/**************************************************************************** * * Copyright (c) 2015 PX4 Development Team. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name PX4 nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /** * @file data_validator.c * * A data validation class to identify anomalies in data streams * * @author Lorenz Meier */ #include "data_validator.h" #include DataValidator::DataValidator(DataValidator *prev_sibling) : _error_mask(ERROR_FLAG_NO_ERROR), _time_last(0), _timeout_interval(20000), _event_count(0), _error_count(0), _error_density(0), _priority(0), _mean{0.0f}, _lp{0.0f}, _M2{0.0f}, _rms{0.0f}, _value{0.0f}, _value_equal_count(0), _sibling(prev_sibling) { } DataValidator::~DataValidator() { } void DataValidator::put(uint64_t timestamp, float val, uint64_t error_count_in, int priority_in) { float data[3]; data[0] = val; data[1] = 0.0f; data[2] = 0.0f; put(timestamp, data, error_count_in, priority_in); } void DataValidator::put(uint64_t timestamp, float val[3], uint64_t error_count_in, int priority_in) { _event_count++; if (error_count_in > _error_count) { _error_density += (error_count_in - _error_count); } else if (_error_density > 0) { _error_density--; } _error_count = error_count_in; _priority = priority_in; for (unsigned i = 0; i < _dimensions; i++) { if (_time_last == 0) { _mean[i] = 0; _lp[i] = val[i]; _M2[i] = 0; } else { float lp_val = val[i] - _lp[i]; float delta_val = lp_val - _mean[i]; _mean[i] += delta_val / _event_count; _M2[i] += delta_val * (lp_val - _mean[i]); _rms[i] = sqrtf(_M2[i] / (_event_count - 1)); if (fabsf(_value[i] - val[i]) < 0.000001f) { _value_equal_count++; } else { _value_equal_count = 0; } } // XXX replace with better filter, make it auto-tune to update rate _lp[i] = _lp[i] * 0.5f + val[i] * 0.5f; _value[i] = val[i]; } _time_last = timestamp; } float DataValidator::confidence(uint64_t timestamp) { float ret = 1.0f; /* check if we have any data */ if (_time_last == 0) { _error_mask |= ERROR_FLAG_NO_DATA; ret = 0.0f; /* timed out - that's it */ } else if (timestamp - _time_last > _timeout_interval) { _error_mask |= ERROR_FLAG_TIMEOUT; ret = 0.0f; /* we got the exact same sensor value N times in a row */ } else if (_value_equal_count > VALUE_EQUAL_COUNT_MAX) { _error_mask |= ERROR_FLAG_STALE_DATA; ret = 0.0f; /* check error count limit */ } else if (_error_count > NORETURN_ERRCOUNT) { _error_mask |= ERROR_FLAG_HIGH_ERRCOUNT; ret = 0.0f; /* cap error density counter at window size */ } else if (_error_density > ERROR_DENSITY_WINDOW) { _error_mask |= ERROR_FLAG_HIGH_ERRDENSITY; _error_density = ERROR_DENSITY_WINDOW; /* no error */ } else { _error_mask = ERROR_FLAG_NO_ERROR; } /* no critical errors */ if (ret > 0.0f) { /* return local error density for last N measurements */ ret = 1.0f - (_error_density / ERROR_DENSITY_WINDOW); } return ret; } void DataValidator::print() { if (_time_last == 0) { ECL_INFO("\tno data"); return; } for (unsigned i = 0; i < _dimensions; i++) { ECL_INFO("\tval: %8.4f, lp: %8.4f mean dev: %8.4f RMS: %8.4f conf: %8.4f", (double) _value[i], (double)_lp[i], (double)_mean[i], (double)_rms[i], (double)confidence(hrt_absolute_time())); } }