/**************************************************************************** * * Copyright (c) 2015 Estimation and Control Library (ECL). All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name ECL nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /** * @file control.cpp * Control functions for ekf attitude and position estimator. * * @author Paul Riseborough * */ #include "ekf.h" void Ekf::controlFusionModes() { // Determine the vehicle status calculateVehicleStatus(); // Get the magnetic declination calcMagDeclination(); // Check for tilt convergence during initial alignment // filter the tilt error vector using a 1 sec time constant LPF float filt_coef = 1.0f * _imu_sample_delayed.delta_ang_dt; _tilt_err_length_filt = filt_coef * _tilt_err_vec.norm() + (1.0f - filt_coef) * _tilt_err_length_filt; // Once the tilt error has reduced sufficiently, initialise the yaw and magnetic field states if (_tilt_err_length_filt < 0.005f && !_control_status.flags.tilt_align) { _control_status.flags.tilt_align = true; _control_status.flags.yaw_align = resetMagHeading(_mag_sample_delayed.mag); } // optical flow fusion mode selection logic // to start using optical flow data we need angular alignment complete, and fresh optical flow and height above terrain data if ((_params.fusion_mode & MASK_USE_OF) && !_control_status.flags.opt_flow && _control_status.flags.tilt_align && (_time_last_imu - _time_last_optflow) < 5e5 && (_time_last_imu - _time_last_hagl_fuse) < 5e5) { // If the heading is not aligned, reset the yaw and magnetic field states if (!_control_status.flags.yaw_align) { _control_status.flags.yaw_align = resetMagHeading(_mag_sample_delayed.mag); } // If the heading is valid, start using optical flow aiding if (_control_status.flags.yaw_align) { // set the flag and reset the fusion timeout _control_status.flags.opt_flow = true; _time_last_of_fuse = _time_last_imu; // if we are not using GPS and are in air, then we need to reset the velocity to be consistent with the optical flow reading if (!_control_status.flags.gps) { // calculate the rotation matrix from body to earth frame matrix::Dcm body_to_earth(_state.quat_nominal); // constrain height above ground to be above minimum possible float heightAboveGndEst = fmaxf((_terrain_vpos - _state.pos(2)), _params.rng_gnd_clearance); // calculate absolute distance from focal point to centre of frame assuming a flat earth float range = heightAboveGndEst / body_to_earth(2, 2); if (_in_air && (range - _params.rng_gnd_clearance) > 0.3f && _flow_sample_delayed.dt > 0.05f) { // calculate X and Y body relative velocities from OF measurements Vector3f vel_optflow_body; vel_optflow_body(0) = - range * _flow_sample_delayed.flowRadXYcomp(1) / _flow_sample_delayed.dt; vel_optflow_body(1) = range * _flow_sample_delayed.flowRadXYcomp(0) / _flow_sample_delayed.dt; vel_optflow_body(2) = 0.0f; // rotate from body to earth frame Vector3f vel_optflow_earth; vel_optflow_earth = body_to_earth * vel_optflow_body; // take x and Y components _state.vel(0) = vel_optflow_earth(0); _state.vel(1) = vel_optflow_earth(1); } else { _state.vel.setZero(); } } } } else if (!(_params.fusion_mode & MASK_USE_OF)) { _control_status.flags.opt_flow = false; } // GPS fusion mode selection logic // To start use GPS we need angular alignment completed, the local NED origin set and fresh GPS data if ((_params.fusion_mode & MASK_USE_GPS) && !_control_status.flags.gps) { if (_control_status.flags.tilt_align && (_time_last_imu - _time_last_gps) < 5e5 && _NED_origin_initialised && (_time_last_imu - _last_gps_fail_us > 5e6)) { // If the heading is not aligned, reset the yaw and magnetic field states if (!_control_status.flags.yaw_align) { _control_status.flags.yaw_align = resetMagHeading(_mag_sample_delayed.mag); } // If the heading is valid start using gps aiding if (_control_status.flags.yaw_align) { _control_status.flags.gps = true; _time_last_gps = _time_last_imu; // if we are not already aiding with optical flow, then we need to reset the position and velocity if (!_control_status.flags.opt_flow) { _control_status.flags.gps = resetPosition(); _control_status.flags.gps = resetVelocity(); } } } } else if (!(_params.fusion_mode & MASK_USE_GPS)) { _control_status.flags.gps = false; } // handle the case when we are relying on GPS fusion and lose it if (_control_status.flags.gps && !