/**************************************************************************** * * Copyright (c) 2015 Estimation and Control Library (ECL). All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name ECL nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /** * @file terrain_estimator.cpp * Function for fusing rangefinder measurements to estimate terrain vertical position/ * * @author Paul Riseborough * */ #include "ekf.h" #include "mathlib.h" bool Ekf::initHagl() { // get most recent range measurement from buffer rangeSample latest_measurement = _range_buffer.get_newest(); if ((_time_last_imu - latest_measurement.time_us) < 2e5) { // if we have a fresh measurement, use it to initialise the terrain estimator _terrain_vpos = _state.pos(2) + latest_measurement.rng; // initialise state variance to variance of measurement _terrain_var = sq(_params.range_noise); // success return true; } else if (!_control_status.flags.in_air) { // if on ground we assume a ground clearance _terrain_vpos = _state.pos(2) + _params.rng_gnd_clearance; // Use the ground clearance value as our uncertainty _terrain_var = sq(_params.rng_gnd_clearance); // ths is a guess return false; } else { // no information - cannot initialise return false; } } void Ekf::predictHagl() { // predict the state variance growth // the state is the vertical position of the terrain underneath the vehicle // process noise due to errors in vehicle height estimate _terrain_var += sq(_imu_sample_delayed.delta_vel_dt * _params.terrain_p_noise); // process noise due to terrain gradient _terrain_var += sq(_imu_sample_delayed.delta_vel_dt * _params.terrain_gradient) * (sq(_state.vel(0)) + sq(_state.vel( 1))); // limit the variance to prevent it becoming badly conditioned _terrain_var = math::constrain(_terrain_var, 0.0f, 1e4f); } void Ekf::fuseHagl() { // If the vehicle is excessively tilted, do not try to fuse range finder observations if (_R_to_earth(2, 2) > 0.7071f) { // get a height above ground measurement from the range finder assuming a flat earth float meas_hagl = _range_sample_delayed.rng * _R_to_earth(2, 2); // predict the hagl from the vehicle position and terrain height float pred_hagl = _terrain_vpos - _state.pos(2); // calculate the innovation _hagl_innov = pred_hagl - meas_hagl; // calculate the observation variance adding the variance of the vehicles own height uncertainty and factoring in the effect of tilt on measurement error float obs_variance = fmaxf(P[8][8], 0.0f) + sq(_params.range_noise / _R_to_earth(2, 2)); // calculate the innovation variance - limiting it to prevent a badly conditioned fusion _hagl_innov_var = fmaxf(_terrain_var + obs_variance, obs_variance); // perform an innovation consistency check and only fuse data if it passes float gate_size = fmaxf(_params.range_innov_gate, 1.0f); float test_ratio = sq(_hagl_innov) / (sq(gate_size) * _hagl_innov_var); if (test_ratio <= 1.0f) { // calculate the Kalman gain float gain = _terrain_var / _hagl_innov_var; // correct the state _terrain_vpos -= gain * _hagl_innov; // correct the variance _terrain_var = fmaxf(_terrain_var * (1.0f - gain), 0.0f); // record last successful fusion time _time_last_hagl_fuse = _time_last_imu; } } else { return; } } // return true if the estimate is fresh // return the estimated vertical position of the terrain relative to the NED origin bool Ekf::get_terrain_vert_pos(float *ret) { memcpy(ret, &_terrain_vpos, sizeof(float)); // The height is useful if the uncertainty in terrain height is significantly smaller than than the estimated height above terrain bool accuracy_useful = (sqrtf(_terrain_var) < 0.2f * fmaxf((_terrain_vpos - _state.pos(2)), _params.rng_gnd_clearance)); if (_time_last_imu - _time_last_hagl_fuse < 1e6 || accuracy_useful) { return true; } else { return false; } } void Ekf::get_hagl_innov(float *hagl_innov) { memcpy(hagl_innov, &_hagl_innov, sizeof(_hagl_innov)); } void Ekf::get_hagl_innov_var(float *hagl_innov_var) { memcpy(hagl_innov_var, &_hagl_innov_var, sizeof(_hagl_innov_var)); }