/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#define THISFIRMWARE "ArduCopter V3.3-dev"
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
/*
* ArduCopter Version 3.0
* Creator: Jason Short
* Lead Developer: Randy Mackay
* Lead Tester: Marco Robustini
* Based on code and ideas from the Arducopter team: Leonard Hall, Andrew Tridgell, Robert Lefebvre, Pat Hickey, Michael Oborne, Jani Hirvinen,
Olivier Adler, Kevin Hester, Arthur Benemann, Jonathan Challinger, John Arne Birkeland,
Jean-Louis Naudin, Mike Smith, and more
* Thanks to: Chris Anderson, Jordi Munoz, Jason Short, Doug Weibel, Jose Julio
*
* Special Thanks to contributors (in alphabetical order by first name):
*
* Adam M Rivera :Auto Compass Declination
* Amilcar Lucas :Camera mount library
* Andrew Tridgell :General development, Mavlink Support
* Angel Fernandez :Alpha testing
* AndreasAntonopoulous:GeoFence
* Arthur Benemann :DroidPlanner GCS
* Benjamin Pelletier :Libraries
* Bill King :Single Copter
* Christof Schmid :Alpha testing
* Craig Elder :Release Management, Support
* Dani Saez :V Octo Support
* Doug Weibel :DCM, Libraries, Control law advice
* Emile Castelnuovo :VRBrain port, bug fixes
* Gregory Fletcher :Camera mount orientation math
* Guntars :Arming safety suggestion
* HappyKillmore :Mavlink GCS
* Hein Hollander :Octo Support, Heli Testing
* Igor van Airde :Control Law optimization
* Jack Dunkle :Alpha testing
* James Goppert :Mavlink Support
* Jani Hiriven :Testing feedback
* Jean-Louis Naudin :Auto Landing
* John Arne Birkeland :PPM Encoder
* Jose Julio :Stabilization Control laws, MPU6k driver
* Julien Dubois :PosHold flight mode
* Julian Oes :Pixhawk
* Jonathan Challinger :Inertial Navigation, CompassMot, Spin-When-Armed
* Kevin Hester :Andropilot GCS
* Max Levine :Tri Support, Graphics
* Leonard Hall :Flight Dynamics, Throttle, Loiter and Navigation Controllers
* Marco Robustini :Lead tester
* Michael Oborne :Mission Planner GCS
* Mike Smith :Pixhawk driver, coding support
* Olivier Adler :PPM Encoder, piezo buzzer
* Pat Hickey :Hardware Abstraction Layer (HAL)
* Robert Lefebvre :Heli Support, Copter LEDs
* Roberto Navoni :Library testing, Porting to VRBrain
* Sandro Benigno :Camera support, MinimOSD
* Sandro Tognana :PosHold flight mode
* ..and many more.
*
* Code commit statistics can be found here: https://github.com/diydrones/ardupilot/graphs/contributors
* Wiki: http://copter.ardupilot.com/
* Requires modified version of Arduino, which can be found here: http://ardupilot.com/downloads/?category=6
*
*/
////////////////////////////////////////////////////////////////////////////////
// Header includes
////////////////////////////////////////////////////////////////////////////////
#include
#include
#include
// Common dependencies
#include
#include
#include
#include
#include
// AP_HAL
#include
#include
#include
#include
#include
#include
#include
#include
// Application dependencies
#include
#include // MAVLink GCS definitions
#include // ArduPilot GPS library
#include // GPS glitch protection library
#include // ArduPilot Mega Flash Memory Library
#include // ArduPilot Mega Analog to Digital Converter Library
#include
#include
#include // Baro glitch protection library
#include // ArduPilot Mega Magnetometer Library
#include // ArduPilot Mega Vector/Matrix math Library
#include // Curve used to linearlise throttle pwm to thrust
#include // ArduPilot Mega Inertial Sensor (accel & gyro) Library
#include
#include
#include // Mission command library
#include // Rally point library
#include // PID library
#include // Heli specific Rate PID library
#include // P library
#include // Attitude control library
#include // Attitude control library for traditional helicopter
#include // Position control library
#include // RC Channel Library
#include // AP Motors library
#include // Range finder library
#include // Optical Flow library
#include // Filter library
#include // APM FIFO Buffer
#include // APM relay
#include
#include // Photo or video camera
#include // Camera/Antenna mount
#include // needed for AHRS build
#include // needed for AHRS build
#include // ArduPilot Mega inertial navigation library
#include // ArduCopter waypoint navigation library
#include // circle navigation library
#include // ArduPilot Mega Declination Helper Library
#include // Arducopter Fence library
#include // software in the loop support
#include // main loop scheduler
#include // RC input mapping library
#include // Notify library
#include // Battery monitor library
#include // board configuration library
#include
#if SPRAYER == ENABLED
#include // crop sprayer library
#endif
#if EPM_ENABLED == ENABLED
#include // EPM cargo gripper stuff
#endif
#if PARACHUTE == ENABLED
#include // Parachute release library
#endif
#include
// AP_HAL to Arduino compatibility layer
#include "compat.h"
// Configuration
#include "defines.h"
#include "config.h"
#include "config_channels.h"
// key aircraft parameters passed to multiple libraries
static AP_Vehicle::MultiCopter aparm;
// Local modules
#include "Parameters.h"
// Heli modules
#include "heli.h"
////////////////////////////////////////////////////////////////////////////////
// cliSerial
////////////////////////////////////////////////////////////////////////////////
// cliSerial isn't strictly necessary - it is an alias for hal.console. It may
// be deprecated in favor of hal.console in later releases.
static AP_HAL::BetterStream* cliSerial;
// N.B. we need to keep a static declaration which isn't guarded by macros
// at the top to cooperate with the prototype mangler.
////////////////////////////////////////////////////////////////////////////////
// AP_HAL instance
////////////////////////////////////////////////////////////////////////////////
const AP_HAL::HAL& hal = AP_HAL_BOARD_DRIVER;
////////////////////////////////////////////////////////////////////////////////
// Parameters
////////////////////////////////////////////////////////////////////////////////
//
// Global parameters are all contained within the 'g' class.
