/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* main Rover class, containing all vehicle specific state */ #pragma once #include #include // Libraries #include #include #include #include #include // interface and maths for accelerometer calibration #include // ArduPilot Mega Analog to Digital Converter Library #include // ArduPilot Mega DCM Library #include // needed for AHRS build #include #include // Battery monitor library #include #include #include #include // FIFO buffer library #include #include // Camera triggering #include // ArduPilot Mega Magnetometer Library #include // Compass declination library #include #include // ArduPilot GPS library #include // Inertial Sensor (uncalibated IMU) Library #include #include // ArduPilot Mega Vector/Matrix math Library #include #include // Mission command library #include // Camera/Antenna mount #include #include #include #include // Notify library #include // Optical Flow library #include #include #include // Range finder library #include // RC input mapping library #include // APM relay #include // RSSI Library #include // main loop scheduler #include // Serial manager library #include #include // statistics library #include #include // needed for AHRS build #include #include #include #include #include #include // Mode Filter from Filter library #include // Filter library - butterworth filter #include // Filter library #include #include // Mode Filter from Filter library #include // RC Channel Library #include #if CONFIG_HAL_BOARD == HAL_BOARD_SITL #include #endif // Local modules #include "AP_MotorsUGV.h" #include "mode.h" #include "AP_Arming.h" // Configuration #include "config.h" #include "defines.h" #if ADVANCED_FAILSAFE == ENABLED #include "afs_rover.h" #endif #include "Parameters.h" #include "GCS_Mavlink.h" #include "GCS_Rover.h" class Rover : public AP_HAL::HAL::Callbacks { public: friend class GCS_MAVLINK_Rover; friend class Parameters; friend class ParametersG2; friend class AP_Arming_Rover; #if ADVANCED_FAILSAFE == ENABLED friend class AP_AdvancedFailsafe_Rover; #endif friend class GCS_Rover; friend class Mode; friend class ModeAcro; friend class ModeAuto; friend class ModeGuided; friend class ModeHold; friend class ModeSteering; friend class ModeManual; friend class ModeRTL; friend class ModeSmartRTL; Rover(void); // HAL::Callbacks implementation. void setup(void) override; void loop(void) override; private: static const AP_FWVersion fwver; // must be the first AP_Param variable declared to ensure its // constructor runs before the constructors of the other AP_Param // variables AP_Param param_loader; // all settable parameters Parameters g; ParametersG2 g2; // main loop scheduler AP_Scheduler scheduler = AP_Scheduler::create(); // mapping between input channels RCMapper rcmap = RCMapper::create(); // board specific config AP_BoardConfig BoardConfig = AP_BoardConfig::create(); #if HAL_WITH_UAVCAN // board specific config for CAN bus AP_BoardConfig_CAN BoardConfig_CAN = AP_BoardConfig_CAN::create(); #endif // primary control channels RC_Channel *channel_steer; RC_Channel *channel_throttle; RC_Channel *channel_aux; DataFlash_Class DataFlash; // sensor drivers AP_GPS gps = AP_GPS::create(); AP_Baro barometer = AP_Baro::create(); Compass compass = Compass::create(); AP_InertialSensor ins = AP_InertialSensor::create(); RangeFinder rangefinder = RangeFinder::create(serial_manager, ROTATION_NONE); AP_Button button; // flight modes convenience array AP_Int8 *modes; // Inertial Navigation EKF #if AP_AHRS_NAVEKF_AVAILABLE NavEKF2 EKF2 = NavEKF2::create(&ahrs, barometer, rangefinder); NavEKF3 EKF3 = NavEKF3::create(&ahrs, barometer, rangefinder); AP_AHRS_NavEKF ahrs = AP_AHRS_NavEKF::create(ins, barometer, gps, EKF2, EKF3); #else AP_AHRS_DCM ahrs = AP_AHRS_DCM::create(ins, barometer, gps); #endif // Arming/Disarming management class AP_Arming_Rover arming = AP_Arming_Rover::create(ahrs, barometer, compass, battery); AP_L1_Control L1_controller = AP_L1_Control::create(ahrs, nullptr); // selected navigation controller AP_Navigation *nav_controller; // Mission library AP_Mission mission = AP_Mission::create(ahrs, FUNCTOR_BIND_MEMBER(&Rover::start_command, bool, const AP_Mission::Mission_Command&), FUNCTOR_BIND_MEMBER(&Rover::verify_command_callback, bool, const AP_Mission::Mission_Command&), FUNCTOR_BIND_MEMBER(&Rover::exit_mission, void)); #if AP_AHRS_NAVEKF_AVAILABLE OpticalFlow optflow = OpticalFlow::create(ahrs); #endif // RSSI AP_RSSI rssi = AP_RSSI::create(); #if CONFIG_HAL_BOARD == HAL_BOARD_SITL SITL::SITL sitl; #endif AP_SerialManager serial_manager = AP_SerialManager::create(); // GCS handling GCS_Rover _gcs; // avoid using this; use gcs() GCS_Rover &gcs() { return _gcs; } // relay support AP_Relay relay = AP_Relay::create(); AP_ServoRelayEvents ServoRelayEvents = AP_ServoRelayEvents::create(relay); // The rover's current location struct Location current_loc; // Camera #if CAMERA == ENABLED AP_Camera camera = AP_Camera::create(&relay, MASK_LOG_CAMERA, current_loc, ahrs); #endif // Camera/Antenna mount tracking and stabilisation stuff #if MOUNT == ENABLED // current_loc uses the baro/gps solution for altitude rather than gps only. AP_Mount camera_mount = AP_Mount::create(ahrs, current_loc); #endif // true if initialisation has completed bool initialised; // if USB is connected bool usb_connected; // This is the state of the flight control system // There are multiple states defined such as MANUAL, AUTO, ... Mode *control_mode; mode_reason_t control_mode_reason = MODE_REASON_INITIALISED; // Used to maintain the state of the previous control switch position // This is set to -1 when we need to re-read the switch uint8_t oldSwitchPosition; // These are values received from the GCS if the user is using GCS joystick // control and are substituted for the values coming from the RC radio int16_t rc_override[8]; // A flag if GCS joystick control is in use bool rc_override_active; // Failsafe // A tracking variable for type of failsafe active // Used for failsafe based on loss of RC signal or GCS signal. See // FAILSAFE_EVENT_* struct { uint8_t bits; uint32_t rc_override_timer; uint32_t start_time; uint8_t triggered; uint32_t last_valid_rc_ms; } failsafe; // notification object for LEDs, buzzers etc (parameter set to false disables external leds) AP_Notify notify = AP_Notify::create(); // true if we have a position estimate from AHRS bool have_position; // receiver RSSI uint8_t receiver_rssi; // the time when the last HEARTBEAT message arrived from a GCS uint32_t last_heartbeat_ms; // obstacle detection information struct { // have we detected an obstacle? uint8_t detected_count; float turn_angle; uint16_t rangefinder1_distance_cm; uint16_t rangefinder2_distance_cm; // time when we last detected an obstacle, in milliseconds uint32_t detected_time_ms; } obstacle; // Ground speed // The amount current ground speed is below min ground speed. meters per second float ground_speed; // CH7 auxiliary switches last known position aux_switch_pos aux_ch7; // Battery Sensors AP_BattMonitor battery = AP_BattMonitor::create(); #if FRSKY_TELEM_ENABLED == ENABLED // FrSky telemetry support AP_Frsky_Telem frsky_telemetry = AP_Frsky_Telem::create(ahrs, battery, rangefinder); #endif uint32_t control_sensors_present; uint32_t control_sensors_enabled; uint32_t control_sensors_health; // Conditional command // A value used in condition commands (eg delay, change alt, etc.) // For example in a change altitude command, it is the altitude to change to. int32_t condition_value; // A starting value used to check the status of a conditional command. // For example in a delay command the condition_start records that start time for the delay int32_t condition_start; // 3D Location vectors // Location structure defined in AP_Common // The home location used for RTL. The location is set when we first get stable GPS lock const struct Location &home; // Flag for if we have g_gps lock and have set the home location in AHRS enum HomeState home_is_set = HOME_UNSET; // true if the system time has been set from the GPS bool system_time_set; // true if the compass's initial location has been set bool compass_init_location; // IMU variables // The main loop execution time. Seconds // This is the time between calls to the DCM algorithm