/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include #include "AP_ICEngine.h" extern const AP_HAL::HAL& hal; const AP_Param::GroupInfo AP_ICEngine::var_info[] = { // @Param: ENABLE // @DisplayName: Enable ICEngine control // @Description: This enables internal combusion engine control // @Values: 0:Disabled, 1:Enabled // @User: Advanced AP_GROUPINFO_FLAGS("ENABLE", 0, AP_ICEngine, enable, 0, AP_PARAM_FLAG_ENABLE), // @Param: START_CHAN // @DisplayName: Input channel for engine start // @Description: This is an RC input channel for requesting engine start. Engine will try to start when channel is at or above 1700. Engine will stop when channel is at or below 1300. Between 1301 and 1699 the engine will not change state unless a MAVLink command or mission item commands a state change, or the vehicle is disamed. // @User: Standard // @Values: 0:None,1:Chan1,2:Chan2,3:Chan3,4:Chan4,5:Chan5,6:Chan6,7:Chan7,8:Chan8,9:Chan9,10:Chan10,11:Chan11,12:Chan12,13:Chan13,14:Chan14,15:Chan15,16:Chan16 AP_GROUPINFO("START_CHAN", 1, AP_ICEngine, start_chan, 0), // @Param: STARTER_TIME // @DisplayName: Time to run starter // @Description: This is the number of seconds to run the starter when trying to start the engine // @User: Standard // @Units: Seconds // @Range: 0.1 5 AP_GROUPINFO("STARTER_TIME", 2, AP_ICEngine, starter_time, 3), // @Param: START_DELAY // @DisplayName: Time to wait between starts // @Description: Delay between start attempts // @User: Standard // @Units: Seconds // @Range: 1 10 AP_GROUPINFO("START_DELAY", 3, AP_ICEngine, starter_delay, 2), // @Param: RPM_THRESH // @DisplayName: RPM threshold // @Description: This is the measured RPM above which tne engine is considered to be running // @User: Standard // @Range: 100 100000 AP_GROUPINFO("RPM_THRESH", 4, AP_ICEngine, rpm_threshold, 100), // @Param: PWM_IGN_ON // @DisplayName: PWM value for ignition on // @Description: This is the value sent to the ignition channel when on // @User: Standard // @Range: 1000 2000 AP_GROUPINFO("PWM_IGN_ON", 5, AP_ICEngine, pwm_ignition_on, 2000), // @Param: PWM_IGN_OFF // @DisplayName: PWM value for ignition off // @Description: This is the value sent to the ignition channel when off // @User: Standard // @Range: 1000 2000 AP_GROUPINFO("PWM_IGN_OFF", 6, AP_ICEngine, pwm_ignition_off, 1000), // @Param: PWM_STRT_ON // @DisplayName: PWM value for starter on // @Description: This is the value sent to the starter channel when on // @User: Standard // @Range: 1000 2000 AP_GROUPINFO("PWM_STRT_ON", 7, AP_ICEngine, pwm_starter_on, 2000), // @Param: PWM_STRT_OFF // @DisplayName: PWM value for starter off // @Description: This is the value sent to the starter channel when off // @User: Standard // @Range: 1000 2000 AP_GROUPINFO("PWM_STRT_OFF", 8, AP_ICEngine, pwm_starter_off, 1000), // @Param: RPM_CHAN // @DisplayName: RPM instance channel to use // @Description: This is which of the RPM instances to use for detecting the RPM of the engine // @User: Standard // @Values: 0:None,1:RPM1,2:RPM2 AP_GROUPINFO("RPM_CHAN", 9, AP_ICEngine, rpm_instance, 0), // @Param: START_PCT // @DisplayName: Throttle percentage for engine start // @Description: This is the percentage throttle output for engine start // @User: Standard // @Range: 0 100 AP_GROUPINFO("START_PCT", 10, AP_ICEngine, start_percent, 5), AP_GROUPEND }; // constructor AP_ICEngine::AP_ICEngine(const AP_RPM &_rpm, const AP_AHRS &_ahrs) : rpm(_rpm), ahrs(_ahrs), state(ICE_OFF) { AP_Param::setup_object_defaults(this, var_info); } /* update engine state */ void AP_ICEngine::update(void) { if (!enable) { return; } uint16_t cvalue = 1500; if (start_chan != 0) { // get starter control channel cvalue = hal.rcin->read(start_chan-1); } bool should_run = false; uint32_t now = AP_HAL::millis(); if (state == ICE_OFF && cvalue >= 1700) { should_run = true; } else if (cvalue <= 1300) { should_run = false; } else if (state != ICE_OFF) { should_run = true; } // switch on current state to work out new state switch (state) { case ICE_OFF: if (should_run) { state = ICE_START_DELAY; } break; case ICE_START_HEIGHT_DELAY: { Vector3f pos; if (!should_run) { state = ICE_OFF; } else if (ahrs.get_relative_position_NED(pos)) { if (height_pending) { height_pending = false; initial_height = -pos.z; } else if ((-pos.z) >= initial_height + height_required) { GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "Starting height reached %.1f", (double)(-pos.z) - initial_height); state = ICE_STARTING; } } break; } case ICE_START_DELAY: if (!should_run) { state = ICE_OFF; } else if (now - starter_last_run_ms >= starter_delay*1000) { GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "Starting engine"); state = ICE_STARTING; } break; case ICE_STARTING: if (!should_run) { state = ICE_OFF; } else if (now - starter_start_time_ms >= starter_time*1000) { state = ICE_RUNNING; } break; case ICE_RUNNING: if (!should_run) { state = ICE_OFF; GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "Stopped engine"); } else if (rpm_instance > 0) { // check RPM to see if still running if (!rpm.healthy(rpm_instance-1) || rpm.get_rpm(rpm_instance-1) < rpm_threshold) { // engine has stopped when it should be running state = ICE_START_DELAY; } } break; } if (!hal.util->get_soft_armed()) { if (state == ICE_START_HEIGHT_DELAY) { // when disarmed we can be waiting for takeoff Vector3f pos; if (ahrs.get_relative_position_NED(pos)) { // reset initial height while disarmed initial_height = -pos.z; } } else { // force ignition off when disarmed state = ICE_OFF; } } /* now set output channels */ switch (state) { case ICE_OFF: RC_Channel_aux::set_radio(RC_Channel_aux::k_ignition, pwm_ignition_off); RC_Channel_aux::set_radio(RC_Channel_aux::k_starter, pwm_starter_off); starter_start_time_ms = 0; break; case ICE_START_HEIGHT_DELAY: case ICE_START_DELAY: RC_Channel_aux::set_radio(RC_Channel_aux::k_ignition, pwm_ignition_on); RC_Channel_aux::set_radio(RC_Channel_aux::k_starter, pwm_starter_off); break; case ICE_STARTING: RC_Channel_aux::set_radio(RC_Channel_aux::k_ignition, pwm_ignition_on); RC_Channel_aux::set_radio(RC_Channel_aux::k_starter, pwm_starter_on); if (starter_start_time_ms == 0) { starter_start_time_ms = now; } starter_last_run_ms = now; break; case ICE_RUNNING: RC_Channel_aux::set_radio(RC_Channel_aux::k_ignition, pwm_ignition_on); RC_Channel_aux::set_radio(RC_Channel_aux::k_starter, pwm_starter_off); starter_start_time_ms = 0; break; } } /* check for throttle override. This allows the ICE controller to force the correct starting throttle when starting the engine */ bool AP_ICEngine::throttle_override(uint8_t &percentage) { if (!enable) { return false; } if (state == ICE_STARTING || state == ICE_START_DELAY) { percentage = (uint8_t)start_percent.get(); return true; } return false; } /* handle DO_ENGINE_CONTROL messages via MAVLink or mission */ bool AP_ICEngine::engine_control(float start_control, float cold_start, float height_delay) { if (start_control <= 0) { state = ICE_OFF; return true; } if (start_chan != 0) { // get starter control channel if (hal.rcin->read(start_chan-1) <= 1300) { GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "Engine: start control disabled"); return false; } } if (height_delay > 0) { height_pending = true; initial_height = 0; height_required = height_delay; state = ICE_START_HEIGHT_DELAY; GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "Takeoff height set to %.1fm", height_delay); return true; } state = ICE_STARTING; return true; }