_global_wgs84(double lat_now, double lon_now, float alt_now, double lat_next, double lon_next, float alt_next, float *dist_xy, float *dist_z) { double current_x_rad = lat_next / 180.0 * M_PI; double current_y_rad = lon_next / 180.0 * M_PI; double x_rad = lat_now / 180.0 * M_PI; double y_rad = lon_now / 180.0 * M_PI; double d_lat = x_rad - current_x_rad; double d_lon = y_rad - current_y_rad; double a = sin(d_lat / 2.0) * sin(d_lat / 2.0) + sin(d_lon / 2.0) * sin(d_lon / 2.0) * cos(current_x_rad) * cos(x_rad); double c = 2 * atan2(sqrt(a), sqrt(1 - a)); float dxy = CONSTANTS_RADIUS_OF_EARTH * c; float dz = alt_now - alt_next; *dist_xy = fabsf(dxy); *dist_z = fabsf(dz); return sqrtf(dxy * dxy + dz * dz); } float mavlink_wpm_distance_to_point_local(float x_now, float y_now, float z_now, float x_next, float y_next, float z_next, float *dist_xy, float *dist_z) { float dx = x_now - x_next; float dy = y_now - y_next; float dz = z_now - z_next; *dist_xy = sqrtf(dx * dx + dy * dy); *dist_z = fabsf(dz); return sqrtf(dx * dx + dy * dy + dz * dz); } float _wrap_pi(float bearing) { /* value is inf or NaN */ if (!math::isfinite(bearing)) { return bearing; } int c = 0; while (bearing >= M_PI_F) { bearing -= M_TWOPI_F; if (c++ > 3) { return NAN; } } c = 0; while (bearing < -M_PI_F) { bearing += M_TWOPI_F; if (c++ > 3) { return NAN; } } return bearing; } float _wrap_2pi(float bearing) { /* value is inf or NaN */ if (!math::isfinite(bearing)) { return bearing; } int c = 0; while (bearing >= M_TWOPI_F) { bearing -= M_TWOPI_F; if (c++ > 3) { return NAN; } } c = 0; while (bearing < 0.0f) { bearing += M_TWOPI_F; if (c++ > 3) { return NAN; } } return bearing; } float _wrap_180(float bearing) { /* value is inf or NaN */ if (!math::isfinite(bearing)) { return bearing; } int c = 0; while (bearing >= 180.0f) { bearing -= 360.0f; if (c++ > 3) { return NAN; } } c = 0; while (bearing < -180.0f) { bearing += 360.0f; if (c++ > 3) { return NAN; } } return bearing; } float _wrap_360(float bearing) { /* value is inf or NaN */ if (!math::isfinite(bearing)) { return bearing; } int c = 0; while (bearing >= 360.0f) { bearing -= 360.0f; if (c++ > 3) { return NAN; } } c = 0; while (bearing < 0.0f) { bearing += 360.0f; if (c++ > 3) { return NAN; } } return bearing; } #endif //POSIX_SHARED