//
static Parameters g;
// main loop scheduler
static AP_Scheduler scheduler;
// AP_Notify instance
static AP_Notify notify;
// used to detect MAVLink acks from GCS to stop compassmot
static uint8_t command_ack_counter;
////////////////////////////////////////////////////////////////////////////////
// prototypes
////////////////////////////////////////////////////////////////////////////////
static void update_events(void);
static void print_flight_mode(AP_HAL::BetterStream *port, uint8_t mode);
////////////////////////////////////////////////////////////////////////////////
// Dataflash
////////////////////////////////////////////////////////////////////////////////
#if CONFIG_HAL_BOARD == HAL_BOARD_APM2
static DataFlash_APM2 DataFlash;
#elif CONFIG_HAL_BOARD == HAL_BOARD_APM1
static DataFlash_APM1 DataFlash;
#elif defined(HAL_BOARD_LOG_DIRECTORY)
static DataFlash_File DataFlash(HAL_BOARD_LOG_DIRECTORY);
#else
static DataFlash_Empty DataFlash;
#endif
////////////////////////////////////////////////////////////////////////////////
// the rate we run the main loop at
////////////////////////////////////////////////////////////////////////////////
#if MAIN_LOOP_RATE == 400
static const AP_InertialSensor::Sample_rate ins_sample_rate = AP_InertialSensor::RATE_400HZ;
#else
static const AP_InertialSensor::Sample_rate ins_sample_rate = AP_InertialSensor::RATE_100HZ;
#endif
////////////////////////////////////////////////////////////////////////////////
// Sensors
////////////////////////////////////////////////////////////////////////////////
//
// There are three basic options related to flight sensor selection.
//
// - Normal flight mode. Real sensors are used.
// - HIL Attitude mode. Most sensors are disabled, as the HIL
// protocol supplies attitude information directly.
// - HIL Sensors mode. Synthetic sensors are configured that
// supply data from the simulation.
//
static AP_GPS gps;
static GPS_Glitch gps_glitch(gps);
// flight modes convenience array
static AP_Int8 *flight_modes = &g.flight_mode1;
#if CONFIG_BARO == HAL_BARO_BMP085
static AP_Baro_BMP085 barometer;
#elif CONFIG_BARO == HAL_BARO_PX4
static AP_Baro_PX4 barometer;
#elif CONFIG_BARO == HAL_BARO_VRBRAIN
static AP_Baro_VRBRAIN barometer;
#elif CONFIG_BARO == HAL_BARO_HIL
static AP_Baro_HIL barometer;
#elif CONFIG_BARO == HAL_BARO_MS5611
static AP_Baro_MS5611 barometer(&AP_Baro_MS5611::i2c);
#elif CONFIG_BARO == HAL_BARO_MS5611_SPI
static AP_Baro_MS5611 barometer(&AP_Baro_MS5611::spi);
#else
#error Unrecognized CONFIG_BARO setting
#endif
static Baro_Glitch baro_glitch(barometer);
#if CONFIG_COMPASS == HAL_COMPASS_PX4
static AP_Compass_PX4 compass;
#elif CONFIG_COMPASS == HAL_COMPASS_VRBRAIN
static AP_Compass_VRBRAIN compass;
#elif CONFIG_COMPASS == HAL_COMPASS_HMC5843
static AP_Compass_HMC5843 compass;
#elif CONFIG_COMPASS == HAL_COMPASS_HIL
static AP_Compass_HIL compass;
#else
#error Unrecognized CONFIG_COMPASS setting
#endif
#if CONFIG_INS_TYPE == HAL_INS_OILPAN || CONFIG_HAL_BOARD == HAL_BOARD_APM1
AP_ADC_ADS7844 apm1_adc;
#endif
#if CONFIG_INS_TYPE == HAL_INS_MPU6000
AP_InertialSensor_MPU6000 ins;
#elif CONFIG_INS_TYPE == HAL_INS_PX4
AP_InertialSensor_PX4 ins;
#elif CONFIG_INS_TYPE == HAL_INS_VRBRAIN
AP_InertialSensor_VRBRAIN ins;
#elif CONFIG_INS_TYPE == HAL_INS_HIL
AP_InertialSensor_HIL ins;
#elif CONFIG_INS_TYPE == HAL_INS_OILPAN
AP_InertialSensor_Oilpan ins( &apm1_adc );
#elif CONFIG_INS_TYPE == HAL_INS_FLYMAPLE
AP_InertialSensor_Flymaple ins;
#elif CONFIG_INS_TYPE == HAL_INS_L3G4200D
AP_InertialSensor_L3G4200D ins;
#elif CONFIG_INS_TYPE == HAL_INS_MPU9250
AP_InertialSensor_MPU9250 ins;
#else
#error Unrecognised CONFIG_INS_TYPE setting.
#endif // CONFIG_INS_TYPE
// Inertial Navigation EKF
#if AP_AHRS_NAVEKF_AVAILABLE
AP_AHRS_NavEKF ahrs(ins, barometer, gps);
#else
AP_AHRS_DCM ahrs(ins, barometer, gps);
#endif
#if CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL
SITL sitl;
#endif
// Mission library
// forward declaration to keep compiler happy
static bool start_command(const AP_Mission::Mission_Command& cmd);
static bool verify_command(const AP_Mission::Mission_Command& cmd);
static void exit_mission();
AP_Mission mission(ahrs, &start_command, &verify_command, &exit_mission);
////////////////////////////////////////////////////////////////////////////////
// Optical flow sensor
////////////////////////////////////////////////////////////////////////////////
#if OPTFLOW == ENABLED
static AP_OpticalFlow_ADNS3080 optflow;
#endif
////////////////////////////////////////////////////////////////////////////////
// GCS selection
////////////////////////////////////////////////////////////////////////////////
static const uint8_t num_gcs = MAVLINK_COMM_NUM_BUFFERS;
static GCS_MAVLINK gcs[MAVLINK_COMM_NUM_BUFFERS];
////////////////////////////////////////////////////////////////////////////////
// SONAR
#if CONFIG_SONAR == ENABLED
static RangeFinder sonar;
static bool sonar_enabled = true; // enable user switch for sonar
#endif
////////////////////////////////////////////////////////////////////////////////
// User variables
////////////////////////////////////////////////////////////////////////////////
#ifdef USERHOOK_VARIABLES
#include USERHOOK_VARIABLES
#endif
////////////////////////////////////////////////////////////////////////////////
// Global variables
////////////////////////////////////////////////////////////////////////////////
/* Radio values
* Channel assignments
* 1 Ailerons (rudder if no ailerons)
* 2 Elevator
* 3 Throttle
* 4 Rudder (if we have ailerons)
* 5 Mode - 3 position switch
* 6 User assignable
* 7 trainer switch - sets throttle nominal (toggle switch), sets accels to Level (hold > 1 second)
* 8 TBD
* Each Aux channel can be configured to have any of the available auxiliary functions assigned to it.
