/* SUMD decoder, based on PX4Firmware/src/rc/lib/rc/sumd.c from PX4Firmware modified for use in AP_HAL_* by Andrew Tridgell */ /**************************************************************************** * * Copyright (c) 2015 PX4 Development Team. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name PX4 nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /* * @file sumd.h * * RC protocol definition for Graupner HoTT transmitter (SUMD/SUMH Protocol) * * @author Marco Bauer */ #include "AP_RCProtocol_SUMD.h" #define SUMD_HEADER_LENGTH 3 #define SUMD_HEADER_ID 0xA8 #define SUMD_ID_SUMH 0x00 #define SUMD_ID_SUMD 0x01 #define SUMD_ID_FAILSAFE 0x81 /* define range mapping here, -+100% -> 1000..2000 */ #define SUMD_RANGE_MIN 0.0f #define SUMD_RANGE_MAX 4096.0f #define SUMD_TARGET_MIN 1000.0f #define SUMD_TARGET_MAX 2000.0f /* pre-calculate the floating point stuff as far as possible at compile time */ #define SUMD_SCALE_FACTOR ((SUMD_TARGET_MAX - SUMD_TARGET_MIN) / (SUMD_RANGE_MAX - SUMD_RANGE_MIN)) #define SUMD_SCALE_OFFSET (int)(SUMD_TARGET_MIN - (SUMD_SCALE_FACTOR * SUMD_RANGE_MIN + 0.5f)) // #define SUMD_DEBUG extern const AP_HAL::HAL& hal; uint16_t AP_RCProtocol_SUMD::sumd_crc16(uint16_t crc, uint8_t value) { int i; crc ^= (uint16_t)value << 8; for (i = 0; i < 8; i++) { crc = (crc & 0x8000) ? (crc << 1) ^ 0x1021 : (crc << 1); } return crc; } uint8_t AP_RCProtocol_SUMD::sumd_crc8(uint8_t crc, uint8_t value) { crc += value; return crc; } void AP_RCProtocol_SUMD::process_pulse(uint32_t width_s0, uint32_t width_s1) { // convert to bit widths, allowing for up to about 4usec error, assuming 115200 bps uint16_t bits_s0 = ((width_s0+4)*(uint32_t)115200) / 1000000; uint16_t bits_s1 = ((width_s1+4)*(uint32_t)115200) / 1000000; uint8_t bit_ofs, byte_ofs; uint16_t nbits; if (bits_s0 == 0 || bits_s1 == 0) { // invalid data goto reset; } byte_ofs = sumd_state.bit_ofs/10; bit_ofs = sumd_state.bit_ofs%10; if (byte_ofs >= SUMD_FRAME_MAXLEN) { goto reset; } // pull in the high bits nbits = bits_s0; if (nbits+bit_ofs > 10) { nbits = 10 - bit_ofs; } sumd_state.bytes[byte_ofs] |= ((1U< 10) { // we have a full frame uint8_t byte; uint8_t i; for (i=0; i <= byte_ofs; i++) { // get raw data uint16_t v = sumd_state.bytes[i]; // check start bit if ((v & 1) != 0) { break; } // check stop bits if ((v & 0x200) != 0x200) { break; } byte = ((v>>1) & 0xFF); process_byte(byte, 115200); } memset(&sumd_state, 0, sizeof(sumd_state)); } byte_ofs = sumd_state.bit_ofs/10; bit_ofs = sumd_state.bit_ofs%10; if (bits_s1+bit_ofs > 10) { // invalid data goto reset; } // pull in the low bits sumd_state.bit_ofs += bits_s1; return; reset: memset(&sumd_state, 0, sizeof(sumd_state)); } void