#include "AP_Motors_Thrust_Linearization.h" #include "AP_Motors_Class.h" #include #include #include #define AP_MOTORS_BATT_VOLT_FILT_HZ 0.5 // battery voltage filtered at 0.5hz #if APM_BUILD_TYPE(APM_BUILD_UNKNOWN) // Example does not instantiate baro so cannot do density compensation #define AP_MOTORS_DENSITY_COMP 0 #else #ifndef AP_MOTORS_DENSITY_COMP #define AP_MOTORS_DENSITY_COMP 1 #endif #endif #if APM_BUILD_TYPE(APM_BUILD_Heli) // defaults to no linearisation to not break users existing setups #define THRST_LIN_THST_EXPO_DEFAULT 0.0f // set to 0 for linear and 1 for second order approximation #define THRST_LIN_SPIN_MIN_DEFAULT 0.0f // throttle out ratio which produces the minimum thrust. (i.e. 0 ~ 1 ) of the full throttle range #define THRST_LIN_SPIN_MAX_DEFAULT 1.0f // throttle out ratio which produces the maximum thrust. (i.e. 0 ~ 1 ) of the full throttle range #define THRST_LIN_BAT_VOLT_MAX_DEFAULT 0.0f // voltage limiting max default #define THRST_LIN_BAT_VOLT_MIN_DEFAULT 0.0f // voltage limiting min default (voltage dropping below this level will have no effect) #else #define THRST_LIN_THST_EXPO_DEFAULT 0.65f // set to 0 for linear and 1 for second order approximation #define THRST_LIN_SPIN_MIN_DEFAULT 0.15f // throttle out ratio which produces the minimum thrust. (i.e. 0 ~ 1 ) of the full throttle range #define THRST_LIN_SPIN_MAX_DEFAULT 0.95f // throttle out ratio which produces the maximum thrust. (i.e. 0 ~ 1 ) of the full throttle range #define THRST_LIN_BAT_VOLT_MAX_DEFAULT 0.0f // voltage limiting max default #define THRST_LIN_BAT_VOLT_MIN_DEFAULT 0.0f // voltage limiting min default (voltage dropping below this level will have no effect) #endif extern const AP_HAL::HAL& hal; const AP_Param::GroupInfo Thrust_Linearization::var_info[] = { // @Param: THST_EXPO // @DisplayName: Thrust Curve Expo // @Description: motor thrust curve exponent (0.0 for linear to 1.0 for second order curve) // @Range: -1 1 // @User: Standard AP_GROUPINFO("THST_EXPO", 1, Thrust_Linearization, curve_expo, THRST_LIN_THST_EXPO_DEFAULT), // @Param: SPIN_MIN // @DisplayName: Motor Spin minimum // @Description: Point at which the thrust starts expressed as a number from 0 to 1 in the entire output range. Should be higher than MOT_SPIN_ARM. // @Values: 0.0:Low, 0.15:Default, 0.3:High // @User: Standard AP_GROUPINFO("SPIN_MIN", 2, Thrust_Linearization, spin_min, THRST_LIN_SPIN_MIN_DEFAULT), // @Param: SPIN_MAX // @DisplayName: Motor Spin maximum // @Description: Point at which the thrust saturates expressed as a number from 0 to 1 in the entire output range // @Values: 0.9:Low, 0.95:Default, 1.0:High // @User: Standard AP_GROUPINFO("SPIN_MAX", 3, Thrust_Linearization, spin_max, THRST_LIN_SPIN_MAX_DEFAULT), // @Param: BAT_IDX // @DisplayName: Battery compensation index // @Description: Which battery monitor should be used for doing compensation // @Values: 0:First battery, 1:Second battery // @User: Standard AP_GROUPINFO("BAT_IDX", 4, Thrust_Linearization, batt_idx, 0), // @Param: BAT_V_MAX // @DisplayName: Battery voltage compensation maximum voltage // @Description: Battery voltage compensation maximum voltage (voltage above this will have no additional scaling effect on thrust). Recommend 4.2 * cell count, 0 = Disabled // @Range: 6 53 // @Units: V // @User: Standard AP_GROUPINFO("BAT_V_MAX", 5, Thrust_Linearization, batt_voltage_max, THRST_LIN_BAT_VOLT_MAX_DEFAULT), // @Param: BAT_V_MIN // @DisplayName: Battery voltage compensation minimum voltage // @Description: Battery voltage compensation minimum voltage (voltage below this will have no additional scaling effect on thrust). Recommend 3.3 * cell count, 0 = Disabled // @Range: 6 42 // @Units: V // @User: Standard AP_GROUPINFO("BAT_V_MIN", 6, Thrust_Linearization, batt_voltage_min, THRST_LIN_BAT_VOLT_MIN_DEFAULT), AP_GROUPEND }; Thrust_Linearization::Thrust_Linearization(AP_Motors& _motors) : motors(_motors), lift_max(1.0) { // setup battery voltage filtering batt_voltage_filt.set_cutoff_frequency(AP_MOTORS_BATT_VOLT_FILT_HZ); batt_voltage_filt.reset(1.0); #if APM_BUILD_TYPE(APM_BUILD_Heli) AP_Param::setup_object_defaults(this, var_info); #endif } // converts desired thrust to linearized actuator output in a range of 0~1 float