* See libraries/RC_Channel/RC_Channel_aux.h for more information
*/
//Documentation of GLobals:
static union {
struct {
uint8_t home_is_set : 1; // 0
uint8_t simple_mode : 2; // 1,2 // This is the state of simple mode : 0 = disabled ; 1 = SIMPLE ; 2 = SUPERSIMPLE
uint8_t pre_arm_rc_check : 1; // 3 // true if rc input pre-arm checks have been completed successfully
uint8_t pre_arm_check : 1; // 4 // true if all pre-arm checks (rc, accel calibration, gps lock) have been performed
uint8_t auto_armed : 1; // 5 // stops auto missions from beginning until throttle is raised
uint8_t logging_started : 1; // 6 // true if dataflash logging has started
uint8_t land_complete : 1; // 7 // true if we have detected a landing
uint8_t new_radio_frame : 1; // 8 // Set true if we have new PWM data to act on from the Radio
uint8_t CH7_flag : 2; // 9,10 // ch7 aux switch : 0 is low or false, 1 is center or true, 2 is high
uint8_t CH8_flag : 2; // 11,12 // ch8 aux switch : 0 is low or false, 1 is center or true, 2 is high
uint8_t usb_connected : 1; // 13 // true if APM is powered from USB connection
uint8_t rc_receiver_present : 1; // 14 // true if we have an rc receiver present (i.e. if we've ever received an update
uint8_t compass_mot : 1; // 15 // true if we are currently performing compassmot calibration
uint8_t motor_test : 1; // 16 // true if we are currently performing the motors test
};
uint32_t value;
} ap;
////////////////////////////////////////////////////////////////////////////////
// Radio
////////////////////////////////////////////////////////////////////////////////
// This is the state of the flight control system
// There are multiple states defined such as STABILIZE, ACRO,
static int8_t control_mode = STABILIZE;
// Used to maintain the state of the previous control switch position
// This is set to -1 when we need to re-read the switch
static uint8_t oldSwitchPosition;
static RCMapper rcmap;
// board specific config
static AP_BoardConfig BoardConfig;
// receiver RSSI
static uint8_t receiver_rssi;
////////////////////////////////////////////////////////////////////////////////
// Failsafe
////////////////////////////////////////////////////////////////////////////////
static struct {
uint8_t rc_override_active : 1; // 0 // true if rc control are overwritten by ground station
uint8_t radio : 1; // 1 // A status flag for the radio failsafe
uint8_t battery : 1; // 2 // A status flag for the battery failsafe
uint8_t gps : 1; // 3 // A status flag for the gps failsafe
uint8_t gcs : 1; // 4 // A status flag for the ground station failsafe
uint8_t ekf : 1; // 5 // true if ekf failsafe has occurred
int8_t radio_counter; // number of iterations with throttle below throttle_fs_value
uint32_t last_heartbeat_ms; // the time when the last HEARTBEAT message arrived from a GCS - used for triggering gcs failsafe
} failsafe;
////////////////////////////////////////////////////////////////////////////////
// Motor Output
////////////////////////////////////////////////////////////////////////////////
#if FRAME_CONFIG == QUAD_FRAME
#define MOTOR_CLASS AP_MotorsQuad
#elif FRAME_CONFIG == TRI_FRAME
#define MOTOR_CLASS AP_MotorsTri
#elif FRAME_CONFIG == HEXA_FRAME
#define MOTOR_CLASS AP_MotorsHexa
#elif FRAME_CONFIG == Y6_FRAME
#define MOTOR_CLASS AP_MotorsY6
#elif FRAME_CONFIG == OCTA_FRAME
#define MOTOR_CLASS AP_MotorsOcta
#elif FRAME_CONFIG == OCTA_QUAD_FRAME
#define MOTOR_CLASS AP_MotorsOctaQuad
#elif FRAME_CONFIG == HELI_FRAME
#define MOTOR_CLASS AP_MotorsHeli
#elif FRAME_CONFIG == SINGLE_FRAME
#define MOTOR_CLASS AP_MotorsSingle
#elif FRAME_CONFIG == COAX_FRAME
#define MOTOR_CLASS AP_MotorsCoax
#else
#error Unrecognised frame type
#endif
#if FRAME_CONFIG == HELI_FRAME // helicopter constructor requires more arguments
static MOTOR_CLASS motors(g.rc_1, g.rc_2, g.rc_3, g.rc_4, g.rc_7, g.rc_8, g.heli_servo_1, g.heli_servo_2, g.heli_servo_3, g.heli_servo_4);
#elif FRAME_CONFIG == TRI_FRAME // tri constructor requires additional rc_7 argument to allow tail servo reversing
static MOTOR_CLASS motors(g.rc_1, g.rc_2, g.rc_3, g.rc_4, g.rc_7);
#elif FRAME_CONFIG == SINGLE_FRAME // single constructor requires extra servos for flaps
static MOTOR_CLASS motors(g.rc_1, g.rc_2, g.rc_3, g.rc_4, g.single_servo_1, g.single_servo_2, g.single_servo_3, g.single_servo_4);
#elif FRAME_CONFIG == COAX_FRAME // single constructor requires extra servos for flaps
static MOTOR_CLASS motors(g.rc_1, g.rc_2, g.rc_3, g.rc_4, g.single_servo_1, g.single_servo_2);
#else
static MOTOR_CLASS motors(g.rc_1, g.rc_2, g.rc_3, g.rc_4);
#endif
////////////////////////////////////////////////////////////////////////////////
// PIDs
////////////////////////////////////////////////////////////////////////////////
// This is used to hold radio tuning values for in-flight CH6 tuning
float tuning_value;
////////////////////////////////////////////////////////////////////////////////
// GPS variables
////////////////////////////////////////////////////////////////////////////////
// We use atan2 and other trig techniques to calaculate angles
// We need to scale the longitude up to make these calcs work
// to account for decreasing distance between lines of longitude away from the equator
static float scaleLongUp = 1;
// Sometimes we need to remove the scaling for distance calcs
static float scaleLongDown = 1;
////////////////////////////////////////////////////////////////////////////////
// Location & Navigation
////////////////////////////////////////////////////////////////////////////////
// This is the angle from the copter to the next waypoint in centi-degrees
static int32_t wp_bearing;
// The location of home in relation to the copter in centi-degrees
static int32_t home_bearing;
// distance between plane and home in cm
static int32_t home_distance;
// distance between plane and next waypoint in cm.
static uint32_t wp_distance;
static uint8_t land_state; // records state of land (flying to location, descending)
////////////////////////////////////////////////////////////////////////////////
// Auto
////////////////////////////////////////////////////////////////////////////////
static AutoMode auto_mode; // controls which auto controller is run
////////////////////////////////////////////////////////////////////////////////
// Guided
////////////////////////////////////////////////////////////////////////////////
static GuidedMode guided_mode; // controls which controller is run (pos or vel)
////////////////////////////////////////////////////////////////////////////////
// RTL
////////////////////////////////////////////////////////////////////////////////
RTLState rtl_state; // records state of rtl (initial climb, returning home, etc)
bool rtl_state_complete; // set to true if the current state is completed
////////////////////////////////////////////////////////////////////////////////
// Circle
////////////////////////////////////////////////////////////////////////////////
bool circle_pilot_yaw_override; // true if pilot is overriding yaw
////////////////////////////////////////////////////////////////////////////////
// SIMPLE Mode
////////////////////////////////////////////////////////////////////////////////
// Used to track the orientation of the copter for Simple mode. This value is reset at each arming
// or in SuperSimple mode when the copter leaves a 20m radius from home.
