/**************************************************************************** * * Copyright (C) 2012 PX4 Development Team. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name PX4 nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /** * @file hmc5883.cpp * * Driver for the HMC5883 magnetometer connected via I2C. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * HMC5883 internal constants and data structures. */ /* Max measurement rate is 160Hz */ #define HMC5883_CONVERSION_INTERVAL (1000000 / 160) /* microseconds */ #define ADDR_CONF_A 0x00 #define ADDR_CONF_B 0x01 #define ADDR_MODE 0x02 #define ADDR_DATA_OUT_X_MSB 0x03 #define ADDR_DATA_OUT_X_LSB 0x04 #define ADDR_DATA_OUT_Z_MSB 0x05 #define ADDR_DATA_OUT_Z_LSB 0x06 #define ADDR_DATA_OUT_Y_MSB 0x07 #define ADDR_DATA_OUT_Y_LSB 0x08 #define ADDR_STATUS 0x09 #define ADDR_ID_A 0x0a #define ADDR_ID_B 0x0b #define ADDR_ID_C 0x0c #define HMC5883L_ADDRESS 0x1E /* modes not changeable outside of driver */ #define HMC5883L_MODE_NORMAL (0 << 0) /* default */ #define HMC5883L_MODE_POSITIVE_BIAS (1 << 0) /* positive bias */ #define HMC5883L_MODE_NEGATIVE_BIAS (1 << 1) /* negative bias */ #define HMC5883L_AVERAGING_1 (0 << 5) /* conf a register */ #define HMC5883L_AVERAGING_2 (1 << 5) #define HMC5883L_AVERAGING_4 (2 << 5) #define HMC5883L_AVERAGING_8 (3 << 5) #define MODE_REG_CONTINOUS_MODE (0 << 0) #define MODE_REG_SINGLE_MODE (1 << 0) /* default */ #define STATUS_REG_DATA_OUT_LOCK (1 << 1) /* page 16: set if data is only partially read, read device to reset */ #define STATUS_REG_DATA_READY (1 << 0) /* page 16: set if all axes have valid measurements */ #define ID_A_WHO_AM_I 'H' #define ID_B_WHO_AM_I '4' #define ID_C_WHO_AM_I '3' /* oddly, ERROR is not defined for c++ */ #ifdef ERROR # undef ERROR #endif static const int ERROR = -1; class HMC5883 : public device::I2C { public: HMC5883(int bus); ~HMC5883(); virtual int init(); virtual ssize_t read(struct file *filp, char *buffer, size_t buflen); virtual int ioctl(struct file *filp, int cmd, unsigned long arg); /** * Diagnostics - print some basic information about the driver. */ void print_info(); protected: virtual int probe(); private: work_s _work; unsigned _measure_ticks; unsigned _num_reports; volatile unsigned _next_report; volatile unsigned _oldest_report; mag_report *_reports; mag_scale _scale; float _range_scale; float _range_ga; bool _collect_phase; orb_advert_t _mag_topic; perf_counter_t _sample_perf; perf_counter_t _comms_errors; perf_counter_t _buffer_overflows; /** * Test whether the device supported by the driver is present at a * specific address. * * @param address The I2C bus address to probe. * @return True if the device is present. */ int probe_address(uint8_t address); /** * Initialise the automatic measurement state machine and start it. * * @note This function is called at open and error time. It might make sense * to make it more aggressive about resetting the bus in case of errors. */ void start(); /** * Stop the automatic measurement state machine. */ void stop(); /** * Perform a poll cycle; collect from the previous measurement * and start a new one. * * This is the heart of the measurement state machine. This function * alternately starts a measurement, or collects the data from the * previous measurement. * * When the interval between measurements is greater than the minimum * measurement interval, a gap is inserted between collection * and measurement to provide the most recent measurement possible * at the next interval. */ void cycle(); /** * Static trampoline from the workq context; because we don't have a * generic workq wrapper yet. * * @param arg Instance pointer for the driver that is polling. */ static void