_control_status.flags.opt_flow) { // We are relying on GPS aiding to constrain attitude drift so after 10 seconds without aiding we need to do something if ((_time_last_imu - _time_last_pos_fuse > 10e6) && (_time_last_imu - _time_last_vel_fuse > 10e6)) { if (_time_last_imu - _time_last_gps > 5e5) { // if we don't have gps then we need to switch to the non-aiding mode, zero the veloity states // and set the synthetic GPS position to the current estimate _control_status.flags.gps = false; _last_known_posNE(0) = _state.pos(0); _last_known_posNE(1) = _state.pos(1); _state.vel.setZero(); } else { // Reset states to the last GPS measurement resetPosition(); resetVelocity(); } } } /* * Handle the case where we have not fused height measurements recently and * uncertainty exceeds the max allowable. Reset using the best available height * measurement source, continue using it after the reset and declare the current * source failed if we have switched. */ if ((P[8][8] > sq(_params.hgt_reset_lim)) && ((_time_last_imu - _time_last_hgt_fuse) > 5e6)) { // handle the case where we are using baro for height if (_control_status.flags.baro_hgt) { // check if GPS height is available gpsSample gps_init = _gps_buffer.get_newest(); bool gps_hgt_available = ((_time_last_imu - gps_init.time_us) < 2 * GPS_MAX_INTERVAL); bool gps_hgt_accurate = (gps_init.vacc < _params.req_vacc); baroSample baro_init = _baro_buffer.get_newest(); bool baro_hgt_available = ((_time_last_imu - baro_init.time_us) < 2 * BARO_MAX_INTERVAL); // use the gps if it is accurate or there is no baro data available if (gps_hgt_available && (gps_hgt_accurate || !baro_hgt_available)) { // declare the baro as unhealthy _baro_hgt_faulty = true; // set the height mode to the GPS _control_status.flags.baro_hgt = false; _control_status.flags.gps_hgt = true; _control_status.flags.rng_hgt = false; // adjust the height offset so we can use the GPS _hgt_sensor_offset = _state.pos(2) + gps_init.hgt - _gps_alt_ref; printf("EKF baro hgt timeout - switching to gps\n"); } } // handle the case we are using GPS for height if (_control_status.flags.gps_hgt) { // check if GPS height is available gpsSample gps_init = _gps_buffer.get_newest(); bool gps_hgt_available = ((_time_last_imu - gps_init.time_us) < 2 * GPS_MAX_INTERVAL); bool gps_hgt_accurate = (gps_init.vacc < _params.req_vacc); // check the baro height source for consistency and freshness baroSample baro_init = _baro_buffer.get_newest(); bool baro_data_fresh = ((_time_last_imu - baro_init.time_us) < 2 * BARO_MAX_INTERVAL); float baro_innov = _state.pos(2) - (_hgt_sensor_offset - baro_init.hgt + _baro_hgt_offset); bool baro_data_consistent = fabsf(baro_innov) < (sq(_params.baro_noise) + P[8][8]) * sq(_params.baro_innov_gate); // if baro data is consistent and fresh or GPS height is unavailable or inaccurate, we switch to baro for height if ((baro_data_consistent && baro_data_fresh) || !gps_hgt_available || !gps_hgt_accurate) { // declare the GPS height unhealthy _gps_hgt_faulty = true; // set the height mode to the baro _control_status.flags.baro_hgt = true; _control_status.flags.gps_hgt = false; _control_status.flags.rng_hgt = false; printf("EKF gps hgt timeout - switching to baro\n"); } } // handle the case we are using range finder for height if (_control_status.flags.rng_hgt) { // check if range finder data is available rangeSample rng_init = _range_buffer.get_newest(); bool rng_data_available = ((_time_last_imu - rng_init.time_us) < 2 * RNG_MAX_INTERVAL); // check if baro data is available baroSample baro_init = _baro_buffer.get_newest(); bool baro_data_available = ((_time_last_imu - baro_init.time_us) < 2 * BARO_MAX_INTERVAL); // check if baro data is consistent float baro_innov = _state.pos(2) - (_hgt_sensor_offset - baro_init.hgt + _baro_hgt_offset); bool baro_data_consistent = sq(baro_innov) < (sq(_params.baro_noise) + P[8][8]) * sq(_params.baro_innov_gate); // switch to baro if necessary or preferable bool switch_to_baro = (!rng_data_available && baro_data_available) || (baro_data_consistent && baro_data_available); if (switch_to_baro) { // declare the range finder height unhealthy _rng_hgt_faulty = true; // set the height mode to the baro _control_status.flags.baro_hgt = true; _control_status.flags.gps_hgt = false; _control_status.flags.rng_hgt = false; printf("EKF rng hgt timeout - switching to baro\n"); } } // Reset vertical position and velocity states to the last measurement resetHeight(); } // handle the case when we are relying on optical flow fusion and lose it if (_control_status.flags.opt_flow && !