AP_RCProtocol_SUMD::process_byte(uint8_t byte, uint32_t baudrate) { if (baudrate != 115200) { return; } switch (_decode_state) { case SUMD_DECODE_STATE_UNSYNCED: #ifdef SUMD_DEBUG hal.console->printf(" SUMD_DECODE_STATE_UNSYNCED \n") ; #endif if (byte == SUMD_HEADER_ID) { _rxpacket.header = byte; _sumd = true; _rxlen = 0; _crc16 = 0x0000; _crc8 = 0x00; _crcOK = false; _crc16 = sumd_crc16(_crc16, byte); _crc8 = sumd_crc8(_crc8, byte); _decode_state = SUMD_DECODE_STATE_GOT_HEADER; #ifdef SUMD_DEBUG hal.console->printf(" SUMD_DECODE_STATE_GOT_HEADER: %x \n", byte) ; #endif } break; case SUMD_DECODE_STATE_GOT_HEADER: if (byte == SUMD_ID_SUMD || byte == SUMD_ID_SUMH) { _rxpacket.status = byte; if (byte == SUMD_ID_SUMH) { _sumd = false; } if (_sumd) { _crc16 = sumd_crc16(_crc16, byte); } else { _crc8 = sumd_crc8(_crc8, byte); } _decode_state = SUMD_DECODE_STATE_GOT_STATE; #ifdef SUMD_DEBUG hal.console->printf(" SUMD_DECODE_STATE_GOT_STATE: %x \n", byte) ; #endif } else { _decode_state = SUMD_DECODE_STATE_UNSYNCED; } break; case SUMD_DECODE_STATE_GOT_STATE: if (byte >= 2 && byte <= SUMD_MAX_CHANNELS) { _rxpacket.length = byte; if (_sumd) { _crc16 = sumd_crc16(_crc16, byte); } else { _crc8 = sumd_crc8(_crc8, byte); } _rxlen++; _decode_state = SUMD_DECODE_STATE_GOT_LEN; #ifdef SUMD_DEBUG hal.console->printf(" SUMD_DECODE_STATE_GOT_LEN: %x (%d) \n", byte, byte) ; #endif } else { _decode_state = SUMD_DECODE_STATE_UNSYNCED; } break; case SUMD_DECODE_STATE_GOT_LEN: _rxpacket.sumd_data[_rxlen] = byte; if (_sumd) { _crc16 = sumd_crc16(_crc16, byte); } else { _crc8 = sumd_crc8(_crc8, byte); } _rxlen++; if (_rxlen <= ((_rxpacket.length * 2))) { #ifdef SUMD_DEBUG hal.console->printf(" SUMD_DECODE_STATE_GOT_DATA[%d]: %x\n", _rxlen - 2, byte) ; #endif } else { _decode_state = SUMD_DECODE_STATE_GOT_DATA; #ifdef SUMD_DEBUG hal.console->printf(" SUMD_DECODE_STATE_GOT_DATA -- finish --\n") ; #endif } break; case SUMD_DECODE_STATE_GOT_DATA: _rxpacket.crc16_high = byte; #ifdef SUMD_DEBUG hal.console->printf(" SUMD_DECODE_STATE_GOT_CRC16[1]: %x [%x]\n", byte, ((_crc16 >> 8) & 0xff)) ; #endif if (_sumd) { _decode_state = SUMD_DECODE_STATE_GOT_CRC; } else { _decode_state = SUMD_DECODE_STATE_GOT_CRC16_BYTE_1; } break; case SUMD_DECODE_STATE_GOT_CRC16_BYTE_1: _rxpacket.crc16_low = byte; #ifdef SUMD_DEBUG hal.console->printf(" SUMD_DECODE_STATE_GOT_CRC16[2]: %x [%x]\n", byte, (_crc16 & 0xff)) ; #endif _decode_state = SUMD_DECODE_STATE_GOT_CRC16_BYTE_2; break; case SUMD_DECODE_STATE_GOT_CRC16_BYTE_2: _rxpacket.telemetry = byte; #ifdef SUMD_DEBUG hal.console->printf(" SUMD_DECODE_STATE_GOT_SUMH_TELEMETRY: %x\n", byte) ; #endif _decode_state = SUMD_DECODE_STATE_GOT_CRC; break; case SUMD_DECODE_STATE_GOT_CRC: if (_sumd) { _rxpacket.crc16_low = byte; #ifdef SUMD_DEBUG hal.console->printf(" SUMD_DECODE_STATE_GOT_CRC[2]: %x [%x]\n\n", byte, (_crc16 & 0xff)) ; #endif if (_crc16 == (uint16_t)(_rxpacket.crc16_high << 8) + _rxpacket.crc16_low) { _crcOK = true; } } else { _rxpacket.crc8 = byte; #ifdef SUMD_DEBUG hal.console->printf(" SUMD_DECODE_STATE_GOT_CRC8_SUMH: %x [%x]\n\n", byte, _crc8) ; #endif if (_crc8 == _rxpacket.crc8) { _crcOK = true; } } if (_crcOK) { #ifdef SUMD_DEBUG hal.console->printf(" CRC - OK \n") ; #endif if (_sumd) { #ifdef SUMD_DEBUG hal.console->printf(" Got valid SUMD Packet\n") ; #endif } else { #ifdef SUMD_DEBUG hal.console->printf(" Got valid SUMH Packet\n") ; #endif } #ifdef SUMD_DEBUG hal.console->printf(" RXLEN: %d [Chans: %d] \n\n", _rxlen - 1, (_rxlen - 1) / 2) ; #endif unsigned i; uint8_t num_values; uint16_t values[SUMD_MAX_CHANNELS]; /* received Channels */ if ((uint16_t)_rxpacket.length > SUMD_MAX_CHANNELS) { _rxpacket.length = (uint8_t) SUMD_MAX_CHANNELS; } num_values = (uint16_t)_rxpacket.length; /* decode the actual packet */ /* reorder first 4 channels */ /* ch1 = roll -> sumd = ch2 */ values[0] = (uint16_t)((_rxpacket.sumd_data[1 * 2 + 1] << 8) | _rxpacket.sumd_data[1 * 2 + 2]) >> 3; /* ch2 = pitch -> sumd = ch2 */ values[1] = (uint16_t)((_rxpacket.sumd_data[2 * 2 + 1] << 8) | _rxpacket.sumd_data[2 * 2 + 2]) >> 3; /* ch3 = throttle -> sumd = ch2 */ values[2] = (uint16_t)((_rxpacket.sumd_data[0 * 2 + 1] << 8) | _rxpacket.sumd_data[0 * 2 + 2]) >> 3; /* ch4 = yaw -> sumd = ch2 */ values[3] = (uint16_t)((_rxpacket.sumd_data[3 * 2 + 1] << 8) | _rxpacket.sumd_data[3 * 2 + 2]) >> 3; /* we start at channel 5(index 4) */ unsigned chan_index = 4; for (i = 4; i < _rxpacket.length; i++) { #ifdef SUMD_DEBUG hal.console->printf("ch[%d] : %x %x [ %x %d ]\n", i + 1, _rxpacket.sumd_data[i * 2 + 1], _rxpacket.sumd_data[i * 2 + 2], ((_rxpacket.sumd_data[i * 2 + 1] << 8) | _rxpacket.sumd_data[i * 2 + 2]) >> 3, ((_rxpacket.sumd_data[i * 2 + 1] << 8) | _rxpacket.sumd_data[i * 2 + 2]) >> 3); #endif values[chan_index] = (uint16_t)((_rxpacket.sumd_data[i * 2 + 1] << 8) | _rxpacket.sumd_data[i * 2 + 2]) >> 3; /* convert values to 1000-2000 ppm encoding in a not too sloppy fashion */ //channels[chan_index] = (uint16_t)(channels[chan_index] * SUMD_SCALE_FACTOR + .5f) + SUMD_SCALE_OFFSET; chan_index++; } if (_rxpacket.status == 0x01) { add_input(num_values, values, false); } else if (_rxpacket.status == 0x81) { add_input(num_values, values, true); } } else { #ifdef SUMD_DEBUG hal.console->printf(" CRC - fail 0x%X 0x%X\n", _crc16, (uint16_t)(_rxpacket.crc16_high << 8) + _rxpacket.crc16_low); #endif } _decode_state = SUMD_DECODE_STATE_UNSYNCED; break; } }