cycle_trampoline(void *arg); /** * Write a register. * * @param reg The register to write. * @param val The value to write. * @return OK on write success. */ int write_reg(uint8_t reg, uint8_t val); /** * Read a register. * * @param reg The register to read. * @param val The value read. * @return OK on read success. */ int read_reg(uint8_t reg, uint8_t &val); /** * Issue a measurement command. * * @return OK if the measurement command was successful. */ int measure(); /** * Collect the result of the most recent measurement. */ int collect(); /** * Convert a big-endian signed 16-bit value to a float. * * @param in A signed 16-bit big-endian value. * @return The floating-point representation of the value. */ float meas_to_float(uint8_t in[2]); }; /* helper macro for handling report buffer indices */ #define INCREMENT(_x, _lim) do { _x++; if (_x >= _lim) _x = 0; } while(0) /* * Driver 'main' command. */ extern "C" __EXPORT int hmc5883_main(int argc, char *argv[]); HMC5883::HMC5883(int bus) : I2C("HMC5883", MAG_DEVICE_PATH, bus, HMC5883L_ADDRESS, 400000), _measure_ticks(0), _num_reports(0), _next_report(0), _oldest_report(0), _reports(nullptr), _mag_topic(-1), _range_scale(1.0f / 1090.0f), /* default range scale from counts to gauss */ _range_ga(0.88f), _sample_perf(perf_alloc(PC_ELAPSED, "hmc5883_read")), _comms_errors(perf_alloc(PC_COUNT, "hmc5883_comms_errors")), _buffer_overflows(perf_alloc(PC_COUNT, "hmc5883_buffer_overflows")) { // enable debug() calls _debug_enabled = true; // default scaling _scale.x_offset = 0; _scale.x_scale = 1.0f; _scale.y_offset = 0; _scale.y_scale = 1.0f; _scale.z_offset = 0; _scale.z_scale = 1.0f; // work_cancel in the dtor will explode if we don't do this... memset(&_work, 0, sizeof(_work)); } HMC5883::~HMC5883() { /* make sure we are truly inactive */ stop(); /* free any existing reports */ if (_reports != nullptr) delete[] _reports; } int HMC5883::init() { int ret = ERROR; /* do I2C init (and probe) first */ if (I2C::init() != OK) goto out; /* allocate basic report buffers */ _num_reports = 2; _reports = new struct mag_report[_num_reports]; if (_reports == nullptr) goto out; _oldest_report = _next_report = 0; /* get a publish handle on the mag topic */ memset(&_reports[0], 0, sizeof(_reports[0])); _mag_topic = orb_advertise(ORB_ID(sensor_mag), &_reports[0]); if (_mag_topic < 0) debug("failed to create sensor_mag object"); ret = OK; out: return ret; } int HMC5883::probe() { uint8_t data[3] = {0, 0, 0}; _retries = 10; if (read_reg(ADDR_ID_A, data[0]) || read_reg(ADDR_ID_B, data[1]) || read_reg(ADDR_ID_C, data[2])) debug("read_reg fail"); _retries = 1; if ((data[0] != ID_A_WHO_AM_I) || (data[1] != ID_B_WHO_AM_I) || (data[2] != ID_C_WHO_AM_I)) { debug("ID byte mismatch (%02x,%02x,%02x)", data[0], data[1], data[2]); return -EIO; } return OK; } ssize_t HMC5883::read(struct file *filp, char *buffer, size_t buflen) { unsigned count = buflen / sizeof(struct mag_report); int ret = 0; /* buffer must be large enough */ if (count < 1) return -ENOSPC; /* if automatic measurement is enabled */ if (_measure_ticks > 0) { /* * While there is space in the caller's buffer, and reports, copy them. * Note that we may be pre-empted by the workq thread while we are doing this; * we are careful to avoid racing with them. */ while (count--) { if (_oldest_report != _next_report) { memcpy(buffer, _reports + _oldest_report, sizeof(*_reports)); ret += sizeof(_reports[0]); INCREMENT(_oldest_report, _num_reports); } } /* if there was no data, warn the caller */ return ret ? ret : -EAGAIN; } /* manual measurement - run one conversion */ /* XXX really it'd be nice to lock against other readers here */ do { _oldest_report = _next_report = 0; /* trigger a measurement */ if (OK != measure()) { ret = -EIO; break; } /* wait for it to complete */ usleep(HMC5883_CONVERSION_INTERVAL); /* run the collection phase */ if (OK != collect()) { ret = -EIO; break; } /* state machine will have generated a report, copy it out */ memcpy(buffer, _reports, sizeof(*_reports)); ret = sizeof(*_reports); } while (0); return ret; } int HMC5883::ioctl(struct file *filp, int cmd, unsigned long arg) { switch (cmd) { case SENSORIOCSPOLLRATE: { switch (arg) { /* switching to manual polling */ case SENSOR_POLLRATE_MANUAL: stop(); _measure_ticks = 0; return OK; /* external signalling (DRDY) not supported */ case SENSOR_POLLRATE_EXTERNAL: /* zero would be bad */ case 0: return -EINVAL; /* set default/max polling rate */ case SENSOR_POLLRATE_MAX: case SENSOR_POLLRATE_DEFAULT: { /* do we need to start internal polling? */ bool want_start = (_measure_ticks == 0); /* set interval for next measurement to minimum legal value */ _measure_ticks = USEC2TICK(HMC5883_CONVERSION_INTERVAL); /* if we need to start the poll state machine, do it */ if (want_start) start(); return OK; } /* adjust to a legal polling interval in Hz */ default: { /* do we need to start internal polling? */ bool want_start = (_measure_ticks == 0); /* convert hz to tick interval via microseconds */ unsigned ticks = USEC2TICK(1000000 / arg); /* check against maximum rate */ if (ticks < USEC2TICK(HMC5883_CONVERSION_INTERVAL)) return -EINVAL; /* update interval for next measurement */ _measure_ticks = ticks; /* if we need to start the poll state machine, do it */ if (want_start) start(); return OK; } } } case SENSORIOCGPOLLRATE: if (_measure_ticks == 0) return SENSOR_POLLRATE_MANUAL; return (1000 / _measure_ticks); case SENSORIOCSQUEUEDEPTH: { /* add one to account for the sentinel in the ring */ arg++; /* lower bound is mandatory, upper bound is a sanity check */ if ((arg < 2) || (arg > 100)) return -EINVAL; /* allocate new buffer */ struct mag_report *buf = new struct mag_report[arg]; if (nullptr == buf) return -ENOMEM; /* reset the measurement state machine with the new buffer, free the old */ stop(); delete[] _reports; _num_reports = arg; _reports = buf; start(); return OK; } case SENSORIOCGQUEUEDEPTH: return _num_reports - 1; case SENSORIOCRESET: /* XXX implement this */ return -EINVAL; case MAGIOCSSAMPLERATE: /* not supported, always 1 sample per poll */ return -EINVAL; case MAGIOCSLOWPASS: /* not supported, no internal filtering */ return -EINVAL; case MAGIOCSSCALE: /* set new scale factors */ memcpy(&_scale, (mag_scale *)arg, sizeof(_scale)); return 0; case MAGIOCGSCALE: /* copy out scale factors */ memcpy((mag_scale *)arg, &_scale, sizeof(_scale)); return 0; case MAGIOCCALIBRATE: /* XXX perform auto-calibration */ return -EINVAL; default: /* give it to the superclass */ return I2C::ioctl(filp, cmd, arg); } } void HMC5883::start() { /* reset the report ring and state machine */ _collect_phase = false; _oldest_report = _next_report = 0; /* schedule a cycle to start things */ work_queue(&_work, (worker_t)&HMC5883::cycle_trampoline, this, 1); } void HMC5883::stop() { work_cancel(&_work); } void HMC5883::cycle_trampoline(void *arg) { HMC5883 *dev = (HMC5883 *)arg; dev->cycle(); } void HMC5883::cycle() { /* collection phase? */ if (_collect_phase) { /* perform collection */ if (OK != collect()) { log("collection error"); /* restart the measurement state machine */ start(); return; } /* next phase is measurement */ _collect_phase = false; /* * Is there a collect->measure gap? */ if (_measure_ticks > USEC2TICK(HMC5883_CONVERSION_INTERVAL)) { /* schedule a fresh cycle call when we are ready to measure again */ work_queue(&_work, (worker_t)&HMC5883::cycle_trampoline, this, _measure_ticks - USEC2TICK(HMC5883_CONVERSION_INTERVAL)); return; } } /* measurement phase */ if (OK != measure()) log("measure error"); /* next phase is collection */ _collect_phase = true; /* schedule a fresh cycle call when the measurement is done */ work_queue(&_work, (worker_t)&HMC5883::cycle_trampoline, this, USEC2TICK(HMC5883_CONVERSION_INTERVAL)); } int HMC5883::measure() { int ret; /* * Send the command to begin a measurement. */ ret = write_reg(ADDR_MODE, MODE_REG_SINGLE_MODE); if (OK != ret) perf_count(_comms_errors); return ret; } int HMC5883::collect() { #pragma pack(push, 1) struct { /* status register and data as read back from the device */ uint8_t x[2]; uint8_t y[2]; uint8_t z[2]; } hmc_report; #pragma pack(pop) struct { int16_t x, y, z; } report; int ret = -EIO; uint8_t cmd; perf_begin(_sample_perf); /* this should be fairly close to the end of the measurement, so the best approximation of the time */ _reports[_next_report].timestamp = hrt_absolute_time(); /* * @note We could read the status register here, which could tell us that * we were too early and that the output registers are still being * written. In the common case that would just slow us down, and * we're better off just never being early. */ /* get measurements from the device */ cmd = ADDR_DATA_OUT_X_MSB; ret = transfer(&cmd, 1, (uint8_t *)&hmc_report, sizeof(hmc_report)); if (ret != OK) { perf_count(_comms_errors); debug("data/status read error"); goto out; } /* swap the data we just received */ report.x = (((int16_t)hmc_report.x[0]) << 8) + hmc_report.x[1]; report.y = (((int16_t)hmc_report.y[0]) << 8) + hmc_report.y[1]; report.z = (((int16_t)hmc_report.z[0]) << 8) + hmc_report.z[1]; /* * If any of the values are -4096, there was an internal math error in the sensor. * Generalise this to a simple range check that will also catch some bit errors. */ if ((abs(report.x) > 2048) || (abs(report.y) > 2048) || (abs(report.z) > 2048)) goto out; /* * RAW outputs * * to align the sensor axes with the board, x and y need to be flipped * and y needs to be negated */ _reports[_next_report].x_raw = report.y; _reports[_next_report].y_raw = ((report.x == -32768) ? 32767 : -report.x); /* z remains z */ _reports[_next_report].z_raw = report.z; /* scale values for output */ /* * 1) Scale raw value to SI units using scaling from datasheet. * 2) Subtract static offset (in SI units) * 3) Scale the statically calibrated values with a linear * dynamically obtained factor * * Note: the static sensor offset is the number the sensor outputs * at a nominally 'zero' input. Therefore the offset has to * be subtracted. * * Example: A gyro outputs a value of 74 at zero angular rate * the offset is 74 from the origin and subtracting * 74 from all measurements centers them around zero. */ /* to align the sensor axes with the board, x and y need to be flipped */ _reports[_next_report].x = ((report.y * _range_scale) - _scale.x_offset) * _scale.x_scale; /* flip axes and negate value for y */ _reports[_next_report].y = ((((report.x == -32768) ? 32767 : -report.x) * _range_scale) - _scale.y_offset) * _scale.y_scale; /* z remains z */ _reports[_next_report].z = ((report.z * _range_scale) - _scale.z_offset) * _scale.z_scale; /* publish it */ orb_publish(ORB_ID(sensor_mag), _mag_topic, &_reports[_next_report]); /* post a report to the ring - note, not locked */ INCREMENT(_next_report, _num_reports); /* if we are running up against the oldest report, toss it */ if (_next_report == _oldest_report) { perf_count(_buffer_overflows); INCREMENT(_oldest_report, _num_reports); } /* notify anyone waiting for data */ poll_notify(POLLIN); ret = OK; out: perf_end(_sample_perf); return ret; } int HMC5883::write_reg(uint8_t reg, uint8_t val) { uint8_t