/**************************************************************************** * * Copyright (c) 2015 Estimation and Control Library (ECL). All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name ECL nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /** * @file vel_pos_fusion.cpp * Function for fusing gps and baro measurements/ * * @author Roman Bast * @author Siddharth Bharat Purohit * @author Paul Riseborough * */ #include "ekf.h" #include "mathlib.h" void Ekf::fuseVelPosHeight() { bool fuse_map[6] = {}; // map of booleans true when [VN,VE,VD,PN,PE,PD] observations are available bool innov_check_pass_map[6] = {}; // true when innovations consistency checks pass for [VN,VE,VD,PN,PE,PD] observations float R[6] = {}; // observation variances for [VN,VE,VD,PN,PE,PD] float gate_size[6] = {}; // innovation consistency check gate sizes for [VN,VE,VD,PN,PE,PD] observations float Kfusion[24] = {}; // Kalman gain vector for any single observation - sequential fusion is used // calculate innovations, innovations gate sizes and observation variances if (_fuse_hor_vel) { fuse_map[0] = fuse_map[1] = true; // horizontal velocity innovations _vel_pos_innov[0] = _state.vel(0) - _gps_sample_delayed.vel(0); _vel_pos_innov[1] = _state.vel(1) - _gps_sample_delayed.vel(1); // observation variance - use receiver reported accuracy with parameter setting the minimum value R[0] = fmaxf(_params.gps_vel_noise, 0.01f); R[0] = fmaxf(R[0], _gps_sample_delayed.sacc); R[0] = R[0] * R[0]; R[1] = R[0]; // innovation gate sizes gate_size[0] = fmaxf(_params.vel_innov_gate, 1.0f); gate_size[1] = gate_size[0]; } if (_fuse_vert_vel) { fuse_map[2] = true; // vertical velocity innovation _vel_pos_innov[2] = _state.vel(2) - _gps_sample_delayed.vel(2); // observation variance - use receiver reported accuracy with parameter setting the minimum value R[2] = fmaxf(_params.gps_vel_noise, 0.01f); // use scaled horizontal speed accuracy assuming typical ratio of VDOP/HDOP R[2] = 1.5f * fmaxf(R[2], _gps_sample_delayed.sacc); R[2] = R[2] * R[2]; // innovation gate size gate_size[2] = fmaxf(_params.vel_innov_gate, 1.0f); } if (_fuse_pos) { fuse_map[3] = fuse_map[4] = true; // Calculate innovations and observation variance depending on type of observations // being used if (_control_status.flags.gps) { // we are using GPS measurements float lower_limit = fmaxf(_params.gps_pos_noise, 0.01f); float upper_limit = fmaxf(_params.pos_noaid_noise, lower_limit); R[3] = math::constrain(_gps_sample_delayed.hacc, lower_limit, upper_limit); _vel_pos_innov[3] = _state.pos(0) - _gps_sample_delayed.pos(0); _vel_pos_innov[4] = _state.pos(1) - _gps_sample_delayed.pos(1); // innovation gate size gate_size[3] = fmaxf(_params.posNE_innov_gate, 1.0f); } else if (_control_status.flags.ev_pos) { // we are using external vision measurements R[3] = fmaxf(_ev_sample_delayed.posErr, 0.01f); _vel_pos_innov[3] = _state.pos(0) - _ev_sample_delayed.posNED(0); _vel_pos_innov[4] = _state.pos(1) - _ev_sample_delayed.posNED(1); // innovation gate size gate_size[3] = fmaxf(_params.ev_innov_gate, 1.0f); } else { // No observations - use a static position to constrain drift if (_control_status.flags.in_air && _control_status.flags.tilt_align) { R[3] = fmaxf(_params.pos_noaid_noise, _params.gps_pos_noise); } else { R[3] = 0.5f; } _vel_pos_innov[3] = _state.pos(0) - _last_known_posNE(0); _vel_pos_innov[4] = _state.pos(1) - _last_known_posNE(1); // glitch