and is the Integration time for the gyros. float G_Dt; // Performance monitoring // Timer used to accrue data and trigger recording of the performance monitoring log message int32_t perf_mon_timer; // The maximum main loop execution time, in microseconds, recorded in the current performance monitoring interval uint32_t G_Dt_max; // System Timers // Time in microseconds of start of main control loop. uint32_t fast_loopTimer_us; // Number of milliseconds used in last main loop cycle uint32_t delta_us_fast_loop; // Counter of main loop executions. Used for performance monitoring and failsafe processing uint16_t mainLoop_count; // set if we are driving backwards bool in_reverse; // true if pivoting (set by use_pivot_steering) bool pivot_steering_active; static const AP_Scheduler::Task scheduler_tasks[]; // use this to prevent recursion during sensor init bool in_mavlink_delay; static const AP_Param::Info var_info[]; static const LogStructure log_structure[]; // Loiter control uint16_t loiter_duration; // How long we should loiter at the nav_waypoint (time in seconds) uint32_t loiter_start_time; // How long have we been loitering - The start time in millis bool previously_reached_wp; // set to true if we have EVER reached the waypoint // time that rudder/steering arming has been running uint32_t rudder_arm_timer; // Store the time the last GPS message was received. uint32_t last_gps_msg_ms{0}; // last visual odometry update time uint32_t visual_odom_last_update_ms; // last wheel encoder update times float wheel_encoder_last_angle_rad[WHEELENCODER_MAX_INSTANCES]; // distance in radians at time of last update to EKF uint32_t wheel_encoder_last_update_ms[WHEELENCODER_MAX_INSTANCES]; // system time of last ping from each encoder uint32_t wheel_encoder_last_ekf_update_ms; // system time of last encoder data push to EKF float wheel_encoder_rpm[WHEELENCODER_MAX_INSTANCES]; // for reporting to GCS // True when we are doing motor test bool motor_test; ModeInitializing mode_initializing; ModeHold mode_hold; ModeManual mode_manual; ModeAcro mode_acro; ModeGuided mode_guided; ModeAuto mode_auto; ModeSteering mode_steering; ModeRTL mode_rtl; ModeSmartRTL mode_smartrtl; // cruise throttle and speed learning struct { bool learning; LowPassFilterFloat speed_filt = LowPassFilterFloat(2.0f); LowPassFilterFloat throttle_filt = LowPassFilterFloat(2.0f); } cruise_learn; private: // APMrover2.cpp void stats_update(); void ahrs_update(); void mount_update(void); void update_trigger(void); void update_alt(); void gcs_failsafe_check(void); void update_compass(void); void update_logging1(void); void update_logging2(void); void update_aux(void); void one_second_loop(void); void update_GPS_50Hz(void); void update_GPS_10Hz(void); void update_current_mode(void); // capabilities.cpp void init_capabilities(void); // commands_logic.cpp void update_mission(void); bool start_command(const AP_Mission::Mission_Command& cmd); void exit_mission(); bool verify_command_callback(const AP_Mission::Mission_Command& cmd); bool verify_command(const AP_Mission::Mission_Command& cmd); void do_RTL(void); void do_nav_wp(const AP_Mission::Mission_Command& cmd, bool always_stop_at_destination); void do_nav_set_yaw_speed(const AP_Mission::Mission_Command& cmd); bool verify_nav_wp(const AP_Mission::Mission_Command& cmd); bool verify_RTL(); bool verify_loiter_unlimited(const AP_Mission::Mission_Command& cmd); bool verify_loiter_time(const AP_Mission::Mission_Command& cmd); bool verify_nav_set_yaw_speed(); void do_wait_delay(const AP_Mission::Mission_Command& cmd); void do_within_distance(const AP_Mission::Mission_Command& cmd); bool verify_wait_delay(); bool verify_within_distance(); void do_change_speed(const AP_Mission::Mission_Command& cmd); void do_set_home(const AP_Mission::Mission_Command& cmd); #if CAMERA == ENABLED void do_digicam_configure(const AP_Mission::Mission_Command& cmd); void do_digicam_control(const AP_Mission::Mission_Command& cmd); #endif void do_set_reverse(const AP_Mission::Mission_Command& cmd); // commands.cpp void update_home_from_EKF(); bool set_home_to_current_location(bool lock); bool set_home(const