cmd[] = { reg, val }; return transfer(&cmd[0], 2, nullptr, 0); } int HMC5883::read_reg(uint8_t reg, uint8_t &val) { return transfer(®, 1, &val, 1); } float HMC5883::meas_to_float(uint8_t in[2]) { union { uint8_t b[2]; int16_t w; } u; u.b[0] = in[1]; u.b[1] = in[0]; return (float) u.w; } void HMC5883::print_info() { perf_print_counter(_sample_perf); perf_print_counter(_comms_errors); perf_print_counter(_buffer_overflows); printf("poll interval: %u ticks\n", _measure_ticks); printf("report queue: %u (%u/%u @ %p)\n", _num_reports, _oldest_report, _next_report, _reports); } /** * Local functions in support of the shell command. */ namespace hmc5883 { /* oddly, ERROR is not defined for c++ */ #ifdef ERROR # undef ERROR #endif const int ERROR = -1; HMC5883 *g_dev; void start(); void test(); void reset(); void info(); /** * Start the driver. */ void start() { int fd; if (g_dev != nullptr) errx(1, "already started"); /* create the driver */ /* XXX HORRIBLE hack - the bus number should not come from here */ g_dev = new HMC5883(2); if (g_dev == nullptr) goto fail; if (OK != g_dev->init()) goto fail; /* set the poll rate to default, starts automatic data collection */ fd = open(MAG_DEVICE_PATH, O_RDONLY); if (fd < 0) goto fail; if (ioctl(fd, SENSORIOCSPOLLRATE, SENSOR_POLLRATE_DEFAULT) < 0) goto fail; exit(0); fail: if (g_dev != nullptr) { delete g_dev; g_dev = nullptr; } errx(1, "driver start failed"); } /** * Perform some basic functional tests on the driver; * make sure we can collect data from the sensor in polled * and automatic modes. */ void test() { struct mag_report report; ssize_t sz; int ret; int fd = open(MAG_DEVICE_PATH, O_RDONLY); if (fd < 0) err(1, "%s open failed (try 'hmc5883 start' if the driver is not running", MAG_DEVICE_PATH); /* do a simple demand read */ sz = read(fd, &report, sizeof(report)); if (sz != sizeof(report)) err(1, "immediate read failed"); warnx("single read"); warnx("measurement: %.6f %.6f %.6f", report.x, report.y, report.z); warnx("time: %lld", report.timestamp); /* set the queue depth to 10 */ if (OK != ioctl(fd, SENSORIOCSQUEUEDEPTH, 10)) errx(1, "failed to set queue depth"); /* start the sensor polling at 2Hz */ if (OK != ioctl(fd, SENSORIOCSPOLLRATE, 2)) errx(1, "failed to set 2Hz poll rate"); /* read the sensor 5x and report each value */ for (unsigned i = 0; i < 5; i++) { struct pollfd fds; /* wait for data to be ready */ fds.fd = fd; fds.events = POLLIN; ret = poll(&fds, 1, 2000); if (ret != 1) errx(1, "timed out waiting for sensor data"); /* now go get it */ sz = read(fd, &report, sizeof(report)); if (sz != sizeof(report)) err(1, "periodic read failed"); warnx("periodic read %u", i); warnx("measurement: %.6f %.6f %.6f", report.x, report.y, report.z); warnx("time: %lld", report.timestamp); } errx(0, "PASS"); } /** * Reset the driver. */ void reset() { int fd = open(MAG_DEVICE_PATH, O_RDONLY); if (fd < 0) err(1, "failed "); if (ioctl(fd, SENSORIOCRESET, 0) < 0) err(1, "driver reset failed"); if (ioctl(fd, SENSORIOCSPOLLRATE, SENSOR_POLLRATE_DEFAULT) < 0) err(1, "driver poll restart failed"); exit(0); } /** * Print a little info about the driver. */ void info() { if (g_dev == nullptr) errx(1, "driver not running"); printf("state @ %p\n", g_dev); g_dev->print_info(); exit(0); } } // namespace int hmc5883_main(int argc, char *argv[]) { /* * Start/load the driver. */ if (!strcmp(argv[1], "start")) hmc5883::start(); /* * Test the driver/device. */ if (!strcmp(argv[1], "test")) hmc5883::test(); /* * Reset the driver. */ if (!strcmp(argv[1], "reset")) hmc5883::reset(); /* * Print driver information. */ if (!strcmp(argv[1], "info")) hmc5883::info(); errx(1, "unrecognised command, try 'start', 'test', 'reset' or 'info'"); }