protection is not required so set gate to a large value gate_size[3] = 100.0f; } // convert North position noise to variance R[3] = R[3] * R[3]; // copy North axis values to East axis R[4] = R[3]; gate_size[4] = gate_size[3]; } if (_fuse_height) { if (_control_status.flags.baro_hgt) { fuse_map[5] = true; // vertical position innovation - baro measurement has opposite sign to earth z axis _vel_pos_innov[5] = _state.pos(2) + _baro_sample_delayed.hgt - _baro_hgt_offset - _hgt_sensor_offset; // observation variance - user parameter defined R[5] = fmaxf(_params.baro_noise, 0.01f); R[5] = R[5] * R[5]; // innovation gate size gate_size[5] = fmaxf(_params.baro_innov_gate, 1.0f); } else if (_control_status.flags.gps_hgt) { fuse_map[5] = true; // vertical position innovation - gps measurement has opposite sign to earth z axis _vel_pos_innov[5] = _state.pos(2) + _gps_sample_delayed.hgt - _gps_alt_ref - _hgt_sensor_offset; // observation variance - receiver defined and parameter limited // use scaled horizontal position accuracy assuming typical ratio of VDOP/HDOP float lower_limit = fmaxf(_params.gps_pos_noise, 0.01f); float upper_limit = fmaxf(_params.pos_noaid_noise, lower_limit); R[5] = 1.5f * math::constrain(_gps_sample_delayed.vacc, lower_limit, upper_limit); R[5] = R[5] * R[5]; // innovation gate size gate_size[5] = fmaxf(_params.baro_innov_gate, 1.0f); } else if (_control_status.flags.rng_hgt && (_R_to_earth(2, 2) > 0.7071f)) { fuse_map[5] = true; // use range finder with tilt correction _vel_pos_innov[5] = _state.pos(2) - (-math::max(_range_sample_delayed.rng * _R_to_earth(2, 2), _params.rng_gnd_clearance)); // observation variance - user parameter defined R[5] = fmaxf(_params.range_noise, 0.01f); R[5] = R[5] * R[5]; // innovation gate size gate_size[5] = fmaxf(_params.range_innov_gate, 1.0f); } else if (_control_status.flags.ev_hgt) { fuse_map[5] = true; // calculate the innovation assuming the external vision observaton is in local NED frame _vel_pos_innov[5] = _state.pos(2) - _ev_sample_delayed.posNED(2); // observation variance - defined externally R[5] = fmaxf(_ev_sample_delayed.posErr, 0.01f); R[5] = R[5] * R[5]; // innovation gate size gate_size[5] = fmaxf(_params.ev_innov_gate, 1.0f); } } // calculate innovation test ratios for (unsigned obs_index = 0; obs_index < 6; obs_index++) { if (fuse_map[obs_index]) { // compute the innovation variance SK = HPH + R unsigned state_index = obs_index + 4; // we start with vx and this is the 4. state _vel_pos_innov_var[obs_index] = P[state_index][state_index] + R[obs_index]; // Compute the ratio of innovation to gate size _vel_pos_test_ratio[obs_index] = sq(_vel_pos_innov[obs_index]) / (sq(gate_size[obs_index]) * _vel_pos_innov_var[obs_index]); } } // check position, velocity and height innovations // treat 3D velocity, 2D position and height as separate sensors // always pass position checks if using synthetic position measurements or yet to complete tilt alignment // always pass height checks if yet to complete tilt alignment bool vel_check_pass = (_vel_pos_test_ratio[0] <= 1.0f) && (_vel_pos_test_ratio[1] <= 1.0f) && (_vel_pos_test_ratio[2] <= 1.0f); innov_check_pass_map[2] = innov_check_pass_map[1] = innov_check_pass_map[0] = vel_check_pass; bool pos_check_pass = ((_vel_pos_test_ratio[3] <= 1.0f) && (_vel_pos_test_ratio[4] <= 1.0f)) || !