Location& loc, bool lock); void set_ekf_origin(const Location& loc); void set_system_time_from_GPS(); void update_home(); // compat.cpp void delay(uint32_t ms); // control_modes.cpp Mode *mode_from_mode_num(enum mode num); void read_control_switch(); uint8_t readSwitch(void); void reset_control_switch(); aux_switch_pos read_aux_switch_pos(); void init_aux_switch(); void read_aux_switch(); bool motor_active(); // crash_check.cpp void crash_check(); // cruise_learn.cpp void cruise_learn_start(); void cruise_learn_update(); void cruise_learn_complete(); // events.cpp void update_events(void); // failsafe.cpp void failsafe_trigger(uint8_t failsafe_type, bool on); #if ADVANCED_FAILSAFE == ENABLED void afs_fs_check(void); #endif // GCS_Mavlink.cpp void send_heartbeat(mavlink_channel_t chan); void send_attitude(mavlink_channel_t chan); void send_extended_status1(mavlink_channel_t chan); void send_location(mavlink_channel_t chan); void send_nav_controller_output(mavlink_channel_t chan); void send_servo_out(mavlink_channel_t chan); void send_vfr_hud(mavlink_channel_t chan); void send_simstate(mavlink_channel_t chan); void send_rangefinder(mavlink_channel_t chan); void send_pid_tuning(mavlink_channel_t chan); void send_wheel_encoder(mavlink_channel_t chan); void gcs_data_stream_send(void); void gcs_update(void); void gcs_retry_deferred(void); // Log.cpp void Log_Write_Performance(); void Log_Write_Steering(); void Log_Write_Beacon(); void Log_Write_Startup(uint8_t type); void Log_Write_Throttle(); void Log_Write_Nav_Tuning(); void Log_Write_Attitude(); void Log_Write_Rangefinder(); void Log_Write_Current(); void Log_Arm_Disarm(); void Log_Write_RC(void); void Log_Write_Error(uint8_t sub_system, uint8_t error_code); void Log_Write_Baro(void); void Log_Write_Home_And_Origin(); void Log_Write_GuidedTarget(uint8_t target_type, const Vector3f& pos_target, const Vector3f& vel_target); void Log_Write_WheelEncoder(); void Log_Read(uint16_t log_num, uint16_t start_page, uint16_t end_page); void log_init(void); void Log_Write_Vehicle_Startup_Messages(); // Parameters.cpp void load_parameters(void); // radio.cpp void set_control_channels(void); void init_rc_in(); void init_rc_out(); void rudder_arm_disarm_check(); void read_radio(); void control_failsafe(uint16_t pwm); void trim_control_surfaces(); void trim_radio(); // sensors.cpp void init_compass(void); void compass_accumulate(void); void init_barometer(bool full_calibration); void init_rangefinder(void); void init_beacon(); void update_beacon(); void init_visual_odom(); void update_visual_odom(); void update_wheel_encoder(); void read_battery(void); void read_receiver_rssi(void); void compass_cal_update(void); void accel_cal_update(void); void read_rangefinders(void); void button_update(void); void update_sensor_status_flags(void); // Steering.cpp bool use_pivot_steering(float yaw_error_cd); void set_servos(void); // system.cpp void init_ardupilot(); void startup_ground(void); void set_reverse(bool reverse); bool set_mode(Mode &new_mode, mode_reason_t reason); bool mavlink_set_mode(uint8_t mode); void startup_INS_ground(void); void update_notify(); void resetPerfData(void); void check_usb_mux(void); void print_mode(AP_HAL::BetterStream *port, uint8_t mode); void notify_mode(const Mode *new_mode); uint8_t check_digital_pin(uint8_t pin); bool should_log(uint32_t mask); void change_arm_state(void); bool arm_motors(AP_Arming::ArmingMethod method); bool disarm_motors(void); void smart_rtl_update(); bool is_boat() const; // test.cpp void print_hit_enter(); void print_enabled(bool b); public: void mavlink_delay_cb(); void failsafe_check(); void dataflash_periodic(void); void ins_periodic(); void update_soft_armed(); // Motor test void motor_test_output(); bool mavlink_motor_test_check(mavlink_channel_t chan, bool check_rc, uint8_t motor_seq, uint8_t throttle_type, int16_t throttle_value); MAV_RESULT mavlink_motor_test_start(mavlink_channel_t chan, uint8_t motor_seq, uint8_t throttle_type, int16_t throttle_value, float timeout_sec); void motor_test_stop(); }; extern const AP_HAL::HAL& hal; extern Rover rover; using AP_HAL::millis; using AP_HAL::micros;