/**************************************************************************** * * Copyright (c) 2021 PX4 Development Team. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name PX4 nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ #include #include #include #include "autopilot_tester_failure.h" TEST_CASE("Control Allocation - Remove one motor", "[controlallocation]") { const float flight_altitude = 10.0f; const float altitude_tolerance = 4.0f; const float hover_speed_tolerance = 1.0f; AutopilotTester::MissionOptions mission_options; mission_options.rtl_at_end = false; mission_options.relative_altitude_m = flight_altitude; AutopilotTesterFailure tester; tester.connect(connection_url); tester.wait_until_ready(); // Configuration tester.set_param_sys_failure_en(true); // Enable failure injection tester.set_param_fd_act_en(true); // Enable motor failure detection tester.set_param_mc_airmode(1); // Enable airmode for control allocation with motor failure tester.set_param_ca_failure_mode(1); // Enable control allocation handling of failed motor tester.prepare_square_mission(mission_options); tester.set_takeoff_altitude(flight_altitude); tester.set_rtl_altitude(flight_altitude); tester.check_tracks_mission(5.f); tester.store_home(); tester.enable_actuator_output_status(); std::this_thread::sleep_for(std::chrono::seconds( 1)); // This is necessary for the takeoff altitude to be applied properly // Takeoff tester.arm(); tester.takeoff(); tester.wait_until_hovering(); tester.wait_until_altitude(flight_altitude, std::chrono::seconds(30)); tester.wait_until_speed_lower_than(hover_speed_tolerance, std::chrono::seconds(30)); // Motor failure mid-air tester.start_checking_altitude(altitude_tolerance); const int motor_instance = 1; const unsigned num_motors = 6; // TODO: get from model tester.inject_failure(mavsdk::Failure::FailureUnit::SystemMotor, mavsdk::Failure::FailureType::Off, motor_instance, mavsdk::Failure::Result::Success); std::this_thread::sleep_for(std::chrono::seconds(1)); tester.ensure_motor_stopped(motor_instance - 1, num_motors); tester.execute_mission(); tester.stop_checking_altitude(); tester.ensure_motor_stopped(motor_instance - 1, num_motors); // just to be sure // RTL tester.execute_rtl(); std::chrono::seconds until_disarmed_timeout = std::chrono::seconds(180); tester.wait_until_disarmed(until_disarmed_timeout); tester.check_home_within(5.f); } TEST_CASE("Control Allocation - Remove two motors", "[controlallocation]") { const float flight_altitude = 10.0f; const float altitude_tolerance = 4.0f; const float hover_speed_tolerance = 1.0f; AutopilotTesterFailure tester; tester.connect(connection_url); tester.wait_until_ready(); tester.set_param_sys_failure_en(true); // Enable failure injection tester.set_param_fd_act_en(true); // Enable motor failure detection tester.set_param_mc_airmode(1); // Enable airmode for control allocation with motor failure tester.set_param_ca_failure_mode(1); // Enable control allocation handling of failed motor AutopilotTester::MissionOptions mission_options; mission_options.rtl_at_end = false; mission_options.relative_altitude_m = flight_altitude; tester.prepare_square_mission(mission_options); tester.set_takeoff_altitude(flight_altitude); tester.set_rtl_altitude(flight_altitude); tester.check_tracks_mission(5.f); tester.store_home(); std::this_thread::sleep_for(std::chrono::seconds( 1)); // This is necessary for the takeoff altitude to be applied properly tester.arm(); tester.takeoff(); tester.wait_until_hovering(); tester.wait_until_altitude(flight_altitude, std::chrono::seconds(30)); tester.wait_until_speed_lower_than(hover_speed_tolerance, std::chrono::seconds(30)); // Remove two motors opposite of one another on the hexa airframe const int first_motor_instance = 1; const int second_motor_instance = 2; tester.start_checking_altitude(altitude_tolerance); tester.inject_failure(mavsdk::Failure::FailureUnit::SystemMotor, mavsdk::Failure::FailureType::Off, first_motor_instance, mavsdk::Failure::Result::Success); std::this_thread::sleep_for(std::chrono::seconds(1)); tester.inject_failure(mavsdk::Failure::FailureUnit::SystemMotor, mavsdk::Failure::FailureType::Off, second_motor_instance, mavsdk::Failure::Result::Success); std::this_thread::sleep_for(std::chrono::seconds(1)); tester.execute_mission(); tester.stop_checking_altitude(); // RTL with two motors out won't work because navigator will wait forever until // the yaw setpoint is reached during RTL, and it won't land. tester.land(); std::chrono::seconds until_disarmed_timeout = std::chrono::seconds(180); tester.wait_until_disarmed(until_disarmed_timeout); } TEST_CASE("Control Allocation - Remove and restore every motor once", "[controlallocation]") { const float flight_altitude = 10.0f; const float altitude_tolerance = 4.0f; const float hover_speed_tolerance = 1.0f; AutopilotTesterFailure tester; tester.connect(connection_url); tester.wait_until_ready(); tester.set_param_sys_failure_en(true); // Enable failure injection tester.set_param_fd_act_en(true); // Enable motor failure detection tester.set_param_mc_airmode(1); // Enable airmode for control allocation with motor failure tester.set_param_ca_failure_mode(1); // Enable control allocation handling of failed motor AutopilotTester::MissionOptions