/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#if AP_SCRIPTING_ENABLED
#include
#include "AP_MotorsMatrix_6DoF_Scripting.h"
#include
#include
extern const AP_HAL::HAL& hal;
void AP_MotorsMatrix_6DoF_Scripting::output_to_motors()
{
switch (_spool_state) {
case SpoolState::SHUT_DOWN:
case SpoolState::GROUND_IDLE:
{
// no output, cant spin up for ground idle because we don't know which way motors should be spining
for (uint8_t i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) {
if (motor_enabled[i]) {
_actuator[i] = 0.0f;
}
}
break;
}
case SpoolState::SPOOLING_UP:
case SpoolState::THROTTLE_UNLIMITED:
case SpoolState::SPOOLING_DOWN:
// set motor output based on thrust requests
for (uint8_t i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) {
if (motor_enabled[i]) {
if (_reversible[i]) {
// revesible motor can provide both positive and negative thrust, +- spin max, spin min does not apply
if (is_positive(_thrust_rpyt_out[i])) {
_actuator[i] = apply_thrust_curve_and_volt_scaling(_thrust_rpyt_out[i]) * _spin_max;
} else if (is_negative(_thrust_rpyt_out[i])) {
_actuator[i] = -apply_thrust_curve_and_volt_scaling(-_thrust_rpyt_out[i]) * _spin_max;
} else {
_actuator[i] = 0.0f;
}
} else {
// motor can only provide trust in a single direction, spin min to spin max as 'normal' copter
_actuator[i] = thrust_to_actuator(_thrust_rpyt_out[i]);
}
}
}
break;
}
// Send to each motor
for (uint8_t i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) {
if (motor_enabled[i]) {
SRV_Channels::set_output_scaled(SRV_Channels::get_motor_function(i), _actuator[i] * 4500);
}
}
}
// output_armed - sends commands to the motors
void AP_MotorsMatrix_6DoF_Scripting::output_armed_stabilizing()
{
uint8_t i; // general purpose counter
float roll_thrust; // roll thrust input value, +/- 1.0
float pitch_thrust; // pitch thrust input value, +/- 1.0
float yaw_thrust; // yaw thrust input value, +/- 1.0
float throttle_thrust; // throttle thrust input value, 0.0 - 1.0
float forward_thrust; // forward thrust input value, +/- 1.0
float right_thrust; // right thrust input value, +/- 1.0
// note that the throttle, forwards and right inputs are not in bodyframe, they are in the frame of the 'normal' 4DoF copter were pretending to be
// apply voltage and air pressure compensation
const float compensation_gain = get_compensation_gain(); // compensation for battery voltage and altitude
roll_thrust = (_roll_in + _roll_in_ff) * compensation_gain;
pitch_thrust = (_pitch_in + _pitch_in_ff) * compensation_gain;
yaw_thrust = (_yaw_in + _yaw_in_ff) * compensation_gain;
throttle_thrust = get_throttle() * compensation_gain;
// scale horizontal thrust with throttle, this mimics a normal copter
// so we don't break the lean angle proportional acceleration assumption made by the position controller
forward_thrust = get_forward() * throttle_thrust;
right_thrust = get_lateral() * throttle_thrust;
// set throttle limit flags
if (throttle_thrust <= 0) {
throttle_thrust = 0;
// we cant thrust down, the vehicle can do it, but it would break a lot of assumptions further up the control stack
// 1G decent probably plenty anyway....
limit.throttle_lower = true;
}
if (throttle_thrust >= 1) {
throttle_thrust = 1;
limit.throttle_upper = true;
}
// rotate the thrust into bodyframe
Matrix3f rot;
Vector3f thrust_vec;
rot.from_euler312(_roll_offset, _pitch_offset, 0.0f);
/*
upwards thrust, independent of orientation
*/
thrust_vec.x = 0.0f;
thrust_vec.y = 0.0f;
thrust_vec.z = throttle_thrust;
thrust_vec = rot * thrust_vec;
for (i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) {
if (motor_enabled[i]) {
_thrust_rpyt_out[i] = thrust_vec.x * _forward_factor[i];
_thrust_rpyt_out[i] += thrust_vec.y * _right_factor[i];
_thrust_rpyt_out[i] += thrust_vec.z * _throttle_factor[i];
if (fabsf(_thrust_rpyt_out[i]) >= 1) {
// if we hit this the mixer is probably scaled incorrectly
limit.throttle_upper = true;
}
_thrust_rpyt_out[i] = constrain_float(_thrust_rpyt_out[i],-1.0f,1.0f);
}
}
/*
rotations: roll, pitch and yaw
*/
float rpy_ratio = 1.0f; // scale factor, output will be scaled by this ratio so it can all fit evenly
float thrust[AP_MOTORS_MAX_NUM_MOTORS];
for (i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) {
if (motor_enabled[i]) {
thrust[i] = roll_thrust * _roll_factor[i];
thrust[i] += pitch_thrust * _pitch_factor[i];
thrust[i] += yaw_thrust * _yaw_factor[i];
float total_thrust = _thrust_rpyt_out[i] + thrust[i];
// control input will be limited by motor range
if (total_thrust > 1.0f) {
rpy_ratio = MIN(rpy_ratio,(1.0f - _thrust_rpyt_out[i]) / thrust[i]);
} else if (total_thrust < -1.0f) {
rpy_ratio = MIN(rpy_ratio,(-1.0f -_thrust_rpyt_out[i]) / thrust[i]);
}
}
}
// set limit flags if output is being scaled
if (rpy_ratio < 1) {
limit.roll = true;