static float simple_cos_yaw = 1.0;
static float simple_sin_yaw;
static int32_t super_simple_last_bearing;
static float super_simple_cos_yaw = 1.0;
static float super_simple_sin_yaw;
// Stores initial bearing when armed - initial simple bearing is modified in super simple mode so not suitable
static int32_t initial_armed_bearing;
////////////////////////////////////////////////////////////////////////////////
// Throttle variables
////////////////////////////////////////////////////////////////////////////////
static float throttle_avg; // g.throttle_cruise as a float
static int16_t desired_climb_rate; // pilot desired climb rate - for logging purposes only
////////////////////////////////////////////////////////////////////////////////
// ACRO Mode
////////////////////////////////////////////////////////////////////////////////
static float acro_level_mix; // scales back roll, pitch and yaw inversely proportional to input from pilot
////////////////////////////////////////////////////////////////////////////////
// Loiter control
////////////////////////////////////////////////////////////////////////////////
static uint16_t loiter_time_max; // How long we should stay in Loiter Mode for mission scripting (time in seconds)
static uint32_t loiter_time; // How long have we been loitering - The start time in millis
////////////////////////////////////////////////////////////////////////////////
// Flip
////////////////////////////////////////////////////////////////////////////////
static Vector3f flip_orig_attitude; // original copter attitude before flip
////////////////////////////////////////////////////////////////////////////////
// Battery Sensors
////////////////////////////////////////////////////////////////////////////////
static AP_BattMonitor battery;
////////////////////////////////////////////////////////////////////////////////
// FrSky telemetry support
#if FRSKY_TELEM_ENABLED == ENABLED
static AP_Frsky_Telem frsky_telemetry(ahrs, battery);
#endif
////////////////////////////////////////////////////////////////////////////////
// Altitude
////////////////////////////////////////////////////////////////////////////////
// The cm/s we are moving up or down based on filtered data - Positive = UP
static int16_t climb_rate;
// The altitude as reported by Sonar in cm - Values are 20 to 700 generally.
static int16_t sonar_alt;
static uint8_t sonar_alt_health; // true if we can trust the altitude from the sonar
static float target_sonar_alt; // desired altitude in cm above the ground
// The altitude as reported by Baro in cm - Values can be quite high
static int32_t baro_alt;
////////////////////////////////////////////////////////////////////////////////
// 3D Location vectors
////////////////////////////////////////////////////////////////////////////////
// Current location of the copter
static struct Location current_loc;
////////////////////////////////////////////////////////////////////////////////
// Navigation Roll/Pitch functions
////////////////////////////////////////////////////////////////////////////////
#if OPTFLOW == ENABLED
// The Commanded ROll from the autopilot based on optical flow sensor.
static int32_t of_roll;
// The Commanded pitch from the autopilot based on optical flow sensor. negative Pitch means go forward.
static int32_t of_pitch;
#endif // OPTFLOW == ENABLED
////////////////////////////////////////////////////////////////////////////////
// Throttle integrator
////////////////////////////////////////////////////////////////////////////////
// This is a simple counter to track the amount of throttle used during flight
// This could be useful later in determining and debuging current usage and predicting battery life
static uint32_t throttle_integrator;
////////////////////////////////////////////////////////////////////////////////
// Navigation Yaw control
////////////////////////////////////////////////////////////////////////////////
// auto flight mode's yaw mode
static uint8_t auto_yaw_mode = AUTO_YAW_LOOK_AT_NEXT_WP;
// Yaw will point at this location if auto_yaw_mode is set to AUTO_YAW_ROI
static Vector3f roi_WP;
// bearing from current location to the yaw_look_at_WP
static float yaw_look_at_WP_bearing;
// yaw used for YAW_LOOK_AT_HEADING yaw_mode
static int32_t yaw_look_at_heading;
// Deg/s we should turn
static int16_t yaw_look_at_heading_slew;
// heading when in yaw_look_ahead_bearing
static float yaw_look_ahead_bearing;
////////////////////////////////////////////////////////////////////////////////
// Delay Mission Scripting Command
////////////////////////////////////////////////////////////////////////////////
static int32_t condition_value; // used in condition commands (eg delay, change alt, etc.)
static uint32_t condition_start;
////////////////////////////////////////////////////////////////////////////////
// IMU variables
////////////////////////////////////////////////////////////////////////////////
// Integration time (in seconds) for the gyros (DCM algorithm)
// Updated with the fast loop
static float G_Dt = 0.02;
////////////////////////////////////////////////////////////////////////////////
// Inertial Navigation
////////////////////////////////////////////////////////////////////////////////
#if AP_AHRS_NAVEKF_AVAILABLE
static AP_InertialNav_NavEKF inertial_nav(ahrs, barometer, gps_glitch, baro_glitch);
#else
static AP_InertialNav inertial_nav(ahrs, barometer, gps_glitch, baro_glitch);
#endif
////////////////////////////////////////////////////////////////////////////////
// Attitude, Position and Waypoint navigation objects
// To-Do: move inertial nav up or other navigation variables down here
////////////////////////////////////////////////////////////////////////////////
#if FRAME_CONFIG == HELI_FRAME
AC_AttitudeControl_Heli attitude_control(ahrs, aparm, motors, g.p_stabilize_roll, g.p_stabilize_pitch, g.p_stabilize_yaw,
g.pid_rate_roll, g.pid_rate_pitch, g.pid_rate_yaw);
#else
AC_AttitudeControl attitude_control(ahrs, aparm, motors, g.p_stabilize_roll, g.p_stabilize_pitch, g.p_stabilize_yaw,
g.pid_rate_roll, g.pid_rate_pitch, g.pid_rate_yaw);
#endif
AC_PosControl pos_control(ahrs, inertial_nav, motors, attitude_control,
g.p_alt_hold, g.p_throttle_rate, g.pid_throttle_accel,
g.p_loiter_pos, g.pid_loiter_rate_lat, g.pid_loiter_rate_lon);
static AC_WPNav wp_nav(inertial_nav, ahrs, pos_control);
static AC_Circle circle_nav(inertial_nav, ahrs, pos_control);
////////////////////////////////////////////////////////////////////////////////
// Performance monitoring
////////////////////////////////////////////////////////////////////////////////
static int16_t pmTest1;
// System Timers
// --------------
// Time in microseconds of main control loop
static uint32_t fast_loopTimer;
// Counter of main loop executions. Used for performance monitoring and failsafe processing
static uint16_t mainLoop_count;
// Loiter timer - Records how long we have been in loiter
static uint32_t rtl_loiter_start_time;
// Used to exit the roll and pitch auto trim function
static uint8_t auto_trim_counter;
// Reference to the relay object (APM1 -> PORTL 2) (APM2 -> PORTB 7)
static AP_Relay relay;
// handle repeated servo and relay events
static AP_ServoRelayEvents ServoRelayEvents(relay);
//Reference to the camera object (it uses the relay object inside it)
#if CAMERA == ENABLED
static AP_Camera camera(&relay);
#endif
// a pin for reading the receiver RSSI voltage.