_control_status.flags.tilt_align; innov_check_pass_map[4] = innov_check_pass_map[3] = pos_check_pass; innov_check_pass_map[5] = (_vel_pos_test_ratio[5] <= 1.0f) || !_control_status.flags.tilt_align; // record the successful velocity fusion event if (vel_check_pass && _fuse_hor_vel) { _time_last_vel_fuse = _time_last_imu; _innov_check_fail_status.flags.reject_vel_NED = false; } else if (!vel_check_pass) { _innov_check_fail_status.flags.reject_vel_NED = true; } // record the successful position fusion event if (pos_check_pass && _fuse_pos) { _time_last_pos_fuse = _time_last_imu; _innov_check_fail_status.flags.reject_pos_NE = false; } else if (!pos_check_pass) { _innov_check_fail_status.flags.reject_pos_NE = true; } // record the successful height fusion event if (innov_check_pass_map[5] && _fuse_height) { _time_last_hgt_fuse = _time_last_imu; _innov_check_fail_status.flags.reject_pos_D = false; } else if (!innov_check_pass_map[5]) { _innov_check_fail_status.flags.reject_pos_D = true; } for (unsigned obs_index = 0; obs_index < 6; obs_index++) { // skip fusion if not requested or checks have failed if (!fuse_map[obs_index] || !innov_check_pass_map[obs_index]) { continue; } unsigned state_index = obs_index + 4; // we start with vx and this is the 4. state // calculate kalman gain K = PHS, where S = 1/innovation variance for (int row = 0; row < _k_num_states; row++) { Kfusion[row] = P[row][state_index] / _vel_pos_innov_var[obs_index]; } // update covarinace matrix via Pnew = (I - KH)P float KHP[_k_num_states][_k_num_states]; for (unsigned row = 0; row < _k_num_states; row++) { for (unsigned column = 0; column < _k_num_states; column++) { KHP[row][column] = Kfusion[row] * P[state_index][column]; } } // if the covariance correction will result in a negative variance, then // the covariance marix is unhealthy and must be corrected bool healthy = true; for (int i = 0; i < _k_num_states; i++) { if (P[i][i] < KHP[i][i]) { // zero rows and columns zeroRows(P,i,i); zeroCols(P,i,i); //flag as unhealthy healthy = false; // update individual measurement health status if (obs_index == 0) { _fault_status.flags.bad_vel_N = true; } else if (obs_index == 1) { _fault_status.flags.bad_vel_E = true; } else if (obs_index == 2) { _fault_status.flags.bad_vel_D = true; } else if (obs_index == 3) { _fault_status.flags.bad_pos_N = true; } else if (obs_index == 4) { _fault_status.flags.bad_pos_E = true; } else if (obs_index == 5) { _fault_status.flags.bad_pos_D = true; } } else { // update individual measurement health status if (obs_index == 0) { _fault_status.flags.bad_vel_N = false; } else if (obs_index == 1) { _fault_status.flags.bad_vel_E = false; } else if (obs_index == 2) { _fault_status.flags.bad_vel_D = false; } else if (obs_index == 3) { _fault_status.flags.bad_pos_N = false; } else if (obs_index == 4) { _fault_status.flags.bad_pos_E = false; } else if (obs_index == 5) { _fault_status.flags.bad_pos_D = false; } } } // only apply covariance and state corrrections if healthy if (healthy) { // apply the covariance corrections for (unsigned row = 0; row < _k_num_states; row++) { for (unsigned column = 0; column < _k_num_states; column++) { P[row][column] = P[row][column] - KHP[row][column]; } } // correct the covariance marix for gross errors fixCovarianceErrors(); // apply the state corrections fuse(Kfusion, _vel_pos_innov[obs_index]); } } }