_control_status.flags.gps) { // We are relying on flow aiding to constrain attitude drift so after 5s without aiding we need to do something if ((_time_last_imu - _time_last_of_fuse > 5e6)) { // Switch to the non-aiding mode, zero the veloity states // and set the synthetic position to the current estimate _control_status.flags.opt_flow = false; _last_known_posNE(0) = _state.pos(0); _last_known_posNE(1) = _state.pos(1); _state.vel.setZero(); } } // Determine if we should use simple magnetic heading fusion which works better when there are large external disturbances // or the more accurate 3-axis fusion if (_params.mag_fusion_type == MAG_FUSE_TYPE_AUTO) { if (!_control_status.flags.armed) { // use heading fusion for initial startup _control_status.flags.mag_hdg = true; _control_status.flags.mag_2D = false; _control_status.flags.mag_3D = false; } else { if (_control_status.flags.in_air) { // if transitioning into 3-axis fusion mode, we need to initialise the yaw angle and field states if (!_control_status.flags.mag_3D) { _control_status.flags.yaw_align = resetMagHeading(_mag_sample_delayed.mag); } // use 3D mag fusion when airborne _control_status.flags.mag_hdg = false; _control_status.flags.mag_2D = false; _control_status.flags.mag_3D = true; } else { // use heading fusion when on the ground _control_status.flags.mag_hdg = true; _control_status.flags.mag_2D = false; _control_status.flags.mag_3D = false; } } } else if (_params.mag_fusion_type == MAG_FUSE_TYPE_HEADING) { // always use heading fusion _control_status.flags.mag_hdg = true; _control_status.flags.mag_2D = false; _control_status.flags.mag_3D = false; } else if (_params.mag_fusion_type == MAG_FUSE_TYPE_2D) { // always use 2D mag fusion _control_status.flags.mag_hdg = false; _control_status.flags.mag_2D = true; _control_status.flags.mag_3D = false; } else if (_params.mag_fusion_type == MAG_FUSE_TYPE_3D) { // if transitioning into 3-axis fusion mode, we need to initialise the yaw angle and field states if (!_control_status.flags.mag_3D) { _control_status.flags.yaw_align = resetMagHeading(_mag_sample_delayed.mag); } // always use 3-axis mag fusion _control_status.flags.mag_hdg = false; _control_status.flags.mag_2D = false; _control_status.flags.mag_3D = true; } else { // do no magnetometer fusion at all _control_status.flags.mag_hdg = false; _control_status.flags.mag_2D = false; _control_status.flags.mag_3D = false; } // if we are using 3-axis magnetometer fusion, but without external aiding, then the declination must be fused as an observation to prevent long term heading drift // fusing declination when gps aiding is available is optional, but recommneded to prevent problem if the vehicle is static for extended periods of time if (_control_status.flags.mag_3D && (!_control_status.flags.gps || (_params.mag_declination_source & MASK_FUSE_DECL))) { _control_status.flags.mag_dec = true; } else { _control_status.flags.mag_dec = false; } // Control the soure of height measurements for the main filter if ((_params.vdist_sensor_type == VDIST_SENSOR_BARO && !_baro_hgt_faulty) || _control_status.flags.baro_hgt) { _control_status.flags.baro_hgt = true; _control_status.flags.gps_hgt = false; _control_status.flags.rng_hgt = false; } else if ((_params.vdist_sensor_type == VDIST_SENSOR_GPS && !_gps_hgt_faulty) || _control_status.flags.gps_hgt) { _control_status.flags.baro_hgt = false; _control_status.flags.gps_hgt = true; _control_status.flags.rng_hgt = false; } else if (_params.vdist_sensor_type == VDIST_SENSOR_RANGE && !_rng_hgt_faulty) { _control_status.flags.baro_hgt = false; _control_status.flags.gps_hgt = false; _control_status.flags.rng_hgt = true; } // Placeholder for control of wind velocity states estimation // TODO add methods for true airspeed and/or sidelsip fusion or some type of drag force measurement if (false) { _control_status.flags.wind = false; } // Store the status to enable change detection _control_status_prev.value = _control_status.value; } void Ekf::calculateVehicleStatus() { // determine if the vehicle is armed _control_status.flags.armed = _vehicle_armed; // record vertical position whilst disarmed to use as a height change reference if (!_control_status.flags.armed) { _last_disarmed_posD = _state.pos(2); } // Transition to in-air occurs when armed and when altitude has increased sufficiently from the altitude at arming bool in_air = _control_status.flags.armed && (_state.pos(2) - _last_disarmed_posD) < -1.0f; if (!_control_status.flags.in_air && in_air) { _control_status.flags.in_air = true; } // Transition to on-ground occurs when disarmed or if the land detector indicated landed state if (_control_status.flags.in_air && (!_control_status.flags.armed || !_in_air)) { _control_status.flags.in_air = false; } }