static AP_HAL::AnalogSource* rssi_analog_source;
#if CLI_ENABLED == ENABLED
static int8_t setup_show (uint8_t argc, const Menu::arg *argv);
#endif
// Camera/Antenna mount tracking and stabilisation stuff
// --------------------------------------
#if MOUNT == ENABLED
// current_loc uses the baro/gps soloution for altitude rather than gps only.
static AP_Mount camera_mount(¤t_loc, ahrs, 0);
#endif
#if MOUNT2 == ENABLED
// current_loc uses the baro/gps soloution for altitude rather than gps only.
static AP_Mount camera_mount2(¤t_loc, ahrs, 1);
#endif
////////////////////////////////////////////////////////////////////////////////
// AC_Fence library to reduce fly-aways
////////////////////////////////////////////////////////////////////////////////
#if AC_FENCE == ENABLED
AC_Fence fence(&inertial_nav);
#endif
////////////////////////////////////////////////////////////////////////////////
// Rally library
////////////////////////////////////////////////////////////////////////////////
#if AC_RALLY == ENABLED
AP_Rally rally(ahrs);
#endif
////////////////////////////////////////////////////////////////////////////////
// Crop Sprayer
////////////////////////////////////////////////////////////////////////////////
#if SPRAYER == ENABLED
static AC_Sprayer sprayer(&inertial_nav);
#endif
////////////////////////////////////////////////////////////////////////////////
// EPM Cargo Griper
////////////////////////////////////////////////////////////////////////////////
#if EPM_ENABLED == ENABLED
static AP_EPM epm;
#endif
////////////////////////////////////////////////////////////////////////////////
// Parachute release
////////////////////////////////////////////////////////////////////////////////
#if PARACHUTE == ENABLED
static AP_Parachute parachute(relay);
#endif
////////////////////////////////////////////////////////////////////////////////
// terrain handling
#if AP_TERRAIN_AVAILABLE
AP_Terrain terrain(ahrs, mission, rally);
#endif
////////////////////////////////////////////////////////////////////////////////
// Nav Guided - allows external computer to control the vehicle during missions
////////////////////////////////////////////////////////////////////////////////
#if NAV_GUIDED == ENABLED
static struct {
uint32_t start_time; // system time in milliseconds that control was handed to the external computer
Vector3f start_position; // vehicle position when control was ahnded to the external computer
} nav_guided;
#endif
////////////////////////////////////////////////////////////////////////////////
// function definitions to keep compiler from complaining about undeclared functions
////////////////////////////////////////////////////////////////////////////////
static void pre_arm_checks(bool display_failure);
////////////////////////////////////////////////////////////////////////////////
// Top-level logic
////////////////////////////////////////////////////////////////////////////////
// setup the var_info table
AP_Param param_loader(var_info);
#if MAIN_LOOP_RATE == 400
/*
scheduler table for fast CPUs - all regular tasks apart from the fast_loop()
should be listed here, along with how often they should be called
(in 2.5ms units) and the maximum time they are expected to take (in
microseconds)
1 = 400hz
2 = 200hz
4 = 100hz
8 = 50hz
20 = 20hz
40 = 10hz
133 = 3hz
400 = 1hz
4000 = 0.1hz
*/
static const AP_Scheduler::Task scheduler_tasks[] PROGMEM = {
{ rc_loop, 4, 10 },
{ throttle_loop, 8, 45 },
{ update_GPS, 8, 90 },
{ update_batt_compass, 40, 72 },
{ read_aux_switches, 40, 5 },
{ arm_motors_check, 40, 1 },
{ auto_trim, 40, 14 },
{ update_altitude, 40, 100 },
{ run_nav_updates, 40, 80 },
{ update_thr_cruise, 40, 10 },
{ three_hz_loop, 133, 9 },
{ compass_accumulate, 8, 42 },
{ barometer_accumulate, 8, 25 },
#if FRAME_CONFIG == HELI_FRAME
{ check_dynamic_flight, 8, 10 },
#endif
{ update_notify, 8, 10 },
{ one_hz_loop, 400, 42 },
{ ekf_check, 40, 2 },
{ crash_check, 40, 2 },
{ gcs_check_input, 8, 550 },
{ gcs_send_heartbeat, 400, 150 },
{ gcs_send_deferred, 8, 720 },
{ gcs_data_stream_send, 8, 950 },
#if COPTER_LEDS == ENABLED
{ update_copter_leds, 40, 5 },
#endif
{ update_mount, 8, 45 },
{ ten_hz_logging_loop, 40, 30 },
{ fifty_hz_logging_loop, 8, 22 },
{ perf_update, 4000, 20 },
{ read_receiver_rssi, 40, 5 },
#if FRSKY_TELEM_ENABLED == ENABLED
{ telemetry_send, 80, 10 },
#endif
#ifdef USERHOOK_FASTLOOP
{ userhook_FastLoop, 4, 10 },
#endif
#ifdef USERHOOK_50HZLOOP
{ userhook_50Hz, 8, 10 },
#endif
#ifdef USERHOOK_MEDIUMLOOP
{ userhook_MediumLoop, 40, 10 },
#endif
#ifdef USERHOOK_SLOWLOOP
{ userhook_SlowLoop, 120, 10 },
#endif
#ifdef USERHOOK_SUPERSLOWLOOP
{ userhook_SuperSlowLoop,400, 10 },
#endif
};
#else
/*
scheduler table - all regular tasks apart from the fast_loop()
should be listed here, along with how often they should be called
(in 10ms units) and the maximum time they are expected to take (in
microseconds)
1 = 100hz
2 = 50hz
4 = 25hz
10 = 10hz
20 = 5hz
33 = 3hz
50 = 2hz
100 = 1hz
1000 = 0.1hz
*/
static const AP_Scheduler::Task scheduler_tasks[] PROGMEM = {
{ rc_loop, 1, 100 },
{ throttle_loop, 2, 450 },
{ update_GPS, 2, 900 },
{ update_batt_compass, 10, 720 },
{ read_aux_switches, 10, 50 },
{ arm_motors_check, 10, 10 },
{ auto_trim, 10, 140 },
{ update_altitude, 10, 1000 },
{ run_nav_updates, 10, 800 },
{ update_thr_cruise, 1, 50 },
{ three_hz_loop, 33, 90 },
{ compass_accumulate, 2, 420 },
{ barometer_accumulate, 2, 250 },
#if FRAME_CONFIG == HELI_FRAME
{ check_dynamic_flight, 2, 100 },
#endif
{ update_notify, 2, 100 },
{ one_hz_loop, 100, 420 },