limit.pitch = true;
limit.yaw = true;
}
// scale back rotations evenly so it will all fit
for (i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) {
if (motor_enabled[i]) {
_thrust_rpyt_out[i] = constrain_float(_thrust_rpyt_out[i] + thrust[i] * rpy_ratio,-1.0f,1.0f);
}
}
/*
forward and lateral, independent of orentaiton
*/
thrust_vec.x = forward_thrust;
thrust_vec.y = right_thrust;
thrust_vec.z = 0.0f;
thrust_vec = rot * thrust_vec;
float horz_ratio = 1.0f;
for (i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) {
if (motor_enabled[i]) {
thrust[i] = thrust_vec.x * _forward_factor[i];
thrust[i] += thrust_vec.y * _right_factor[i];
thrust[i] += thrust_vec.z * _throttle_factor[i];
float total_thrust = _thrust_rpyt_out[i] + thrust[i];
// control input will be limited by motor range
if (total_thrust > 1.0f) {
horz_ratio = MIN(horz_ratio,(1.0f - _thrust_rpyt_out[i]) / thrust[i]);
} else if (total_thrust < -1.0f) {
horz_ratio = MIN(horz_ratio,(-1.0f -_thrust_rpyt_out[i]) / thrust[i]);
}
}
}
// scale back evenly so it will all fit
for (i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) {
if (motor_enabled[i]) {
_thrust_rpyt_out[i] = constrain_float(_thrust_rpyt_out[i] + thrust[i] * horz_ratio,-1.0f,1.0f);
}
}
/*
apply deadzone to revesible motors, this stops motors from reversing direction too often
re-use yaw headroom param for deadzone, constain to a max of 25%
*/
const float deadzone = constrain_float(_yaw_headroom.get() * 0.001f,0.0f,0.25f);
for (i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) {
if (motor_enabled[i] && _reversible[i]) {
if (is_negative(_thrust_rpyt_out[i])) {
if ((_thrust_rpyt_out[i] > -deadzone) && is_positive(_last_thrust_out[i])) {
_thrust_rpyt_out[i] = 0.0f;
} else {
_last_thrust_out[i] = _thrust_rpyt_out[i];
}
} else if (is_positive(_thrust_rpyt_out[i])) {
if ((_thrust_rpyt_out[i] < deadzone) && is_negative(_last_thrust_out[i])) {
_thrust_rpyt_out[i] = 0.0f;
} else {
_last_thrust_out[i] = _thrust_rpyt_out[i];
}
}
}
}
}
// sets the roll and pitch offset, this rotates the thrust vector in body frame
// these are typically set such that the throttle thrust vector is earth frame up
void AP_MotorsMatrix_6DoF_Scripting::set_roll_pitch(float roll_deg, float pitch_deg)
{
_roll_offset = radians(roll_deg);
_pitch_offset = radians(pitch_deg);
}
// add_motor, take roll, pitch, yaw, throttle(up), forward, right factors along with a bool if the motor is reversible and the testing order, called from scripting
void AP_MotorsMatrix_6DoF_Scripting::add_motor(int8_t motor_num, float roll_factor, float pitch_factor, float yaw_factor, float throttle_factor, float forward_factor, float right_factor, bool reversible, uint8_t testing_order)
{
if (initialised_ok()) {
// don't allow matrix to be changed after init
return;
}
// ensure valid motor number is provided
if (motor_num >= 0 && motor_num < AP_MOTORS_MAX_NUM_MOTORS) {
motor_enabled[motor_num] = true;
_roll_factor[motor_num] = roll_factor;
_pitch_factor[motor_num] = pitch_factor;
_yaw_factor[motor_num] = yaw_factor;
_throttle_factor[motor_num] = throttle_factor;
_forward_factor[motor_num] = forward_factor;
_right_factor[motor_num] = right_factor;
// set order that motor appears in test
_test_order[motor_num] = testing_order;
// ensure valid motor number is provided
SRV_Channel::Aux_servo_function_t function = SRV_Channels::get_motor_function(motor_num);
SRV_Channels::set_aux_channel_default(function, motor_num);
uint8_t chan;
if (!SRV_Channels::find_channel(function, chan)) {
gcs().send_text(MAV_SEVERITY_ERROR, "Motors: unable to setup motor %u", motor_num);
return;
}
_reversible[motor_num] = reversible;
if (_reversible[motor_num]) {
// reversible, set to angle type hard code trim to 1500
SRV_Channels::set_angle(function, 4500);
SRV_Channels::set_trim_to_pwm_for(function, 1500);
} else {
SRV_Channels::set_range(function, 4500);
}
SRV_Channels::set_output_min_max(function, get_pwm_output_min(), get_pwm_output_max());
}
}
bool AP_MotorsMatrix_6DoF_Scripting::init(uint8_t expected_num_motors) {
uint8_t num_motors = 0;
for (uint8_t i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) {
if (motor_enabled[i]) {
num_motors++;
}
}
set_initialised_ok(expected_num_motors == num_motors);
if (!initialised_ok()) {
_mav_type = MAV_TYPE_GENERIC;
return false;
}
switch (num_motors) {
case 3:
_mav_type = MAV_TYPE_TRICOPTER;
break;
case 4:
_mav_type = MAV_TYPE_QUADROTOR;
break;
case 6:
_mav_type = MAV_TYPE_HEXAROTOR;
break;
case 8:
_mav_type = MAV_TYPE_OCTOROTOR;
break;
case 10:
_mav_type = MAV_TYPE_DECAROTOR;
break;
case 12:
_mav_type = MAV_TYPE_DODECAROTOR;
break;
default:
_mav_type = MAV_TYPE_GENERIC;
}
return true;
}
// singleton instance
AP_MotorsMatrix_6DoF_Scripting *AP_MotorsMatrix_6DoF_Scripting::_singleton;
#endif // AP_SCRIPTING_ENABLED