/**************************************************************************** * * Copyright (C) 2012 PX4 Development Team. All rights reserved. * Author: @author Lorenz Meier * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name PX4 nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /** * @file mavlink.c * MAVLink 1.0 protocol implementation. */ #include #include #include #include #include #include #include #include #include #include "mavlink_bridge_header.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "waypoints.h" #include "mavlink_log.h" /* define MAVLink specific parameters */ PARAM_DEFINE_INT32(MAV_SYS_ID, 1); PARAM_DEFINE_INT32(MAV_COMP_ID, 50); PARAM_DEFINE_INT32(MAV_TYPE, MAV_TYPE_GENERIC); __EXPORT int mavlink_main(int argc, char *argv[]); int mavlink_thread_main(int argc, char *argv[]); static bool thread_should_exit = false; static bool thread_running = false; static int mavlink_task; /* terminate MAVLink on user request - disabled by default */ static bool mavlink_link_termination_allowed = false; mavlink_system_t mavlink_system = {100, 50, MAV_TYPE_FIXED_WING, 0, 0, 0}; // System ID, 1-255, Component/Subsystem ID, 1-255 static uint8_t chan = MAVLINK_COMM_0; static mavlink_status_t status; /* pthreads */ static pthread_t receive_thread; static pthread_t uorb_receive_thread; /* Allocate storage space for waypoints */ mavlink_wpm_storage wpm_s; /** Global position */ static struct vehicle_global_position_s global_pos; /** Local position */ static struct vehicle_local_position_s local_pos; /** Vehicle status */ static struct vehicle_status_s v_status; /** RC channels */ static struct rc_channels_s rc; /* HIL publishers */ static orb_advert_t pub_hil_attitude = -1; /** HIL attitude */ static struct vehicle_attitude_s hil_attitude; static struct vehicle_global_position_s hil_global_pos; static struct ardrone_motors_setpoint_s ardrone_motors; static struct vehicle_command_s vcmd; static struct actuator_armed_s armed; static orb_advert_t pub_hil_global_pos = -1; static orb_advert_t ardrone_motors_pub = -1; static orb_advert_t cmd_pub = -1; static orb_advert_t flow_pub = -1; static orb_advert_t global_position_setpoint_pub = -1; static orb_advert_t local_position_setpoint_pub = -1; static bool mavlink_hil_enabled = false; static char mavlink_message_string[51] = {0}; static int baudrate = 57600; /* interface mode */ static enum { MAVLINK_INTERFACE_MODE_OFFBOARD, MAVLINK_INTERFACE_MODE_ONBOARD } mavlink_link_mode = MAVLINK_INTERFACE_MODE_OFFBOARD; static struct mavlink_subscriptions { int sensor_sub; int att_sub; int global_pos_sub; int act_0_sub; int act_1_sub; int act_2_sub; int act_3_sub; int gps_sub; int man_control_sp_sub; int armed_sub; int actuators_sub; int local_pos_sub; int spa_sub; int spl_sub; int spg_sub; int debug_key_value; bool initialized; } mavlink_subs = { .sensor_sub = 0, .att_sub = 0, .global_pos_sub = 0, .act_0_sub = 0, .act_1_sub = 0, .act_2_sub = 0, .act_3_sub = 0, .gps_sub = 0, .man_control_sp_sub = 0, .armed_sub = 0, .actuators_sub = 0, .local_pos_sub = 0, .spa_sub = 0, .spl_sub = 0, .spg_sub = 0, .debug_key_value = 0, .initialized = false }; /* 3: Define waypoint helper functions */ void mavlink_wpm_send_message(mavlink_message_t *msg); void mavlink_wpm_send_gcs_string(const char *string); uint64_t mavlink_wpm_get_system_timestamp(void); int mavlink_missionlib_send_message(mavlink_message_t *msg); int mavlink_missionlib_send_gcs_string(const char *string); uint64_t mavlink_missionlib_get_system_timestamp(void); void handleMessage(mavlink_message_t *msg); /** * Enable / disable Hardware in the Loop simulation mode. */ int set_hil_on_off(bool hil_enabled); /** * Translate the custom state into standard mavlink modes and state. */ void get_mavlink_mode_and_state(const struct vehicle_status_s *c_status, const struct actuator_armed_s *actuator, uint8_t *mavlink_state, uint8_t *mavlink_mode); int mavlink_open_uart(int baudrate, const char *uart_name, struct termios *uart_config_original, bool *is_usb); /* 4: Include waypoint protocol */ #include "waypoints.h" mavlink_wpm_storage *wpm; #include "mavlink_parameters.h" /** * Print the usage */ static void usage(const char *reason); static uint8_t missionlib_msg_buf[MAVLINK_MAX_PACKET_LEN]; int mavlink_missionlib_send_message(mavlink_message_t *msg) { uint16_t len = mavlink_msg_to_send_buffer(missionlib_msg_buf, msg); int writelen = write(uart, missionlib_msg_buf, len); if (writelen != len) { return 1; } else { return 0; } } int mavlink_missionlib_send_gcs_string(const char *string) { const int len = MAVLINK_MSG_STATUSTEXT_FIELD_TEXT_LEN; mavlink_statustext_t statustext; int i = 0; while (i < len - 1) { statustext.text[i] = string[i]; if (string[i] == '\0') break; i++; } if (i > 1) { /* Enforce null termination */ statustext.text[i] = '\0'; mavlink_message_t msg; mavlink_msg_statustext_encode(mavlink_system.sysid, mavlink_system.compid, &msg, &statustext); return mavlink_missionlib_send_message(&msg); } else { return 1; } } /** * Get system time since boot in microseconds * * @return the system time since boot in microseconds */ uint64_t mavlink_missionlib_get_system_timestamp() { return hrt_absolute_time(); } /** * This callback is executed each time a waypoint changes. * * It publishes the vehicle_global_position_setpoint_s or the * vehicle_local_position_setpoint_s topic, depending on the type of waypoint */ extern void mavlink_missionlib_current_waypoint_changed(uint16_t index, float param1, float param2, float param3, float param4, float param5_lat_x, float param6_lon_y, float param7_alt_z, uint8_t frame, uint16_t command) { char buf[50] = {0}; /* Update controller setpoints */ if (frame == (int)MAV_FRAME_GLOBAL) { /* global, absolute waypoint */ struct vehicle_global_position_setpoint_s sp; sp.lat = param5_lat_x * 1e7f; sp.lon = param6_lon_y * 1e7f; sp.altitude = param7_alt_z; sp.altitude_is_relative = false; sp.yaw = (param4 / 180.0f) * M_PI_F - M_PI_F; /* Initialize publication if necessary */ if (global_position_setpoint_pub < 0) { global_position_setpoint_pub = orb_advertise(ORB_ID(vehicle_global_position_setpoint), &sp); } else { orb_publish(ORB_ID(vehicle_global_position_setpoint), global_position_setpoint_pub, &sp); } sprintf(buf, "[mp] WP#%i lat: % 3.6f/lon % 3.6f/alt % 4.6f/hdg %3.4f\n", (int)index, (double)param5_lat_x, (double)param6_lon_y, (double)param7_alt_z, (double)param4); } else if (frame == (int)MAV_FRAME_GLOBAL_RELATIVE_ALT) { /* global, relative alt (in relation to HOME) waypoint */ struct vehicle_global_position_setpoint_s sp; sp.lat = param5_lat_x * 1e7f; sp.lon = param6_lon_y * 1e7f; sp.altitude = param7_alt_z; sp.altitude_is_relative = true; sp.yaw = (param4 / 180.0f) * M_PI_F - M_PI_F; /* Initialize publication if necessary */ if (global_position_setpoint_pub < 0) { global_position_setpoint_pub = orb_advertise(ORB_ID(vehicle_global_position_setpoint), &sp); } else { orb_publish(ORB_ID(vehicle_global_position_setpoint), global_position_setpoint_pub, &sp); } sprintf(buf, "[mp] WP#%i (lat: %f/lon %f/rel alt %f/hdg %f\n", (int)index, (double)param5_lat_x, (double)param6_lon_y, (double)param7_alt_z, (double)param4); } else if (frame == (int)MAV_FRAME_LOCAL_ENU || frame == (int)MAV_FRAME_LOCAL_NED) { /* local, absolute waypoint */ struct vehicle_local_position_setpoint_s sp; sp.x = param5_lat_x; sp.y = param6_lon_y; sp.z = param7_alt_z; sp.yaw = (param4 / 180.0f) * M_PI_F - M_PI_F; /* Initialize publication if necessary */ if (local_position_setpoint_pub < 0) { local_position_setpoint_pub = orb_advertise(ORB_ID(vehicle_local_position_setpoint), &sp); } else { orb_publish(ORB_ID(vehicle_local_position_setpoint), local_position_setpoint_pub, &sp); } sprintf(buf, "[mp] WP#%i (x: %f/y %f/z %f/hdg %f\n", (int)index, (double)param5_lat_x, (double)param6_lon_y, (double)param7_alt_z, (double)param4); } mavlink_missionlib_send_gcs_string(buf); printf("%s\n", buf); //printf("[mavlink mp] new setpoint\n");//: frame: %d, lat: %d, lon: %d, alt: %d, yaw: %d\n", frame, param5_lat_x*1000, param6_lon_y*1000, param7_alt_z*1000, param4*1000); } int set_hil_on_off(bool hil_enabled) { int ret = OK; /* Enable HIL */ if (hil_enabled && !mavlink_hil_enabled) { //printf("\n HIL ON \n"); (void)close(pub_hil_attitude); (void)close(pub_hil_global_pos); /* Advertise topics */ pub_hil_attitude = orb_advertise(ORB_ID(vehicle_attitude), &hil_attitude); pub_hil_global_pos = orb_advertise(ORB_ID(vehicle_global_position), &hil_global_pos); printf("\n pub_hil_attitude :%i\n", pub_hil_attitude); printf("\n pub_hil_global_pos :%i\n", pub_hil_global_pos); mavlink_hil_enabled = true; /* ramp up some HIL-related subscriptions */ unsigned hil_rate_interval; if (baudrate < 19200) { /* 10 Hz */ hil_rate_interval = 100; } else if (baudrate < 38400) { /* 10 Hz */ hil_rate_interval = 100; } else if (baudrate < 115200) { /* 20 Hz */ hil_rate_interval = 50; } else if (baudrate < 460800) { /* 50 Hz */ hil_rate_interval = 20; } else { /* 100 Hz */ hil_rate_interval = 10; } orb_set_interval(mavlink_subs.spa_sub, hil_rate_interval); } if (!hil_enabled && mavlink_hil_enabled) { mavlink_hil_enabled = false; orb_set_interval(mavlink_subs.spa_sub, 200); (void)close(pub_hil_attitude); (void)close(pub_hil_global_pos); } else { ret = ERROR; } return ret; } void get_mavlink_mode_and_state(const struct vehicle_status_s *c_status, const struct actuator_armed_s *actuator, uint8_t *mavlink_state, uint8_t *mavlink_mode) { /* reset MAVLink mode bitfield */ *mavlink_mode = 0; /* set mode flags independent of system state */ if (c_status->flag_control_manual_enabled) { *mavlink_mode |= MAV_MODE_FLAG_MANUAL_INPUT_ENABLED; } if (c_status->flag_hil_enabled) { *mavlink_mode |= MAV_MODE_FLAG_HIL_ENABLED; } /* set arming state */ if (actuator->armed) { *mavlink_mode |= MAV_MODE_FLAG_SAFETY_ARMED; } else { *mavlink_mode &= ~MAV_MODE_FLAG_SAFETY_ARMED; } switch (c_status->state_machine) { case SYSTEM_STATE_PREFLIGHT: if (c_status->flag_preflight_gyro_calibration || c_status->flag_preflight_mag_calibration || c_status->flag_preflight_accel_calibration) { *mavlink_state = MAV_STATE_CALIBRATING; } else { *mavlink_state = MAV_STATE_UNINIT; } break; case SYSTEM_STATE_STANDBY: *mavlink_state = MAV_STATE_STANDBY; break; case SYSTEM_STATE_GROUND_READY: *mavlink_state = MAV_STATE_ACTIVE; break; case SYSTEM_STATE_MANUAL: *mavlink_state = MAV_STATE_ACTIVE; *mavlink_mode |= MAV_MODE_FLAG_MANUAL_INPUT_ENABLED; break; case SYSTEM_STATE_STABILIZED: *mavlink_state = MAV_STATE_ACTIVE; *mavlink_mode |= MAV_MODE_FLAG_STABILIZE_ENABLED; break; case SYSTEM_STATE_AUTO: *mavlink_state = MAV_STATE_ACTIVE; *mavlink_mode |= MAV_MODE_FLAG_GUIDED_ENABLED; break; case SYSTEM_STATE_MISSION_ABORT: *mavlink_state = MAV_STATE_EMERGENCY; break; case SYSTEM_STATE_EMCY_LANDING: *mavlink_state = MAV_STATE_EMERGENCY; break; case SYSTEM_STATE_EMCY_CUTOFF: *mavlink_state = MAV_STATE_EMERGENCY; break; case SYSTEM_STATE_GROUND_ERROR: *mavlink_state = MAV_STATE_EMERGENCY; break; case SYSTEM_STATE_REBOOT: *mavlink_state = MAV_STATE_POWEROFF; break; } } /** * Receive data from UART. */ static void *receiveloop(void *arg) { int uart_fd = *((int*)arg); const int timeout = 1000; uint8_t ch; mavlink_message_t msg; prctl(PR_SET_NAME, "mavlink uart rcv", getpid()); while (!thread_should_exit) { struct pollfd fds[] = { { .fd = uart_fd, .events = POLLIN } }; if (poll(fds, 1, timeout) > 0) { /* non-blocking read until buffer is empty */ int nread = 0; do { nread = read(uart_fd, &ch, 1); if (mavlink_parse_char(chan, ch, &msg, &status)) { //parse the char /* handle generic messages and commands */ handleMessage(&msg); /* Handle packet with waypoint component */ mavlink_wpm_message_handler(&msg, &global_pos, &local_pos); /* Handle packet with parameter component */ mavlink_pm_message_handler(MAVLINK_COMM_0, &msg); } } while (nread > 0); } } return NULL; } static int set_mavlink_interval_limit(struct mavlink_subscriptions *subs, int mavlink_msg_id, int min_interval) { int ret = OK; switch (mavlink_msg_id) { case MAVLINK_MSG_ID_SCALED_IMU: /* senser sub triggers scaled IMU */ if (subs->sensor_sub) orb_set_interval(subs->sensor_sub, min_interval); break; case MAVLINK_MSG_ID_HIGHRES_IMU: /* senser sub triggers highres IMU */ if (subs->sensor_sub) orb_set_interval(subs->sensor_sub, min_interval); break; case MAVLINK_MSG_ID_RAW_IMU: /* senser sub triggers RAW IMU */ if (subs->sensor_sub) orb_set_interval(subs->sensor_sub, min_interval); break; case MAVLINK_MSG_ID_ATTITUDE: /* attitude sub triggers attitude */ if (subs->att_sub) orb_set_interval(subs->att_sub, min_interval); break; case MAVLINK_MSG_ID_SERVO_OUTPUT_RAW: /* actuator_outputs triggers this message */ if (subs->act_0_sub) orb_set_interval(subs->act_0_sub, min_interval); if (subs->act_1_sub) orb_set_interval(subs->act_1_sub, min_interval); if (subs->act_2_sub) orb_set_interval(subs->act_2_sub, min_interval); if (subs->act_3_sub) orb_set_interval(subs->act_3_sub, min_interval); if (subs->actuators_sub) orb_set_interval(subs->actuators_sub, min_interval); break; case MAVLINK_MSG_ID_MANUAL_CONTROL: /* manual_control_setpoint triggers this message */ if (subs->man_control_sp_sub) orb_set_interval(subs->man_control_sp_sub, min_interval); break; case MAVLINK_MSG_ID_NAMED_VALUE_FLOAT: if (subs->debug_key_value) orb_set_interval(subs->debug_key_value, min_interval); break; default: /* not found */ ret = ERROR; break; } return ret; } /** * Listen for uORB topics and send via MAVLink. * * This pthread performs a blocking wait on selected * uORB topics and sends them via MAVLink to other * vehicles or a ground control station. */ static void *uorb_receiveloop(void *arg) { /* obtain reference to task's subscriptions */ struct mavlink_subscriptions *subs = (struct mavlink_subscriptions *)arg; /* Set thread name */ prctl(PR_SET_NAME, "mavlink orb rcv", getpid()); /* --- IMPORTANT: DEFINE NUMBER OF ORB STRUCTS TO WAIT FOR HERE --- */ /* number of messages */ const ssize_t fdsc = 25; /* Sanity check variable and index */ ssize_t fdsc_count = 0; /* file descriptors to wait for */ struct pollfd fds[fdsc]; union { struct sensor_combined_s raw; struct vehicle_attitude_s att; struct vehicle_gps_position_s gps; struct vehicle_local_position_setpoint_s local_sp; struct vehicle_global_position_setpoint_s global_sp; struct vehicle_attitude_setpoint_s att_sp; struct actuator_outputs_s act_outputs; struct manual_control_setpoint_s man_control; struct actuator_controls_s actuators; struct debug_key_value_s debug; } buf; /* --- SENSORS RAW VALUE --- */ /* subscribe to ORB for sensors raw */ subs->sensor_sub = orb_subscribe(ORB_ID(sensor_combined)); fds[fdsc_count].fd = subs->sensor_sub; fds[fdsc_count].events = POLLIN; fdsc_count++; /* --- ATTITUDE VALUE --- */ /* subscribe to ORB for attitude */ subs->att_sub = orb_subscribe(ORB_ID(vehicle_attitude)); orb_set_interval(subs->att_sub, 100); fds[fdsc_count].fd = subs->att_sub; fds[fdsc_count].events = POLLIN; fdsc_count++; /* --- GPS VALUE --- */ /* subscribe to ORB for attitude */ subs->gps_sub = orb_subscribe(ORB_ID(vehicle_gps_position)); orb_set_interval(subs->gps_sub, 1000); /* 1Hz updates */ fds[fdsc_count].fd = subs->gps_sub; fds[fdsc_count].events = POLLIN; fdsc_count++; /* --- SYSTEM STATE --- */ /* struct already globally allocated */ /* subscribe to topic */ int status_sub = orb_subscribe(ORB_ID(vehicle_status)); orb_set_interval(status_sub, 300); /* max 3.33 Hz updates */ fds[fdsc_count].fd = status_sub; fds[fdsc_count].events = POLLIN; fdsc_count++; /* --- RC CHANNELS VALUE --- */ /* struct already globally allocated */ /* subscribe to ORB for global position */ int rc_sub = orb_subscribe(ORB_ID(rc_channels)); orb_set_interval(rc_sub, 100); /* 10Hz updates */ fds[fdsc_count].fd = rc_sub; fds[fdsc_count].events = POLLIN; fdsc_count++; /* --- GLOBAL POS VALUE --- */ /* struct already globally allocated and topic already subscribed */ fds[fdsc_count].fd = subs->global_pos_sub; fds[fdsc_count].events = POLLIN; fdsc_count++; /* --- LOCAL POS VALUE --- */ /* struct and topic already globally subscribed */ fds[fdsc_count].fd = subs->local_pos_sub; fds[fdsc_count].events = POLLIN; fdsc_count++; /* --- GLOBAL SETPOINT VALUE --- */ /* subscribe to ORB for local setpoint */ /* struct already allocated */ subs->spg_sub = orb_subscribe(ORB_ID(vehicle_global_position_setpoint)); orb_set_interval(subs->spg_sub, 2000); /* 0.5 Hz updates */ fds[fdsc_count].fd = subs->spg_sub; fds[fdsc_count].events = POLLIN; fdsc_count++; /* --- LOCAL SETPOINT VALUE --- */ /* subscribe to ORB for local setpoint */ /* struct already allocated */ subs->spl_sub = orb_subscribe(ORB_ID(vehicle_local_position_setpoint)); orb_set_interval(subs->spl_sub, 2000); /* 0.5 Hz updates */ fds[fdsc_count].fd = subs->spl_sub; fds[fdsc_count].events = POLLIN; fdsc_count++; /* --- ATTITUDE SETPOINT VALUE --- */ /* subscribe to ORB for attitude setpoint */ /* struct already allocated */ subs->spa_sub = orb_subscribe(ORB_ID(vehicle_attitude_setpoint)); orb_set_interval(subs->spa_sub, 2000); /* 0.5 Hz updates */ fds[fdsc_count].fd = subs->spa_sub; fds[fdsc_count].events = POLLIN; fdsc_count++; /** --- ACTUATOR OUTPUTS --- */ subs->act_0_sub = orb_subscribe(ORB_ID(actuator_outputs_0)); fds[fdsc_count].fd = subs->act_0_sub; fds[fdsc_count].events = POLLIN; fdsc_count++; subs->act_1_sub = orb_subscribe(ORB_ID(actuator_outputs_1)); fds[fdsc_count].fd = subs->act_1_sub; fds[fdsc_count].events = POLLIN; fdsc_count++; subs->act_2_sub = orb_subscribe(ORB_ID(actuator_outputs_2)); fds[fdsc_count].fd = subs->act_2_sub; fds[fdsc_count].events = POLLIN; fdsc_count++; subs->act_3_sub = orb_subscribe(ORB_ID(actuator_outputs_3)); fds[fdsc_count].fd = subs->act_3_sub; fds[fdsc_count].events = POLLIN; fdsc_count++; /** --- MAPPED MANUAL CONTROL INPUTS --- */ subs->man_control_sp_sub = orb_subscribe(ORB_ID(manual_control_setpoint)); fds[fdsc_count].fd = subs->man_control_sp_sub; fds[fdsc_count].events = POLLIN; fdsc_count++; /* --- ACTUATOR ARMED VALUE --- */ /* subscribe to ORB for actuator armed */ subs->armed_sub = orb_subscribe(ORB_ID(actuator_armed)); fds[fdsc_count].fd = subs->armed_sub; fds[fdsc_count].events = POLLIN; fdsc_count++; /* --- ACTUATOR CONTROL VALUE --- */ /* subscribe to ORB for actuator control */ subs->actuators_sub = orb_subscribe(ORB_ID_VEHICLE_ATTITUDE_CONTROLS); fds[fdsc_count].fd = subs->actuators_sub; fds[fdsc_count].events = POLLIN; fdsc_count++; /* --- DEBUG VALUE OUTPUT --- */ /* subscribe to ORB for debug value outputs */ subs->debug_key_value = orb_subscribe(ORB_ID(debug_key_value)); fds[fdsc_count].fd = subs->debug_key_value; fds[fdsc_count].events = POLLIN; fdsc_count++; /* all subscriptions initialized, return success */ subs->initialized = true; unsigned int sensors_raw_counter = 0; unsigned int attitude_counter = 0; unsigned int gps_counter = 0; /* WARNING: If you get the error message below, * then the number of registered messages (fdsc) * differs from the number of messages in the above list. */ if (fdsc_count > fdsc) { fprintf(stderr, "[mavlink] WARNING: Not enough space for poll fds allocated. Check %s:%d.