{ ekf_check, 10, 20 },
{ crash_check, 10, 20 },
{ gcs_check_input, 2, 550 },
{ gcs_send_heartbeat, 100, 150 },
{ gcs_send_deferred, 2, 720 },
{ gcs_data_stream_send, 2, 950 },
{ update_mount, 2, 450 },
{ ten_hz_logging_loop, 10, 300 },
{ fifty_hz_logging_loop, 2, 220 },
{ perf_update, 1000, 200 },
{ read_receiver_rssi, 10, 50 },
#if FRSKY_TELEM_ENABLED == ENABLED
{ telemetry_send, 20, 100 },
#endif
#ifdef USERHOOK_FASTLOOP
{ userhook_FastLoop, 1, 100 },
#endif
#ifdef USERHOOK_50HZLOOP
{ userhook_50Hz, 2, 100 },
#endif
#ifdef USERHOOK_MEDIUMLOOP
{ userhook_MediumLoop, 10, 100 },
#endif
#ifdef USERHOOK_SLOWLOOP
{ userhook_SlowLoop, 30, 100 },
#endif
#ifdef USERHOOK_SUPERSLOWLOOP
{ userhook_SuperSlowLoop,100, 100 },
#endif
};
#endif
void setup()
{
cliSerial = hal.console;
// Load the default values of variables listed in var_info[]s
AP_Param::setup_sketch_defaults();
// setup storage layout for copter
StorageManager::set_layout_copter();
init_ardupilot();
// initialise the main loop scheduler
scheduler.init(&scheduler_tasks[0], sizeof(scheduler_tasks)/sizeof(scheduler_tasks[0]));
}
/*
if the compass is enabled then try to accumulate a reading
*/
static void compass_accumulate(void)
{
if (g.compass_enabled) {
compass.accumulate();
}
}
/*
try to accumulate a baro reading
*/
static void barometer_accumulate(void)
{
barometer.accumulate();
}
static void perf_update(void)
{
if (g.log_bitmask & MASK_LOG_PM)
Log_Write_Performance();
if (scheduler.debug()) {
cliSerial->printf_P(PSTR("PERF: %u/%u %lu\n"),
(unsigned)perf_info_get_num_long_running(),
(unsigned)perf_info_get_num_loops(),
(unsigned long)perf_info_get_max_time());
}
perf_info_reset();
pmTest1 = 0;
}
void loop()
{
// wait for an INS sample
if (!ins.wait_for_sample(1000)) {
Log_Write_Error(ERROR_SUBSYSTEM_MAIN, ERROR_CODE_MAIN_INS_DELAY);
return;
}
uint32_t timer = micros();
// check loop time
perf_info_check_loop_time(timer - fast_loopTimer);
// used by PI Loops
G_Dt = (float)(timer - fast_loopTimer) / 1000000.f;
fast_loopTimer = timer;
// for mainloop failure monitoring
mainLoop_count++;
// Execute the fast loop
// ---------------------
fast_loop();
// tell the scheduler one tick has passed
scheduler.tick();
// run all the tasks that are due to run. Note that we only
// have to call this once per loop, as the tasks are scheduled
// in multiples of the main loop tick. So if they don't run on
// the first call to the scheduler they won't run on a later
// call until scheduler.tick() is called again
uint32_t time_available = (timer + MAIN_LOOP_MICROS) - micros();
scheduler.run(time_available);
}
// Main loop - 100hz
static void fast_loop()
{
// IMU DCM Algorithm
// --------------------
read_AHRS();
// run low level rate controllers that only require IMU data
attitude_control.rate_controller_run();
#if FRAME_CONFIG == HELI_FRAME
update_heli_control_dynamics();
#endif //HELI_FRAME
// write out the servo PWM values
// ------------------------------
set_servos_4();
// Inertial Nav
// --------------------
read_inertia();
// run the attitude controllers
update_flight_mode();
// optical flow
// --------------------
#if OPTFLOW == ENABLED
if(g.optflow_enabled) {
update_optical_flow();
}
#endif // OPTFLOW == ENABLED
}
// rc_loops - reads user input from transmitter/receiver
// called at 100hz
static void rc_loop()
{
// Read radio and 3-position switch on radio
// -----------------------------------------
read_radio();
read_control_switch();
}
// throttle_loop - should be run at 50 hz
// ---------------------------
static void throttle_loop()
{
// get altitude and climb rate from inertial lib
read_inertial_altitude();
// check if we've landed
update_land_detector();
// check auto_armed status
update_auto_armed();
#if FRAME_CONFIG == HELI_FRAME
// update rotor speed
heli_update_rotor_speed_targets();
// update trad heli swash plate movement
heli_update_landing_swash();
#endif
}
// update_mount - update camera mount position
// should be run at 50hz
static void update_mount()
{
#if MOUNT == ENABLED
// update camera mount's position
camera_mount.update_mount_position();
#endif
#if MOUNT2 == ENABLED
// update camera mount's position
camera_mount2.update_mount_position();
#endif
#if CAMERA == ENABLED
camera.trigger_pic_cleanup();
#endif
}
// update_batt_compass - read battery and compass
// should be called at 10hz
static void update_batt_compass(void)
{
// read battery before compass because it may be used for motor interference compensation
read_battery();
if(g.compass_enabled) {
// update compass with throttle value - used for compassmot
compass.set_throttle((float)g.rc_3.servo_out/1000.0f);
compass.read();
// log compass information
if (g.log_bitmask & MASK_LOG_COMPASS) {
Log_Write_Compass();
}
}
// record throttle output
throttle_integrator += g.rc_3.servo_out;
}
// ten_hz_logging_loop
// should be run at 10hz
static void ten_hz_logging_loop()
{
if (g.log_bitmask & MASK_LOG_ATTITUDE_MED) {
Log_Write_Attitude();
}
if (g.log_bitmask & MASK_LOG_RCIN) {
DataFlash.Log_Write_RCIN();
}
if (g.log_bitmask & MASK_LOG_RCOUT) {
DataFlash.Log_Write_RCOUT();
}
if ((g.log_bitmask & MASK_LOG_NTUN) && mode_requires_GPS(control_mode)) {
Log_Write_Nav_Tuning();
}
}
// fifty_hz_logging_loop
// should be run at 50hz
static void fifty_hz_logging_loop()
{
#if HIL_MODE != HIL_MODE_DISABLED
// HIL for a copter needs very fast update of the servo values
gcs_send_message(MSG_RADIO_OUT);
#endif
#if HIL_MODE == HIL_MODE_DISABLED
if (g.log_bitmask & MASK_LOG_ATTITUDE_FAST) {
Log_Write_Attitude();
}
if (g.log_bitmask & MASK_LOG_IMU) {