mission_options; mission_options.rtl_at_end = false; mission_options.relative_altitude_m = flight_altitude; tester.prepare_square_mission(mission_options); tester.set_takeoff_altitude(flight_altitude); tester.set_rtl_altitude(flight_altitude); tester.check_tracks_mission(5.f); tester.store_home(); std::this_thread::sleep_for(std::chrono::seconds( 1)); // This is necessary for the takeoff altitude to be applied properly tester.arm(); tester.takeoff(); tester.wait_until_hovering(); tester.wait_until_altitude(flight_altitude, std::chrono::seconds(30)); tester.wait_until_speed_lower_than(hover_speed_tolerance, std::chrono::seconds(30)); tester.start_checking_altitude(altitude_tolerance); for (int m = 1; m <= 6; m++) { tester.inject_failure(mavsdk::Failure::FailureUnit::SystemMotor, mavsdk::Failure::FailureType::Off, m, mavsdk::Failure::Result::Success); std::this_thread::sleep_for(std::chrono::seconds(1)); tester.inject_failure(mavsdk::Failure::FailureUnit::SystemMotor, mavsdk::Failure::FailureType::Ok, m, mavsdk::Failure::Result::Success); std::this_thread::sleep_for(std::chrono::seconds(1)); } tester.execute_mission(); tester.stop_checking_altitude(); tester.execute_rtl(); std::chrono::seconds until_disarmed_timeout = std::chrono::seconds(180); tester.wait_until_disarmed(until_disarmed_timeout); tester.check_home_within(5.f); } TEST_CASE("Control Allocation - Return home on motor failure", "[controlallocation]") { const float flight_altitude = 10.0f; const float hover_speed_tolerance = 1.0f; AutopilotTesterFailure tester; tester.connect(connection_url); tester.wait_until_ready(); // Configuration tester.set_param_sys_failure_en(true); // Enable failure injection tester.set_param_fd_act_en(true); // Enable motor failure detection tester.set_param_mc_airmode(1); // Enable airmode for control allocation with motor failure tester.set_param_ca_failure_mode(1); // Enable control allocation handling of failed motor tester.set_param_com_act_fail_act(3); // RTL on motor failure tester.set_takeoff_altitude(flight_altitude); tester.store_home(); std::this_thread::sleep_for(std::chrono::seconds( 1)); // This is necessary for the takeoff altitude to be applied properly // Takeoff tester.arm(); tester.takeoff(); tester.wait_until_hovering(); tester.wait_until_altitude(flight_altitude, std::chrono::seconds(30)); tester.wait_until_speed_lower_than(hover_speed_tolerance, std::chrono::seconds(30)); // TODO: Minor improvement, fly forward for a little bit before triggering motor failure to distinguish "RTL" and "Land only" // Motor failure mid-air const int motor_instance = 1; tester.inject_failure(mavsdk::Failure::FailureUnit::SystemMotor, mavsdk::Failure::FailureType::Off, motor_instance, mavsdk::Failure::Result::Success); std::this_thread::sleep_for(std::chrono::seconds(1)); // Wait for RTL to trigger automatically std::chrono::seconds until_disarmed_timeout = std::chrono::seconds(180); tester.wait_until_disarmed(until_disarmed_timeout); tester.check_home_within(5.f); } TEST_CASE("Control Allocation - Terminate on motor failure", "[controlallocation]") { const float flight_altitude = 100.0f; const float hover_speed_tolerance = 1.0f; AutopilotTesterFailure tester; tester.connect(connection_url); tester.wait_until_ready(); // Configuration tester.set_param_sys_failure_en(true); // Enable failure injection tester.set_param_fd_act_en(true); // Enable motor failure detection tester.set_param_mc_airmode(1); // Enable airmode for control allocation with motor failure tester.set_param_ca_failure_mode(1); // Enable control allocation handling of failed motor tester.set_param_com_act_fail_act(4); // Terminate on motor failure tester.set_takeoff_altitude(flight_altitude); std::this_thread::sleep_for(std::chrono::seconds( 1)); // This is necessary for the takeoff altitude to be applied properly // Takeoff tester.arm(); tester.takeoff(); tester.wait_until_altitude(flight_altitude, std::chrono::seconds(60)); tester.wait_until_speed_lower_than(hover_speed_tolerance, std::chrono::seconds(60)); // Motor failure mid-air const int motor_instance = 1; tester.inject_failure(mavsdk::Failure::FailureUnit::SystemMotor, mavsdk::Failure::FailureType::Off, motor_instance, mavsdk::Failure::Result::Success); std::this_thread::sleep_for(std::chrono::seconds(1)); // Wait for disarm with a low enough timeout such that it's necessary for the // drone to freefall (terminate) in order to disarm quickly enough: // h = g/2 * t^2 -> solve for t const int seconds_to_touchdown = 2 + sqrt(flight_altitude * 2 / 10.0); std::cout << "seconds_to_touchdown: " << seconds_to_touchdown << std::endl; std::chrono::seconds until_disarmed_timeout = std::chrono::seconds(seconds_to_touchdown); tester.wait_until_disarmed(until_disarmed_timeout); } #if 0 // This is for checking that the SITL test is actually capable of detecting the drone crash // when not reallocating the control allocation on a motor failure TEST_CASE("Control Allocation - Remove two motors and expect crash", "[controlallocation]") { // TODO } #endif #if 0 TEST_CASE("Control Allocation with multiple sequential motor failures", "[controlallocation]") { // TODO } #endif #if 0 TEST_CASE("Control Allocation with multiple simultaneous motor failures", "[controlallocation]") { // TODO } #endif