\n", __FILE__, __LINE__); fdsc_count = fdsc; } /* * set up poll to block for new data, * wait for a maximum of 1000 ms (1 second) */ const int timeout = 1000; while (!thread_should_exit) { int poll_ret = poll(fds, fdsc_count, timeout); /* handle the poll result */ if (poll_ret == 0) { mavlink_missionlib_send_gcs_string("[mavlink] No telemetry data for 1 s"); } else if (poll_ret < 0) { mavlink_missionlib_send_gcs_string("[mavlink] ERROR reading uORB data"); } else { int ifds = 0; /* --- SENSORS RAW VALUE --- */ if (fds[ifds++].revents & POLLIN) { /* copy sensors raw data into local buffer */ orb_copy(ORB_ID(sensor_combined), subs->sensor_sub, &buf.raw); /* send raw imu data */ mavlink_msg_raw_imu_send(MAVLINK_COMM_0, buf.raw.timestamp, buf.raw.accelerometer_raw[0], buf.raw.accelerometer_raw[1], buf.raw.accelerometer_raw[2], buf.raw.gyro_raw[0], buf.raw.gyro_raw[1], buf.raw.gyro_raw[2], buf.raw.magnetometer_raw[0], buf.raw.magnetometer_raw[1], buf.raw.magnetometer_raw[2]); /* mark individual fields as changed */ uint16_t fields_updated = 0; static unsigned accel_counter = 0; static unsigned gyro_counter = 0; static unsigned mag_counter = 0; static unsigned baro_counter = 0; if (accel_counter != buf.raw.accelerometer_counter) { /* mark first three dimensions as changed */ fields_updated |= (1 << 0) | (1 << 1) | (1 << 2); accel_counter = buf.raw.accelerometer_counter; } if (gyro_counter != buf.raw.gyro_counter) { /* mark first three dimensions as changed */ fields_updated |= (1 << 3) | (1 << 4) | (1 << 5); gyro_counter = buf.raw.gyro_counter; } if (mag_counter != buf.raw.magnetometer_counter) { /* mark first three dimensions as changed */ fields_updated |= (1 << 6) | (1 << 7) | (1 << 8); mag_counter = buf.raw.magnetometer_counter; } if (baro_counter != buf.raw.baro_counter) { /* mark first three dimensions as changed */ fields_updated |= (1 << 9) | (1 << 11) | (1 << 12); baro_counter = buf.raw.baro_counter; } mavlink_msg_highres_imu_send(MAVLINK_COMM_0, buf.raw.timestamp, buf.raw.accelerometer_m_s2[0], buf.raw.accelerometer_m_s2[1], buf.raw.accelerometer_m_s2[2], buf.raw.gyro_rad_s[0], buf.raw.gyro_rad_s[1], buf.raw.gyro_rad_s[2], buf.raw.magnetometer_ga[0], buf.raw.magnetometer_ga[1],buf.raw.magnetometer_ga[2], buf.raw.baro_pres_mbar, 0 /* no diff pressure yet */, buf.raw.baro_alt_meter, buf.raw.baro_temp_celcius, fields_updated); /* send pressure */ //mavlink_msg_scaled_pressure_send(MAVLINK_COMM_0, buf.raw.timestamp / 1000, buf.raw.baro_pres_mbar, buf.raw.baro_alt_meter, buf.raw.baro_temp_celcius * 100); sensors_raw_counter++; } /* --- ATTITUDE VALUE --- */ if (fds[ifds++].revents & POLLIN) { /* copy attitude data into local buffer */ orb_copy(ORB_ID(vehicle_attitude), subs->att_sub, &buf.att); /* send sensor values */ mavlink_msg_attitude_send(MAVLINK_COMM_0, buf.att.timestamp / 1000, buf.att.roll, buf.att.pitch, buf.att.yaw, buf.att.rollspeed, buf.att.pitchspeed, buf.att.yawspeed); attitude_counter++; } /* --- GPS VALUE --- */ if (fds[ifds++].revents & POLLIN) { /* copy gps data into local buffer */ orb_copy(ORB_ID(vehicle_gps_position), subs->gps_sub, &buf.gps); /* GPS position */ mavlink_msg_gps_raw_int_send(MAVLINK_COMM_0, buf.gps.timestamp, buf.gps.fix_type, buf.gps.lat, buf.gps.lon, buf.gps.alt, buf.gps.eph, buf.gps.epv, buf.gps.vel, buf.gps.cog, buf.gps.satellites_visible); if (buf.gps.satellite_info_available && (gps_counter % 4 == 0)) { mavlink_msg_gps_status_send(MAVLINK_COMM_0, buf.gps.satellites_visible, buf.gps.satellite_prn, buf.gps.satellite_used, buf.gps.satellite_elevation, buf.gps.satellite_azimuth, buf.gps.satellite_snr); } gps_counter++; } /* --- SYSTEM STATUS --- */ if (fds[ifds++].revents & POLLIN) { /* immediately communicate state changes back to user */ orb_copy(ORB_ID(vehicle_status), status_sub, &v_status); orb_copy(ORB_ID(actuator_armed), mavlink_subs.armed_sub, &armed); /* enable or disable HIL */ set_hil_on_off(v_status.flag_hil_enabled); /* translate the current syste state to mavlink state and mode */ uint8_t mavlink_state = 0; uint8_t mavlink_mode = 0; get_mavlink_mode_and_state(&v_status, &armed, &mavlink_state, &mavlink_mode); /* send heartbeat */ mavlink_msg_heartbeat_send(chan, mavlink_system.type, MAV_AUTOPILOT_PX4, mavlink_mode, v_status.state_machine, mavlink_state); } /* --- RC CHANNELS --- */ if (fds[ifds++].revents & POLLIN) { /* copy rc channels into local buffer */ orb_copy(ORB_ID(rc_channels), rc_sub, &rc); /* Channels are sent in MAVLink main loop at a fixed interval */ mavlink_msg_rc_channels_raw_send(chan, rc.timestamp / 1000, 0, rc.chan[0].raw, rc.chan[1].raw, rc.chan[2].raw, rc.chan[3].raw, rc.chan[4].raw, rc.chan[5].raw, rc.chan[6].raw, rc.chan[7].raw, rc.rssi); } /* --- VEHICLE GLOBAL POSITION --- */ if (fds[ifds++].revents & POLLIN) { /* copy global position data into local buffer */ orb_copy(ORB_ID(vehicle_global_position), subs->global_pos_sub, &global_pos); uint64_t timestamp = global_pos.timestamp; int32_t lat = global_pos.lat; int32_t lon = global_pos.lon; int32_t alt = (int32_t)(global_pos.alt*1000); int32_t relative_alt = (int32_t)(global_pos.relative_alt * 1000.0f); int16_t vx = (int16_t)(global_pos.vx * 100.0f); int16_t vy = (int16_t)(global_pos.vy * 100.0f); int16_t vz = (int16_t)(global_pos.vz * 100.0f); /* heading in degrees * 10, from 0 to 36.000) */ uint16_t hdg = (global_pos.hdg / M_PI_F) * (180.0f * 10.0f) + (180.0f * 10.0f); mavlink_msg_global_position_int_send(MAVLINK_COMM_0, timestamp / 1000, lat, lon, alt, relative_alt, vx, vy, vz, hdg); } /* --- VEHICLE LOCAL POSITION --- */ if (fds[ifds++].revents & POLLIN) { /* copy local position data into local buffer */ orb_copy(ORB_ID(vehicle_local_position), subs->local_pos_sub, &local_pos); mavlink_msg_local_position_ned_send(MAVLINK_COMM_0, local_pos.timestamp / 1000, local_pos.x, local_pos.y, local_pos.z, local_pos.vx, local_pos.vy, local_pos.vz); } /* --- VEHICLE GLOBAL SETPOINT --- */ if (fds[ifds++].revents & POLLIN) { /* copy local position data into local buffer */ orb_copy(ORB_ID(vehicle_global_position_setpoint), subs->spg_sub, &buf.global_sp); uint8_t coordinate_frame = MAV_FRAME_GLOBAL; if (buf.global_sp.altitude_is_relative) coordinate_frame = MAV_FRAME_GLOBAL_RELATIVE_ALT; mavlink_msg_global_position_setpoint_int_send(MAVLINK_COMM_0, coordinate_frame, buf.global_sp.lat, buf.global_sp.lon, buf.global_sp.altitude, buf.global_sp.yaw); } /* --- VEHICLE LOCAL SETPOINT --- */ if (fds[ifds++].revents & POLLIN) { /* copy local position data into local buffer */ orb_copy(ORB_ID(vehicle_local_position_setpoint), subs->spl_sub, &buf.local_sp); mavlink_msg_local_position_setpoint_send(MAVLINK_COMM_0, MAV_FRAME_LOCAL_NED, buf.local_sp.x, buf.local_sp.y, buf.local_sp.z, buf.local_sp.yaw); } /* --- VEHICLE ATTITUDE SETPOINT --- */ if (fds[ifds++].revents & POLLIN) { /* copy local position data into local buffer */ orb_copy(ORB_ID(vehicle_attitude_setpoint), subs->spa_sub, &buf.att_sp); mavlink_msg_roll_pitch_yaw_thrust_setpoint_send(MAVLINK_COMM_0, buf.att_sp.timestamp/1000, buf.att_sp.roll_body, buf.att_sp.pitch_body, buf.att_sp.yaw_body, buf.att_sp.thrust); /* Only send in HIL mode */ if (mavlink_hil_enabled) { /* translate the current syste state to mavlink state and mode */ uint8_t mavlink_state = 0; uint8_t mavlink_mode = 0; get_mavlink_mode_and_state(&v_status, &armed, &mavlink_state, &mavlink_mode); /* HIL message as per MAVLink spec */ mavlink_msg_hil_controls_send(chan, hrt_absolute_time(), buf.att_sp.roll_body, /* this may be replaced by ctrl0 later */ buf.att_sp.pitch_body, buf.att_sp.yaw_body, buf.att_sp.thrust, 0, 0, 0, 0, mavlink_mode, 0); } } /* --- ACTUATOR OUTPUTS 0 --- */ if (fds[ifds++].revents & POLLIN) { /* copy actuator data into local buffer */ orb_copy(ORB_ID(actuator_outputs_0), subs->act_0_sub, &buf.act_outputs); mavlink_msg_servo_output_raw_send(MAVLINK_COMM_0, hrt_absolute_time(), 0 /* port 0 */, buf.act_outputs.output[0], buf.act_outputs.output[1], buf.act_outputs.output[2], buf.act_outputs.output[3], buf.act_outputs.output[4], buf.act_outputs.output[5], buf.act_outputs.output[6], buf.act_outputs.output[7]); // if (NUM_ACTUATOR_OUTPUTS > 8 && NUM_ACTUATOR_OUTPUTS <= 16) { // mavlink_msg_servo_output_raw_send(MAVLINK_COMM_0, hrt_absolute_time(), // 1 /* port 1 */, // buf.act_outputs.output[ 8], // buf.act_outputs.output[ 9], // buf.act_outputs.output[10], // buf.act_outputs.output[11], // buf.act_outputs.output[12], // buf.act_outputs.output[13], // buf.act_outputs.output[14], // buf.act_outputs.output[15]); // } } /* --- ACTUATOR OUTPUTS 1 --- */ if (fds[ifds++].revents & POLLIN) { /* copy actuator data into local buffer */ orb_copy(ORB_ID(actuator_outputs_1), subs->act_1_sub, &buf.act_outputs); mavlink_msg_servo_output_raw_send(MAVLINK_COMM_0, hrt_absolute_time(), (NUM_ACTUATOR_OUTPUTS > 8 && NUM_ACTUATOR_OUTPUTS <= 16) ? 2 : 1 /* port 2 or 1*/, buf.act_outputs.output[0], buf.act_outputs.output[1], buf.act_outputs.output[2], buf.act_outputs.output[3], buf.act_outputs.output[4], buf.act_outputs.output[5], buf.act_outputs.output[6], buf.act_outputs.output[7]); if (NUM_ACTUATOR_OUTPUTS > 8 && NUM_ACTUATOR_OUTPUTS <= 16) { mavlink_msg_servo_output_raw_send(MAVLINK_COMM_0, hrt_absolute_time(), 3 /* port 3 */, buf.act_outputs.output[ 8], buf.act_outputs.output[ 9], buf.act_outputs.output[10], buf.act_outputs.output[11], buf.act_outputs.output[12], buf.act_outputs.output[13], buf.act_outputs.output[14], buf.act_outputs.output[15]); } } /* --- ACTUATOR OUTPUTS 2 --- */ if (fds[ifds++].revents & POLLIN) { /* copy actuator data into local buffer */ orb_copy(ORB_ID(actuator_outputs_2), subs->act_2_sub, &buf.act_outputs); mavlink_msg_servo_output_raw_send(MAVLINK_COMM_0, hrt_absolute_time(), (NUM_ACTUATOR_OUTPUTS > 8 && NUM_ACTUATOR_OUTPUTS <= 16) ? 4 : 2 /* port 4 or 2 */, buf.act_outputs.output[0], buf.act_outputs.output[1], buf.act_outputs.output[2], buf.act_outputs.output[3], buf.act_outputs.output[4], buf.act_outputs.output[5], buf.act_outputs.output[6], buf.act_outputs.output[7]); if (NUM_ACTUATOR_OUTPUTS > 8 && NUM_ACTUATOR_OUTPUTS <= 16) { mavlink_msg_servo_output_raw_send(MAVLINK_COMM_0, hrt_absolute_time(), 5 /* port 5 */, buf.act_outputs.output[ 8], buf.act_outputs.output[ 9], buf.act_outputs.output[10], buf.act_outputs.output[11], buf.act_outputs.output[12], buf.act_outputs.output[13], buf.act_outputs.output[14], buf.act_outputs.output[15]); } } /* --- ACTUATOR OUTPUTS 3 --- */ if (fds[ifds++].revents & POLLIN) { /* copy actuator data into local buffer */ orb_copy(ORB_ID(actuator_outputs_3), subs->act_3_sub, &buf.act_outputs); mavlink_msg_servo_output_raw_send(MAVLINK_COMM_0, hrt_absolute_time(), (NUM_ACTUATOR_OUTPUTS > 8 && NUM_ACTUATOR_OUTPUTS <= 16) ? 6 : 3 /* port 6 or 3 */, buf.act_outputs.output[0], buf.act_outputs.output[1], buf.act_outputs.output[2], buf.act_outputs.output[3], buf.act_outputs.output[4], buf.act_outputs.output[5], buf.act_outputs.output[6], buf.act_outputs.output[7]); if (NUM_ACTUATOR_OUTPUTS > 8 && NUM_ACTUATOR_OUTPUTS <= 16) { mavlink_msg_servo_output_raw_send(MAVLINK_COMM_0, hrt_absolute_time(), 7 /* port 7 */, buf.act_outputs.output[ 8], buf.act_outputs.output[ 9], buf.act_outputs.output[10], buf.act_outputs.output[11], buf.act_outputs.output[12], buf.act_outputs.output[13], buf.act_outputs.output[14], buf.act_outputs.output[15]); } } /* --- MAPPED MANUAL CONTROL INPUTS --- */ if (fds[ifds++].revents & POLLIN) { /* copy local position data into local buffer */ orb_copy(ORB_ID(manual_control_setpoint), subs->man_control_sp_sub, &buf.man_control); mavlink_msg_manual_control_send(MAVLINK_COMM_0, mavlink_system.sysid, buf.man_control.roll, buf.man_control.pitch, buf.man_control.yaw, buf.man_control.throttle, 1, 1, 1, 1); } /* --- ACTUATOR ARMED --- */ if (fds[ifds++].revents & POLLIN) { } /* --- ACTUATOR CONTROL --- */ if (fds[ifds++].revents & POLLIN) { orb_copy(ORB_ID_VEHICLE_ATTITUDE_CONTROLS, subs->actuators_sub, &buf.actuators); /* send, add spaces so that string buffer is at least 10 chars long */ mavlink_msg_named_value_float_send(MAVLINK_COMM_0, hrt_absolute_time() / 1000, "ctrl0 ", buf.actuators.control[0]); mavlink_msg_named_value_float_send(MAVLINK_COMM_0, hrt_absolute_time() / 1000, "ctrl1 ", buf.actuators.control[1]); mavlink_msg_named_value_float_send(MAVLINK_COMM_0, hrt_absolute_time() / 1000, "ctrl2 ", buf.actuators.control[2]); mavlink_msg_named_value_float_send(MAVLINK_COMM_0, hrt_absolute_time() / 1000, "ctrl3 ", buf.actuators.control[3]); } /* --- DEBUG KEY/VALUE --- */ if (fds[ifds++].revents & POLLIN) { orb_copy(ORB_ID(debug_key_value), subs->debug_key_value, &buf.debug); mavlink_msg_named_value_float_send(MAVLINK_COMM_0, hrt_absolute_time() / 1000, buf.debug.key, buf.debug.value); } } } return NULL; } /**************************************************************************** * MAVLink text message logger ****************************************************************************/ static int mavlink_dev_ioctl(struct file *filep, int cmd, unsigned long arg); static const struct file_operations mavlink_fops = { .ioctl = mavlink_dev_ioctl }; static int mavlink_dev_ioctl(struct file *filep, int cmd, unsigned long arg) { static unsigned int total_counter = 0; switch (cmd) { case (int)MAVLINK_IOC_SEND_TEXT_INFO: case (int)MAVLINK_IOC_SEND_TEXT_CRITICAL: case (int)MAVLINK_IOC_SEND_TEXT_EMERGENCY: { const char *txt = (const char *)arg; strncpy(mavlink_message_string, txt, 51); total_counter++; return OK; } default: return ENOTTY; } } /**************************************************************************** * Public Functions ****************************************************************************/ void handleMessage(mavlink_message_t *msg) { if (msg->msgid == MAVLINK_MSG_ID_COMMAND_LONG) { mavlink_command_long_t cmd_mavlink; mavlink_msg_command_long_decode(msg, &cmd_mavlink); if (cmd_mavlink.target_system == mavlink_system.sysid && ((cmd_mavlink.target_component == mavlink_system.compid) || (cmd_mavlink.target_component == MAV_COMP_ID_ALL))) { //check for MAVLINK terminate command if (cmd_mavlink.command == MAV_CMD_PREFLIGHT_REBOOT_SHUTDOWN && ((int)cmd_mavlink.param1) == 3) { /* This is the link shutdown command, terminate mavlink */ printf("[mavlink] Terminating .. \n"); fflush(stdout); usleep(50000); /* terminate other threads and this thread */ thread_should_exit = true; } else { /* Copy the content of mavlink_command_long_t cmd_mavlink into command_t cmd */ vcmd.param1 = cmd_mavlink.param1; vcmd.param2 = cmd_mavlink.param2; vcmd.param3 = cmd_mavlink.param3; vcmd.param4 = cmd_mavlink.param4; vcmd.param5 = cmd_mavlink.param5; vcmd.param6 = cmd_mavlink.param6; vcmd.param7 = cmd_mavlink.param7; vcmd.command = cmd_mavlink.command; vcmd.target_system = cmd_mavlink.target_system; vcmd.target_component = cmd_mavlink.target_component; vcmd.source_system = msg->sysid; vcmd.source_component = msg->compid; vcmd.confirmation = cmd_mavlink.confirmation; /* check if topic is advertised */ if (cmd_pub <= 0) { cmd_pub = orb_advertise(ORB_ID(vehicle_command), &vcmd); } /* publish */ orb_publish(ORB_ID(vehicle_command), cmd_pub, &vcmd); } } } if (msg->msgid == MAVLINK_MSG_ID_OPTICAL_FLOW) { mavlink_optical_flow_t flow; mavlink_msg_optical_flow_decode(msg, &flow); struct optical_flow_s f; f.timestamp = flow.time_usec; f.flow_raw_x = flow.flow_x; f.flow_raw_y = flow.flow_y; f.flow_comp_x_m = flow.flow_comp_m_x; f.flow_comp_y_m = flow.flow_comp_m_y; f.ground_distance_m = flow.ground_distance; f.quality = flow.quality; f.sensor_id = flow.sensor_id; /* check if topic is advertised */ if (flow_pub <= 0) { flow_pub = orb_advertise(ORB_ID(optical_flow), &f); } else { /* publish */ orb_publish(ORB_ID(optical_flow), flow_pub, &f); } } if (msg->msgid == MAVLINK_MSG_ID_SET_MODE) { /* Set mode on request */ mavlink_set_mode_t new_mode; mavlink_msg_set_mode_decode(msg, &new_mode); /* Copy the content of mavlink_command_long_t cmd_mavlink into command_t cmd */ vcmd.param1 = new_mode.base_mode; vcmd.param2 = new_mode.custom_mode; vcmd.param3 = 0; vcmd.param4 = 0; vcmd.param5 = 0; vcmd.param6 = 0; vcmd.param7 = 0; vcmd.command = MAV_CMD_DO_SET_MODE; vcmd.target_system = new_mode.target_system; vcmd.target_component = MAV_COMP_ID_ALL; vcmd.source_system = msg->sysid; vcmd.source_component = msg->compid; vcmd.confirmation = 1; /* check if topic is advertised */ if (cmd_pub <= 0) { cmd_pub = orb_advertise(ORB_ID(vehicle_command), &vcmd); } /* create command */ orb_publish(ORB_ID(vehicle_command), cmd_pub, &vcmd); } /* Handle quadrotor motor setpoints */ if (msg->msgid == MAVLINK_MSG_ID_SET_QUAD_MOTORS_SETPOINT) { mavlink_set_quad_motors_setpoint_t quad_motors_setpoint; mavlink_msg_set_quad_motors_setpoint_decode(msg, &quad_motors_setpoint); // printf("got MAVLINK_MSG_ID_SET_QUAD_MOTORS_SETPOINT target_system=%u, sysid = %u\n", quad_motors_setpoint.target_system, mavlink_system.sysid); if (quad_motors_setpoint.target_system == mavlink_system.sysid) { ardrone_motors.motor_front_nw = quad_motors_setpoint.motor_front_nw; ardrone_motors.motor_right_ne = quad_motors_setpoint.motor_right_ne; ardrone_motors.motor_back_se = quad_motors_setpoint.motor_back_se; ardrone_motors.motor_left_sw = quad_motors_setpoint.motor_left_sw; ardrone_motors.counter++; ardrone_motors.timestamp = hrt_absolute_time(); /* check if topic has to be advertised */ if (ardrone_motors_pub <= 0) { ardrone_motors_pub = orb_advertise(ORB_ID(ardrone_motors_setpoint), &ardrone_motors); } /* Publish */ orb_publish(ORB_ID(ardrone_motors_setpoint), ardrone_motors_pub, &ardrone_motors); } } /* * Only decode hil messages in HIL mode. * * The HIL mode is enabled by the HIL bit flag * in the system mode. Either send a set mode * COMMAND_LONG message or a SET_MODE message */ // printf("\n HIL ENABLED?: %s \n",(mavlink_hil_enabled)?"true":"false"); if (mavlink_hil_enabled) { if (msg->msgid == MAVLINK_MSG_ID_HIL_STATE) { mavlink_hil_state_t hil_state; mavlink_msg_hil_state_decode(msg, &hil_state); // printf("\n HILSTATE : \n LAT: %i \n LON: %i \n ALT: %i \n " // "ROLL %i \n PITCH %i \n YAW %i \n" // "ROLLSPEED: %i \n PITCHSPEED: %i \n, YAWSPEED: %i \n", // hil_state.lat/1000000, // 1e7 // hil_state.lon/1000000, // 1e7 // hil_state.alt/1000, // mm // hil_state.roll, // float rad // hil_state.pitch, // float rad // hil_state.yaw, // float rad // hil_state.rollspeed, // float rad/s // hil_state.pitchspeed, // float rad/s // hil_state.yawspeed); // float rad/s hil_global_pos.lat = hil_state.lat; hil_global_pos.lon = hil_state.lon; hil_global_pos.alt = hil_state.alt / 1000.0f; hil_global_pos.vx = hil_state.vx / 100.0f; hil_global_pos.vy = hil_state.vy / 100.0f; hil_global_pos.vz = hil_state.vz / 100.0f; /* set timestamp and notify processes (broadcast) */ hil_global_pos.timestamp = hrt_absolute_time(); orb_publish(ORB_ID(vehicle_global_position), pub_hil_global_pos, &hil_global_pos); hil_attitude.roll = hil_state.roll; hil_attitude.pitch = hil_state.pitch; hil_attitude.yaw = hil_state.yaw; hil_attitude.rollspeed = hil_state.rollspeed; hil_attitude.pitchspeed = hil_state.pitchspeed; hil_attitude.yawspeed = hil_state.yawspeed; /* set timestamp and notify processes (broadcast) */ hil_attitude.counter++; hil_attitude.timestamp = hrt_absolute_time(); orb_publish(ORB_ID(vehicle_attitude), pub_hil_attitude, &hil_attitude); } } } int mavlink_open_uart(int baud, const char *uart_name, struct termios *uart_config_original, bool *is_usb) { /* process baud rate */ int speed; switch (baud) { case 0: speed = B0; break; case 50: speed = B50; break; case 75: speed = B75; break; case 110: speed = B110; break; case 134: speed = B134; break; case 150: speed = B150; break; case 200: speed = B200; break; case 300: speed = B300; break; case 600: speed = B600; break; case 1200: speed = B1200; break; case 1800: speed = B1800; break; case 2400: speed = B2400; break; case 4800: speed = B4800; break; case 9600: speed = B9600; break; case 19200: speed = B19200; break; case 38400: speed = B38400; break; case 57600: speed = B57600; break; case 115200: speed = B115200; break; case 230400: speed = B230400; break; case 460800: speed = B460800; break; case 921600: speed = B921600; break; default: fprintf(stderr, "[mavlink] ERROR: Unsupported baudrate: %d\n\tsupported examples:\n\n\t9600\n19200\n38400\n57600\n115200\n230400\n460800\n921600\n\n", baud); return -EINVAL; } /* open uart */ printf("[mavlink] UART is %s, baudrate is %d\n", uart_name, baud); uart = open(uart_name, O_RDWR | O_NOCTTY); /* Try to set baud rate */ struct termios uart_config; int termios_state; *is_usb = false; if (strcmp(uart_name, "/dev/ttyACM0") != OK) { /* Back up the original uart configuration to restore it after exit */ if ((termios_state = tcgetattr(uart, uart_config_original)) < 0) { fprintf(stderr, "[mavlink] ERROR getting baudrate / termios config for %s: %d\n", uart_name, termios_state); close(uart); return -1; } /* Fill the struct for the new configuration */ tcgetattr(uart, &uart_config); /* Clear ONLCR flag (which appends a CR for every LF) */ uart_config.c_oflag &= ~ONLCR; /* Set baud rate */ if (cfsetispeed(&uart_config, speed) < 0 || cfsetospeed(&uart_config, speed) < 0) { fprintf(stderr, "[mavlink] ERROR setting baudrate / termios config for %s: %d (cfsetispeed, cfsetospeed)\n", uart_name, termios_state); close(uart); return -1; } if ((termios_state = tcsetattr(uart, TCSANOW, &uart_config)) < 0) { fprintf(stderr, "[mavlink] ERROR setting baudrate / termios config for %s (tcsetattr)\n", uart_name); close(uart); return -1; } } else { *is_usb = true; } return uart; } /** * MAVLink Protocol main function. */ int mavlink_thread_main(int argc, char *argv[]) { wpm = &wpm_s; /* initialize global data structs */ memset(&global_pos, 0, sizeof(global_pos)); memset(&local_pos, 0, sizeof(local_pos)); memset(&v_status, 0, sizeof(v_status)); memset(&rc, 0, sizeof(rc)); memset(&hil_attitude, 0, sizeof(hil_attitude)); memset(&hil_global_pos, 0, sizeof(hil_global_pos)); memset(&ardrone_motors, 0, sizeof(ardrone_motors)); memset(&vcmd, 0, sizeof(vcmd)); /* print welcome text */ printf("[mavlink] MAVLink v1.0 serial interface starting..\n"); /* reate the device node that's used for sending text log messages, etc. */ register_driver(MAVLINK_LOG_DEVICE, &mavlink_fops, 0666, NULL); /* default values for arguments */ char *uart_name = "/dev/ttyS1"; baudrate = 57600; /* read program arguments */ int i; for (i = 1; i < argc; i++) { /* argv[0] is "mavlink" */ if (strcmp(argv[i], "-h") == 0 || strcmp(argv[i], "--help") == 0) { usage(""); return 0; } else if (strcmp(argv[i], "-d") == 0 || strcmp(argv[i], "--device") == 0) { if (argc > i + 1) { uart_name = argv[i + 1]; i++; } else { usage("missing argument for device (-d)"); return 1; } } else if (strcmp(argv[i], "-b") == 0 || strcmp(argv[i], "--baud") == 0) { if (argc > i + 1) { baudrate = atoi(argv[i + 1]); i++; } else { usage("missing argument for baud rate (-b)"); return 1; } } else if (strcmp(argv[i], "-e") == 0 || strcmp(argv[i], "--exit-allowed") == 0) { mavlink_link_termination_allowed = true; } else if (strcmp(argv[i], "-o") == 0 || strcmp(argv[i], "--onboard") == 0) { mavlink_link_mode = MAVLINK_INTERFACE_MODE_ONBOARD; } else { usage("out of order or invalid argument"); return 1; } } struct termios uart_config_original; bool usb_uart; uart = mavlink_open_uart(baudrate, uart_name, &uart_config_original, &usb_uart); if (uart < 0) { printf("[mavlink] FAILED to open %s, terminating.\n", uart_name); goto exit_cleanup; } /* Flush UART */ fflush(stdout); /* Initialize system properties */ param_t param_system_id = param_find("MAV_SYS_ID"); param_t param_component_id = param_find("MAV_COMP_ID"); param_t param_system_type = param_find("MAV_TYPE"); /* topics to subscribe globally */ /* subscribe to ORB for global position */ mavlink_subs.global_pos_sub = orb_subscribe(ORB_ID(vehicle_global_position)); orb_set_interval(mavlink_subs.global_pos_sub, 1000); /* 1Hz active updates */ /* subscribe to ORB for local position */ mavlink_subs.local_pos_sub = orb_subscribe(ORB_ID(vehicle_local_position)); orb_set_interval(mavlink_subs.local_pos_sub, 1000); /* 1Hz active updates */ pthread_attr_t receiveloop_attr; pthread_attr_init(&receiveloop_attr); pthread_attr_setstacksize(&receiveloop_attr, 2048); pthread_create(&receive_thread, &receiveloop_attr, receiveloop, &uart); pthread_attr_t uorb_attr; pthread_attr_init(&uorb_attr); /* Set stack size, needs more than 8000 bytes */ pthread_attr_setstacksize(&uorb_attr, 8192); pthread_create(&uorb_receive_thread, &uorb_attr, uorb_receiveloop, &mavlink_subs); /* initialize waypoint manager */ mavlink_wpm_init(wpm); uint16_t counter = 0; /* arm counter to go off immediately */ int lowspeed_counter = 10; /* make sure all threads have registered their subscriptions */ while (!mavlink_subs.initialized) { usleep(500); } /* all subscriptions are now active, set up initial guess about rate limits */ if (baudrate >= 921600) { /* 200 Hz / 5 ms */ set_mavlink_interval_limit(&mavlink_subs, MAVLINK_MSG_ID_HIGHRES_IMU, 5); set_mavlink_interval_limit(&mavlink_subs, MAVLINK_MSG_ID_RAW_IMU, 5); /* 200 Hz / 5 ms */ set_mavlink_interval_limit(&mavlink_subs, MAVLINK_MSG_ID_SERVO_OUTPUT_RAW, 5); set_mavlink_interval_limit(&mavlink_subs, MAVLINK_MSG_ID_NAMED_VALUE_FLOAT, 