DataFlash.Log_Write_IMU(ins);
}
#endif
}
// three_hz_loop - 3.3hz loop
static void three_hz_loop()
{
// check if we've lost contact with the ground station
failsafe_gcs_check();
#if AC_FENCE == ENABLED
// check if we have breached a fence
fence_check();
#endif // AC_FENCE_ENABLED
#if SPRAYER == ENABLED
sprayer.update();
#endif
update_events();
if(g.radio_tuning > 0)
tuning();
}
// one_hz_loop - runs at 1Hz
static void one_hz_loop()
{
if (g.log_bitmask != 0) {
Log_Write_Data(DATA_AP_STATE, ap.value);
}
// log battery info to the dataflash
if (g.log_bitmask & MASK_LOG_CURRENT) {
Log_Write_Current();
}
// perform pre-arm checks & display failures every 30 seconds
static uint8_t pre_arm_display_counter = 15;
pre_arm_display_counter++;
if (pre_arm_display_counter >= 30) {
pre_arm_checks(true);
pre_arm_display_counter = 0;
}else{
pre_arm_checks(false);
}
// auto disarm checks
auto_disarm_check();
if (!motors.armed()) {
// make it possible to change ahrs orientation at runtime during initial config
ahrs.set_orientation();
// check the user hasn't updated the frame orientation
motors.set_frame_orientation(g.frame_orientation);
}
// update assigned functions and enable auxiliar servos
RC_Channel_aux::enable_aux_servos();
#if MOUNT == ENABLED
camera_mount.update_mount_type();
#endif
#if MOUNT2 == ENABLED
camera_mount2.update_mount_type();
#endif
check_usb_mux();
#if AP_TERRAIN_AVAILABLE
terrain.update();
#endif
}
// called at 100hz but data from sensor only arrives at 20 Hz
#if OPTFLOW == ENABLED
static void update_optical_flow(void)
{
static uint32_t last_of_update = 0;
static uint8_t of_log_counter = 0;
// if new data has arrived, process it
if( optflow.last_update != last_of_update ) {
last_of_update = optflow.last_update;
optflow.update_position(ahrs.roll, ahrs.pitch, ahrs.sin_yaw(), ahrs.cos_yaw(), current_loc.alt); // updates internal lon and lat with estimation based on optical flow
// write to log at 5hz
of_log_counter++;
if( of_log_counter >= 4 ) {
of_log_counter = 0;
if (g.log_bitmask & MASK_LOG_OPTFLOW) {
Log_Write_Optflow();
}
}
}
}
#endif // OPTFLOW == ENABLED
// called at 50hz
static void update_GPS(void)
{
static uint32_t last_gps_reading[GPS_MAX_INSTANCES]; // time of last gps message
static uint8_t ground_start_count = 10; // counter used to grab at least 10 reads before commiting the Home location
bool report_gps_glitch;
bool gps_updated = false;
gps.update();
// logging and glitch protection run after every gps message
for (uint8_t i=0; isafety_switch_state() != AP_HAL::Util::SAFETY_DISARMED);
if (AP_Notify::flags.gps_glitching != report_gps_glitch) {
if (gps_glitch.glitching()) {
Log_Write_Error(ERROR_SUBSYSTEM_GPS, ERROR_CODE_GPS_GLITCH);
}else{
Log_Write_Error(ERROR_SUBSYSTEM_GPS, ERROR_CODE_ERROR_RESOLVED);
}
AP_Notify::flags.gps_glitching = report_gps_glitch;
}
}
// checks to initialise home and take location based pictures
if (gps.status() >= AP_GPS::GPS_OK_FIX_3D) {
// check if we can initialise home yet
if (!ap.home_is_set) {
// if we have a 3d lock and valid location
if(gps.status() >= AP_GPS::GPS_OK_FIX_3D && gps.location().lat != 0) {
if (ground_start_count > 0 ) {
ground_start_count--;
} else {
// after 10 successful reads store home location
// ap.home_is_set will be true so this will only happen once
ground_start_count = 0;
init_home();
// set system clock for log timestamps
hal.util->set_system_clock(gps.time_epoch_usec());
if (g.compass_enabled) {
// Set compass declination automatically
compass.set_initial_location(gps.location().lat, gps.location().lng);
}
}
} else {
// start again if we lose 3d lock
ground_start_count = 10;
}
}
//If we are not currently armed, and we're ready to
//enter RTK mode, then capture current state as home,
//and enter RTK fixes!
if (!motors.armed() && gps.can_calculate_base_pos()) {
gps.calculate_base_pos();
}
#if CAMERA == ENABLED
if (camera.update_location(current_loc) == true) {
do_take_picture();
}
#endif
}
}
// check for loss of gps
failsafe_gps_check();
}
static void
init_simple_bearing()
{
// capture current cos_yaw and sin_yaw values
simple_cos_yaw = ahrs.cos_yaw();
simple_sin_yaw = ahrs.sin_yaw();
// initialise super simple heading (i.e. heading towards home) to be 180 deg from simple mode heading
super_simple_last_bearing = wrap_360_cd(ahrs.yaw_sensor+18000);
super_simple_cos_yaw = simple_cos_yaw;
super_simple_sin_yaw = simple_sin_yaw;
// log the simple bearing to dataflash
if (g.log_bitmask != 0) {
Log_Write_Data(DATA_INIT_SIMPLE_BEARING, ahrs.yaw_sensor);
}
}
// update_simple_mode - rotates pilot input if we are in simple mode
void update_simple_mode(void)
{
float rollx, pitchx;
// exit immediately if no new radio frame or not in simple mode
if (ap.simple_mode == 0 || !ap.new_radio_frame) {
return;
}
// mark radio frame as consumed
ap.new_radio_frame = false;
if (ap.simple_mode == 1) {
// rotate roll, pitch input by -initial simple heading (i.e. north facing)
rollx = g.rc_1.control_in*simple_cos_yaw - g.rc_2.control_in*simple_sin_yaw;
pitchx = g.rc_1.control_in*simple_sin_yaw + g.rc_2.control_in*simple_cos_yaw;
}else{
// rotate roll, pitch input by -super simple heading (reverse of heading to home)
rollx = g.rc_1.control_in*super_simple_cos_yaw - g.rc_2.control_in*super_simple_sin_yaw;
pitchx = g.rc_1.control_in*super_simple_sin_yaw + g.rc_2.control_in*super_simple_cos_yaw;
}
// rotate roll, pitch input from north facing to vehicle's perspective
g.rc_1.control_in = rollx*ahrs.cos_yaw() + pitchx*ahrs.sin_yaw();
g.rc_2.control_in = -rollx*ahrs.sin_yaw() + pitchx*ahrs.cos_yaw();