Thrust_Linearization::thrust_to_actuator(float thrust_in) const { thrust_in = constrain_float(thrust_in, 0.0, 1.0); return spin_min + (spin_max - spin_min) * apply_thrust_curve_and_volt_scaling(thrust_in); } // inverse of above, tested with AP_Motors/examples/expo_inverse_test // used to calculate equivelent motor throttle level to direct ouput, used in tailsitter transtions float Thrust_Linearization::actuator_to_thrust(float actuator) const { actuator = (actuator - spin_min) / (spin_max - spin_min); return constrain_float(remove_thrust_curve_and_volt_scaling(actuator), 0.0, 1.0); } // apply_thrust_curve_and_volt_scaling - returns throttle in the range 0 ~ 1 float Thrust_Linearization::apply_thrust_curve_and_volt_scaling(float thrust) const { float battery_scale = 1.0; if (is_positive(batt_voltage_filt.get())) { battery_scale = 1.0 / batt_voltage_filt.get(); } // apply thrust curve - domain -1.0 to 1.0, range -1.0 to 1.0 float thrust_curve_expo = constrain_float(curve_expo, -1.0, 1.0); if (is_zero(thrust_curve_expo)) { // zero expo means linear, avoid floating point exception for small values return lift_max * thrust * battery_scale; } float throttle_ratio = ((thrust_curve_expo - 1.0) + safe_sqrt((1.0 - thrust_curve_expo) * (1.0 - thrust_curve_expo) + 4.0 * thrust_curve_expo * lift_max * thrust)) / (2.0 * thrust_curve_expo); return constrain_float(throttle_ratio * battery_scale, 0.0, 1.0); } // inverse of above, tested with AP_Motors/examples/expo_inverse_test // used to calculate equivelent motor throttle level to direct ouput, used in tailsitter transtions float Thrust_Linearization::remove_thrust_curve_and_volt_scaling(float throttle) const { float battery_scale = 1.0; if (is_positive(batt_voltage_filt.get())) { battery_scale = 1.0 / batt_voltage_filt.get(); } // apply thrust curve - domain -1.0 to 1.0, range -1.0 to 1.0 float thrust_curve_expo = constrain_float(curve_expo, -1.0, 1.0); if (is_zero(thrust_curve_expo)) { // zero expo means linear, avoid floating point exception for small values return throttle / (lift_max * battery_scale); } float thrust = ((throttle / battery_scale) * (2.0 * thrust_curve_expo)) - (thrust_curve_expo - 1.0); thrust = (thrust * thrust) - ((1.0 - thrust_curve_expo) * (1.0 - thrust_curve_expo)); thrust /= 4.0 * thrust_curve_expo * lift_max; return constrain_float(thrust, 0.0, 1.0); } // update_lift_max from battery voltage - used for voltage compensation void Thrust_Linearization::update_lift_max_from_batt_voltage() { #if AP_BATTERY_ENABLED // sanity check battery_voltage_min is not too small // if disabled or misconfigured exit immediately float _batt_voltage = motors.has_option(AP_Motors::MotorOptions::BATT_RAW_VOLTAGE) ? AP::battery().voltage(batt_idx) : AP::battery().voltage_resting_estimate(batt_idx); if ((batt_voltage_max <= 0) || (batt_voltage_min >= batt_voltage_max) || (_batt_voltage < 0.25 * batt_voltage_min)) { batt_voltage_filt.reset(1.0); lift_max = 1.0; return; } batt_voltage_min.set(MAX(batt_voltage_min, batt_voltage_max * 0.6)); // constrain resting voltage estimate (resting voltage is actual voltage with sag removed based on current draw and resistance) _batt_voltage = constrain_float(_batt_voltage, batt_voltage_min, batt_voltage_max); if (!motors.has_option(AP_Motors::MotorOptions::BATT_RAW_VOLTAGE)) { // filter at 0.5 Hz batt_voltage_filt.apply(_batt_voltage / batt_voltage_max, motors.get_dt()); } else { // reset is equivalent to no filtering batt_voltage_filt.reset(_batt_voltage / batt_voltage_max); } // calculate lift max float thrust_curve_expo = constrain_float(curve_expo, -1.0, 1.0); lift_max = batt_voltage_filt.get() * (1 - thrust_curve_expo) + thrust_curve_expo * batt_voltage_filt.get() * batt_voltage_filt.get(); #endif } // return gain scheduling gain based on voltage and air density float Thrust_Linearization::get_compensation_gain() const { // avoid divide by zero if (get_lift_max() <= 0.0) { return 1.0; } float ret = 1.0 / get_lift_max(); #if AP_MOTORS_DENSITY_COMP == 1 // air density ratio is increasing in density / decreasing in altitude const float air_density_ratio = AP::baro().get_air_density_ratio(); if (air_density_ratio > 0.3 && air_density_ratio < 1.5) { ret *= 1.0 / constrain_float(air_density_ratio, 0.5, 1.25); } #endif return ret; }