// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* * AP_MotorsTri.cpp - ArduCopter motors library * Code by RandyMackay. DIYDrones.com * */ #include #include #include "AP_MotorsTri.h" extern const AP_HAL::HAL& hal; const AP_Param::GroupInfo AP_MotorsTri::var_info[] PROGMEM = { // variables from parent vehicle AP_NESTEDGROUPINFO(AP_Motors_Multirotor, 0), // parameters 1 ~ 29 were reserved for tradheli // parameters 30 ~ 39 reserved for tricopter // parameters 40 ~ 49 for single copter and coax copter (these have identical parameter files) // @Param: YAW_SV_REV // @DisplayName: Yaw Servo Reverse // @Description: Yaw servo reversing. Set to 1 for normal (forward) operation. Set to -1 to reverse this channel. // @Values: -1:Reversed,1:Normal // @User: Standard AP_GROUPINFO("YAW_SV_REV", 31, AP_MotorsTri, _yaw_servo_reverse, 1), // @Param: YAW_SV_TRIM // @DisplayName: Yaw Servo Trim/Center // @Description: Trim or center position of yaw servo // @Range: 1250 1750 // @Units: PWM // @Increment: 1 // @User: Standard AP_GROUPINFO("YAW_SV_TRIM", 32, AP_MotorsTri, _yaw_servo_trim, 1500), // @Param: YAW_SV_MIN // @DisplayName: Yaw Servo Min Position // @Description: Minimum angle limit of yaw servo // @Range: 1000 1400 // @Units: PWM // @Increment: 1 // @User: Standard AP_GROUPINFO("YAW_SV_MIN", 33, AP_MotorsTri, _yaw_servo_min, 1250), // @Param: YAW_SV_MAX // @DisplayName: Yaw Servo Max Position // @Description: Maximum angle limit of yaw servo // @Range: 1600 2000 // @Units: PWM // @Increment: 1 // @User: Standard AP_GROUPINFO("YAW_SV_MAX", 34, AP_MotorsTri, _yaw_servo_max, 1750), AP_GROUPEND }; // init void AP_MotorsTri::Init() { // call parent Init function to set-up throttle curve AP_Motors::Init(); // set update rate for the 3 motors (but not the servo on channel 7) set_update_rate(_speed_hz); // set the motor_enabled flag so that the ESCs can be calibrated like other frame types motor_enabled[AP_MOTORS_MOT_1] = true; motor_enabled[AP_MOTORS_MOT_2] = true; motor_enabled[AP_MOTORS_MOT_4] = true; // disable CH7 from being used as an aux output (i.e. for camera gimbal, etc) RC_Channel_aux::disable_aux_channel(AP_MOTORS_CH_TRI_YAW); } // set update rate to motors - a value in hertz void AP_MotorsTri::set_update_rate( uint16_t speed_hz ) { // record requested speed _speed_hz = speed_hz; // set update rate for the 3 motors (but not the servo on channel 7) uint32_t mask = 1U << pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_1]) | 1U << pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_2]) | 1U << pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_4]); hal.rcout->set_freq(mask, _speed_hz); } // enable - starts allowing signals to be sent to motors void AP_MotorsTri::enable() { // enable output channels hal.rcout->enable_ch(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_1])); hal.rcout->enable_ch(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_2])); hal.rcout->enable_ch(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_4])); hal.rcout->enable_ch(AP_MOTORS_CH_TRI_YAW); } // output_min - sends minimum values out to the motors void AP_MotorsTri::output_min() { // set lower limit flag limit.throttle_lower = true; // send minimum value to each motor hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_1]), _throttle_radio_min); hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_2]), _throttle_radio_min); hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_4]), _throttle_radio_min); hal.rcout->write(AP_MOTORS_CH_TRI_YAW, _yaw_servo_trim); } // get_motor_mask - returns a bitmask of which outputs are being used for motors or servos (1 means being used) // this can be used to ensure other pwm outputs (i.e. for servos) do not conflict uint16_t AP_MotorsTri::get_motor_mask() { // tri copter uses channels 1,2,4 and 7 return (1U << pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_1])) | (1U << pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_2])) | (1U << pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_4])) | (1U << AP_MOTORS_CH_TRI_YAW); } void AP_MotorsTri::output_armed_not_stabilizing() { int16_t throttle_radio_output; // total throttle pwm value, summed onto throttle channel minimum, typically ~1100-1900 int16_t out_min = _throttle_radio_min + _min_throttle; int16_t out_max = _throttle_radio_max; int16_t motor_out[AP_MOTORS_MOT_4+1]; // initialize limits flags limit.roll_pitch = true; limit.yaw = true; limit.throttle_lower = false; limit.throttle_upper = false; int16_t thr_in_min = rel_pwm_to_thr_range(_spin_when_armed_ramped); if (_throttle_control_input <= thr_in_min) { _throttle_control_input = thr_in_min; limit.throttle_lower = true; } if (_throttle_control_input >= _hover_out) { _throttle_control_input = _hover_out; limit.throttle_upper = true; } throttle_radio_output = calc_throttle_radio_output(); motor_out[AP_MOTORS_MOT_1] = throttle_radio_output; motor_out[AP_MOTORS_MOT_2] = throttle_radio_output; motor_out[AP_MOTORS_MOT_4] = throttle_radio_output; if(throttle_radio_output >= out_min) { // adjust for thrust curve and voltage scaling motor_out[AP_MOTORS_MOT_1] = apply_thrust_curve_and_volt_scaling(motor_out[AP_MOTORS_MOT_1], out_min, out_max); motor_out[AP_MOTORS_MOT_2] = apply_thrust_curve_and_volt_scaling(motor_out[AP_MOTORS_MOT_2], out_min, out_max); motor_out[AP_MOTORS_MOT_4] = apply_thrust_curve_and_volt_scaling(motor_out[AP_MOTORS_MOT_4], out_min, out_max); } // send output to each motor hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_1]), motor_out[AP_MOTORS_MOT_1]); hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_2]), motor_out[AP_MOTORS_MOT_2]); hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_4]), motor_out[AP_MOTORS_MOT_4]); // send centering signal to yaw servo hal.rcout->write(AP_MOTORS_CH_TRI_YAW, _yaw_servo_trim); } // sends commands to the motors // TODO pull code that is common to output_armed_not_stabilizing into helper functions void AP_MotorsTri::output_armed_stabilizing() { int16_t roll_pwm; // roll pwm value, initially calculated by calc_roll_pwm() but may be modified after, +/- 400 int16_t pitch_pwm; // pitch pwm value, initially calculated by calc_roll_pwm() but may be modified after, +/- 400 int16_t throttle_radio_output; // total throttle pwm value, summed onto throttle channel minimum, typically ~1100-1900 int16_t yaw_radio_output; // final yaw pwm value sent to motors, typically ~1100-1900 int16_t out_min = _throttle_radio_min + _min_throttle; int16_t out_max = _throttle_radio_max; int16_t motor_out[AP_MOTORS_MOT_4+1]; // initialize limits flags limit.roll_pitch = false; limit.yaw = false; limit.throttle_lower = false; limit.throttle_upper = false; // Throttle is 0 to 1000 only int16_t thr_in_min = rel_pwm_to_thr_range(_min_throttle); if (_throttle_control_input <= thr_in_min) { _throttle_control_input = thr_in_min; limit.throttle_lower = true; } if (_throttle_control_input >= _max_throttle) { _throttle_control_input = _max_throttle; limit.throttle_upper = true; } // tricopters limit throttle to 80% // To-Do: implement improved stability patch and remove this limit if (_throttle_control_input > 800) { _throttle_control_input = 800; limit.throttle_upper = true; } roll_pwm = calc_roll_pwm(); pitch_pwm = calc_pitch_pwm(); throttle_radio_output = calc_throttle_radio_output(); yaw_radio_output = calc_yaw_radio_output(); // if we are not sending a throttle output, we cut the motors if( is_zero(_throttle_control_input) ) { // range check spin_when_armed if (_spin_when_armed_ramped < 0) { _spin_when_armed_ramped = 0; } if (_spin_when_armed_ramped > _min_throttle) { _spin_when_armed_ramped = _min_throttle; } motor_out[AP_MOTORS_MOT_1] = _throttle_radio_min + _spin_when_armed_ramped; motor_out[AP_MOTORS_MOT_2] = _throttle_radio_min + _spin_when_armed_ramped; motor_out[AP_MOTORS_MOT_4] = _throttle_radio_min + _spin_when_armed_ramped; }else{ int16_t roll_out = (float)(roll_pwm * 0.866f); int16_t pitch_out = pitch_pwm / 2; // check if throttle is below limit if (_throttle_control_input <= _min_throttle) { limit.throttle_lower = true; _throttle_control_input = _min_throttle; throttle_radio_output = calc_throttle_radio_output(); } // TODO: set limits.roll_pitch and limits.yaw //left front motor_out[AP_MOTORS_MOT_2] = throttle_radio_output + roll_out + pitch_out; //right front motor_out[AP_MOTORS_MOT_1] = throttle_radio_output - roll_out + pitch_out; // rear motor_out[AP_MOTORS_MOT_4] = throttle_radio_output - pitch_pwm; // Tridge's stability patch if(motor_out[AP_MOTORS_MOT_1] > out_max) { motor_out[AP_MOTORS_MOT_2] -= (motor_out[AP_MOTORS_MOT_1] - out_max); motor_out[AP_MOTORS_MOT_4] -= (motor_out[AP_MOTORS_MOT_1] - out_max); motor_out[AP_MOTORS_MOT_1] = out_max; } if(motor_out[AP_MOTORS_MOT_2] > out_max) { motor_out[AP_MOTORS_MOT_1] -= (motor_out[AP_MOTORS_MOT_2] - out_max); motor_out[AP_MOTORS_MOT_4] -= (motor_out[AP_MOTORS_MOT_2] - out_max); motor_out[AP_MOTORS_MOT_2] = out_max; } if(motor_out[AP_MOTORS_MOT_4] > out_max) { motor_out[AP_MOTORS_MOT_1] -= (motor_out[AP_MOTORS_MOT_4] - out_max); motor_out[AP_MOTORS_MOT_2] -= (motor_out[AP_MOTORS_MOT_4] - out_max); motor_out[AP_MOTORS_MOT_4] = out_max; } // adjust for thrust curve and voltage scaling motor_out[AP_MOTORS_MOT_1] = apply_thrust_curve_and_volt_scaling(motor_out[AP_MOTORS_MOT_1], out_min, out_max); motor_out[AP_MOTORS_MOT_2] = apply_thrust_curve_and_volt_scaling(motor_out[AP_MOTORS_MOT_2], out_min, out_max); motor_out[AP_MOTORS_MOT_4] = apply_thrust_curve_and_volt_scaling(motor_out[AP_MOTORS_MOT_4], out_min, out_max); // ensure motors don't drop below a minimum value and stop motor_out[AP_MOTORS_MOT_1] = max(motor_out[AP_MOTORS_MOT_1], out_min); motor_out[AP_MOTORS_MOT_2] = max(motor_out[AP_MOTORS_MOT_2], out_min); motor_out[AP_MOTORS_MOT_4] = max(motor_out[AP_MOTORS_MOT_4], out_min); } // send output to each motor hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_1]), motor_out[AP_MOTORS_MOT_1]); hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_2]), motor_out[AP_MOTORS_MOT_2]); hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_4]), motor_out[AP_MOTORS_MOT_4]); // send out to yaw command to tail servo hal.rcout->write(AP_MOTORS_CH_TRI_YAW, yaw_radio_output); } // output_disarmed - sends commands to the motors void AP_MotorsTri::output_disarmed() { // Send minimum values to all motors output_min(); } // output_test - spin a motor at the pwm value specified // motor_seq is the motor's sequence number from 1 to the number of motors on the frame // pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000 void AP_MotorsTri::output_test(uint8_t motor_seq, int16_t pwm) { // exit immediately if not armed if (!armed()) { return; } // output to motors and servos switch (motor_seq) { case 1: // front right motor hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_1]), pwm); break; case 2: // back motor hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_4]), pwm); break; case 3: // back servo hal.rcout->write(AP_MOTORS_CH_TRI_YAW, pwm); break; case 4: // front left motor hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_2]), pwm); break; default: // do nothing break; } } // calc_yaw_radio_output - calculate final radio output for yaw channel int16_t AP_MotorsTri::calc_yaw_radio_output() { int16_t ret; if (_yaw_servo_reverse < 0) { if (_yaw_control_input >= 0){ ret = (_yaw_servo_trim - (_yaw_control_input/4500 * (_yaw_servo_trim - _yaw_servo_min))); } else { ret = (_yaw_servo_trim - (_yaw_control_input/4500 * (_yaw_servo_max - _yaw_servo_trim))); } } else { if (_yaw_control_input >= 0){ ret = ((_yaw_control_input/4500 * (_yaw_servo_max - _yaw_servo_trim)) + _yaw_servo_trim); } else { ret = ((_yaw_control_input/4500 * (_yaw_servo_trim - _yaw_servo_min)) + _yaw_servo_trim); } } return ret; }