5); set_mavlink_interval_limit(&mavlink_subs, MAVLINK_MSG_ID_ATTITUDE, 5); /* 5 Hz */ set_mavlink_interval_limit(&mavlink_subs, MAVLINK_MSG_ID_MANUAL_CONTROL, 200); } else if (baudrate >= 460800) { /* 200 Hz / 5 ms */ set_mavlink_interval_limit(&mavlink_subs, MAVLINK_MSG_ID_HIGHRES_IMU, 5); set_mavlink_interval_limit(&mavlink_subs, MAVLINK_MSG_ID_RAW_IMU, 20); /* 50 Hz / 20 ms */ set_mavlink_interval_limit(&mavlink_subs, MAVLINK_MSG_ID_ATTITUDE, 20); /* 20 Hz / 50 ms */ set_mavlink_interval_limit(&mavlink_subs, MAVLINK_MSG_ID_NAMED_VALUE_FLOAT, 50); set_mavlink_interval_limit(&mavlink_subs, MAVLINK_MSG_ID_SERVO_OUTPUT_RAW, 50); /* 2 Hz */ set_mavlink_interval_limit(&mavlink_subs, MAVLINK_MSG_ID_MANUAL_CONTROL, 500); } else if (baudrate >= 115200) { /* 50 Hz / 20 ms */ set_mavlink_interval_limit(&mavlink_subs, MAVLINK_MSG_ID_HIGHRES_IMU, 20); set_mavlink_interval_limit(&mavlink_subs, MAVLINK_MSG_ID_RAW_IMU, 20); /* 20 Hz / 50 ms */ set_mavlink_interval_limit(&mavlink_subs, MAVLINK_MSG_ID_ATTITUDE, 20); set_mavlink_interval_limit(&mavlink_subs, MAVLINK_MSG_ID_NAMED_VALUE_FLOAT, 50); /* 10 Hz / 100 ms */ set_mavlink_interval_limit(&mavlink_subs, MAVLINK_MSG_ID_SERVO_OUTPUT_RAW, 100); /* 1 Hz */ set_mavlink_interval_limit(&mavlink_subs, MAVLINK_MSG_ID_MANUAL_CONTROL, 1000); } else if (baudrate >= 57600) { /* 10 Hz / 100 ms */ set_mavlink_interval_limit(&mavlink_subs, MAVLINK_MSG_ID_RAW_IMU, 100); set_mavlink_interval_limit(&mavlink_subs, MAVLINK_MSG_ID_HIGHRES_IMU, 100); /* 10 Hz / 100 ms ATTITUDE */ set_mavlink_interval_limit(&mavlink_subs, MAVLINK_MSG_ID_ATTITUDE, 100); /* 5 Hz / 200 ms */ set_mavlink_interval_limit(&mavlink_subs, MAVLINK_MSG_ID_NAMED_VALUE_FLOAT, 200); /* 5 Hz / 200 ms */ set_mavlink_interval_limit(&mavlink_subs, MAVLINK_MSG_ID_SERVO_OUTPUT_RAW, 200); /* 2 Hz */ set_mavlink_interval_limit(&mavlink_subs, MAVLINK_MSG_ID_MANUAL_CONTROL, 500); } else { /* very low baud rate, limit to 1 Hz / 1000 ms */ set_mavlink_interval_limit(&mavlink_subs, MAVLINK_MSG_ID_RAW_IMU, 1000); set_mavlink_interval_limit(&mavlink_subs, MAVLINK_MSG_ID_ATTITUDE, 1000); set_mavlink_interval_limit(&mavlink_subs, MAVLINK_MSG_ID_HIGHRES_IMU, 1000); /* 1 Hz / 1000 ms */ set_mavlink_interval_limit(&mavlink_subs, MAVLINK_MSG_ID_NAMED_VALUE_FLOAT, 1000); /* 0.5 Hz */ set_mavlink_interval_limit(&mavlink_subs, MAVLINK_MSG_ID_SERVO_OUTPUT_RAW, 2000); /* 0.1 Hz */ set_mavlink_interval_limit(&mavlink_subs, MAVLINK_MSG_ID_MANUAL_CONTROL, 10000); } thread_running = true; while (!thread_should_exit) { /* get local and global position */ orb_copy(ORB_ID(vehicle_global_position), mavlink_subs.global_pos_sub, &global_pos); orb_copy(ORB_ID(vehicle_local_position), mavlink_subs.local_pos_sub, &local_pos); orb_copy(ORB_ID(actuator_armed), mavlink_subs.armed_sub, &armed); /* 1 Hz */ if (lowspeed_counter == 10) { /* update system and component id */ int32_t system_id; param_get(param_system_id, &system_id); if (system_id > 0 && system_id < 255) { mavlink_system.sysid = system_id; } int32_t component_id; param_get(param_component_id, &component_id); if (component_id > 0 && component_id < 255) { mavlink_system.compid = component_id; } int32_t system_type; param_get(param_system_type, &system_type); if (system_type >= 0 && system_type < MAV_AUTOPILOT_ENUM_END) { mavlink_system.type = system_type; } /* translate the current syste state to mavlink state and mode */ uint8_t mavlink_state = 0; uint8_t mavlink_mode = 0; get_mavlink_mode_and_state(&v_status, &armed, &mavlink_state, &mavlink_mode); /* send heartbeat */ mavlink_msg_heartbeat_send(chan, system_type, MAV_AUTOPILOT_PX4, mavlink_mode, v_status.state_machine, mavlink_state); /* switch HIL mode if required */ set_hil_on_off(v_status.flag_hil_enabled); /* send status (values already copied in the section above) */ mavlink_msg_sys_status_send(chan, v_status.onboard_control_sensors_present, v_status.onboard_control_sensors_enabled, v_status.onboard_control_sensors_health, v_status.load, v_status.voltage_battery * 1000.f, v_status.current_battery * 1000.f, v_status.battery_remaining, v_status.drop_rate_comm, v_status.errors_comm, v_status.errors_count1, v_status.errors_count2, v_status.errors_count3, v_status.errors_count4); lowspeed_counter = 0; } lowspeed_counter++; /* sleep quarter the time */ usleep(25000); /* check if waypoint has been reached against the last positions */ mavlink_waypoint_eventloop(mavlink_missionlib_get_system_timestamp(), &global_pos, &local_pos); /* sleep quarter the time */ usleep(25000); /* send parameters at 20 Hz (if queued for sending) */ mavlink_pm_queued_send(); /* sleep quarter the time */ usleep(25000); mavlink_pm_queued_send(); /* sleep 10 ms */ usleep(10000); /* send one string at 10 Hz */ mavlink_missionlib_send_gcs_string(mavlink_message_string); mavlink_message_string[0] = '\0'; counter++; /* sleep 15 ms */ usleep(15000); } /* wait for threads to complete */ pthread_join(receive_thread, NULL); pthread_join(uorb_receive_thread, NULL); /* Reset the UART flags to original state */ if (!usb_uart) { int termios_state; if ((termios_state = tcsetattr(uart, TCSANOW, &uart_config_original)) < 0) { fprintf(stderr, "[mavlink] ERROR setting baudrate / termios config for %s (tcsetattr)\r\n", uart_name); } printf("[mavlink] Restored original UART config, exiting..\n"); } exit_cleanup: /* close uart */ close(uart); /* close subscriptions */ close(mavlink_subs.global_pos_sub); close(mavlink_subs.local_pos_sub); fflush(stdout); fflush(stderr); thread_running = false; return 0; } static void usage(const char *reason) { if (reason) fprintf(stderr, "%s\n", reason); fprintf(stderr, "usage: mavlink {start|stop|status} [-d ] [-b ] [-e/--exit-allowed]\n\n"); exit(1); } int mavlink_main(int argc, char *argv[]) { if (argc < 1) usage("missing command"); if (!strcmp(argv[1], "start")) { if (thread_running) { printf("mavlink already running\n"); /* this is not an error */ exit(0); } thread_should_exit = false; mavlink_task = task_create("mavlink", SCHED_PRIORITY_DEFAULT, 6000, mavlink_thread_main, (argv) ? (const char **)&argv[2] : (const char **)NULL); exit(0); } if (!strcmp(argv[1], "stop")) { thread_should_exit = true; exit(0); } if (!strcmp(argv[1], "status")) { if (thread_running) { printf("\tmavlink app is running\n"); } else { printf("\tmavlink app not started\n"); } exit(0); } usage("unrecognized command"); exit(1); }