}
// update_super_simple_bearing - adjusts simple bearing based on location
// should be called after home_bearing has been updated
void update_super_simple_bearing(bool force_update)
{
// check if we are in super simple mode and at least 10m from home
if(force_update || (ap.simple_mode == 2 && home_distance > SUPER_SIMPLE_RADIUS)) {
// check the bearing to home has changed by at least 5 degrees
if (labs(super_simple_last_bearing - home_bearing) > 500) {
super_simple_last_bearing = home_bearing;
float angle_rad = radians((super_simple_last_bearing+18000)/100);
super_simple_cos_yaw = cosf(angle_rad);
super_simple_sin_yaw = sinf(angle_rad);
}
}
}
static void read_AHRS(void)
{
// Perform IMU calculations and get attitude info
//-----------------------------------------------
#if HIL_MODE != HIL_MODE_DISABLED
// update hil before ahrs update
gcs_check_input();
#endif
ahrs.update();
}
// read baro and sonar altitude at 10hz
static void update_altitude()
{
// read in baro altitude
baro_alt = read_barometer();
// read in sonar altitude
sonar_alt = read_sonar();
// write altitude info to dataflash logs
if (g.log_bitmask & MASK_LOG_CTUN) {
Log_Write_Control_Tuning();
}
}
static void tuning(){
// exit immediately when radio failsafe is invoked so tuning values are not set to zero
if (failsafe.radio || failsafe.radio_counter != 0) {
return;
}
tuning_value = (float)g.rc_6.control_in / 1000.0f;
g.rc_6.set_range(g.radio_tuning_low,g.radio_tuning_high); // 0 to 1
switch(g.radio_tuning) {
// Roll, Pitch tuning
case CH6_STABILIZE_ROLL_PITCH_KP:
g.p_stabilize_roll.kP(tuning_value);
g.p_stabilize_pitch.kP(tuning_value);
break;
case CH6_RATE_ROLL_PITCH_KP:
g.pid_rate_roll.kP(tuning_value);
g.pid_rate_pitch.kP(tuning_value);
break;
case CH6_RATE_ROLL_PITCH_KI:
g.pid_rate_roll.kI(tuning_value);
g.pid_rate_pitch.kI(tuning_value);
break;
case CH6_RATE_ROLL_PITCH_KD:
g.pid_rate_roll.kD(tuning_value);
g.pid_rate_pitch.kD(tuning_value);
break;
// Yaw tuning
case CH6_STABILIZE_YAW_KP:
g.p_stabilize_yaw.kP(tuning_value);
break;
case CH6_YAW_RATE_KP:
g.pid_rate_yaw.kP(tuning_value);
break;
case CH6_YAW_RATE_KD:
g.pid_rate_yaw.kD(tuning_value);
break;
// Altitude and throttle tuning
case CH6_ALTITUDE_HOLD_KP:
g.p_alt_hold.kP(tuning_value);
break;
case CH6_THROTTLE_RATE_KP:
g.p_throttle_rate.kP(tuning_value);
break;
case CH6_THROTTLE_ACCEL_KP:
g.pid_throttle_accel.kP(tuning_value);
break;
case CH6_THROTTLE_ACCEL_KI:
g.pid_throttle_accel.kI(tuning_value);
break;
case CH6_THROTTLE_ACCEL_KD:
g.pid_throttle_accel.kD(tuning_value);
break;
// Loiter and navigation tuning
case CH6_LOITER_POSITION_KP:
g.p_loiter_pos.kP(tuning_value);
break;
case CH6_LOITER_RATE_KP:
g.pid_loiter_rate_lon.kP(tuning_value);
g.pid_loiter_rate_lat.kP(tuning_value);
break;
case CH6_LOITER_RATE_KI:
g.pid_loiter_rate_lon.kI(tuning_value);
g.pid_loiter_rate_lat.kI(tuning_value);
break;
case CH6_LOITER_RATE_KD:
g.pid_loiter_rate_lon.kD(tuning_value);
g.pid_loiter_rate_lat.kD(tuning_value);
break;
case CH6_WP_SPEED:
// set waypoint navigation horizontal speed to 0 ~ 1000 cm/s
wp_nav.set_speed_xy(g.rc_6.control_in);
break;
// Acro roll pitch gain
case CH6_ACRO_RP_KP:
g.acro_rp_p = tuning_value;
break;
// Acro yaw gain
case CH6_ACRO_YAW_KP:
g.acro_yaw_p = tuning_value;
break;
#if FRAME_CONFIG == HELI_FRAME
case CH6_HELI_EXTERNAL_GYRO:
motors.ext_gyro_gain(g.rc_6.control_in);
break;
case CH6_RATE_PITCH_FF:
g.pid_rate_pitch.ff(tuning_value);
break;
case CH6_RATE_ROLL_FF:
g.pid_rate_roll.ff(tuning_value);
break;
case CH6_RATE_YAW_FF:
g.pid_rate_yaw.ff(tuning_value);
break;
#endif
case CH6_OPTFLOW_KP:
g.pid_optflow_roll.kP(tuning_value);
g.pid_optflow_pitch.kP(tuning_value);
break;
case CH6_OPTFLOW_KI:
g.pid_optflow_roll.kI(tuning_value);
g.pid_optflow_pitch.kI(tuning_value);
break;
case CH6_OPTFLOW_KD:
g.pid_optflow_roll.kD(tuning_value);
g.pid_optflow_pitch.kD(tuning_value);
break;
case CH6_AHRS_YAW_KP:
ahrs._kp_yaw.set(tuning_value);
break;
case CH6_AHRS_KP:
ahrs._kp.set(tuning_value);
break;
case CH6_DECLINATION:
// set declination to +-20degrees
compass.set_declination(ToRad((2.0f * g.rc_6.control_in - g.radio_tuning_high)/100.0f), false); // 2nd parameter is false because we do not want to save to eeprom because this would have a performance impact
break;
case CH6_CIRCLE_RATE:
// set circle rate
circle_nav.set_rate(g.rc_6.control_in/25-20); // allow approximately 45 degree turn rate in either direction
break;
case CH6_SONAR_GAIN:
// set sonar gain
g.sonar_gain.set(tuning_value);
break;
#if 0
// disabled for now - we need accessor functions
case CH6_EKF_VERTICAL_POS:
// EKF's baro vs accel (higher rely on accels more, baro impact is reduced)
ahrs.get_NavEKF()._gpsVertPosNoise = tuning_value;
break;
case CH6_EKF_HORIZONTAL_POS:
// EKF's gps vs accel (higher rely on accels more, gps impact is reduced)
ahrs.get_NavEKF()._gpsHorizPosNoise = tuning_value;
break;
case CH6_EKF_ACCEL_NOISE:
// EKF's accel noise (lower means trust accels more, gps & baro less)
ahrs.get_NavEKF()._accNoise = tuning_value;
break;
#endif
case CH6_RC_FEEL_RP:
// roll-pitch input smoothing
g.rc_feel_rp = g.rc_6.control_in / 10;
break;
case CH6_RATE_PITCH_KP:
g.pid_rate_pitch.kP(tuning_value);
break;
case CH6_RATE_PITCH_KI:
g.pid_rate_pitch.kI(tuning_value);
break;
case CH6_RATE_PITCH_KD:
g.pid_rate_pitch.kD(tuning_value);
break;
case CH6_RATE_ROLL_KP:
g.pid_rate_roll.kP(tuning_value);
break;
case CH6_RATE_ROLL_KI:
g.pid_rate_roll.kI(tuning_value);
break;
case CH6_RATE_ROLL_KD:
g.pid_rate_roll.kD(tuning_value);
break;
}
}
AP_HAL_MAIN();