/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* * AP_MotorsHeli.cpp - ArduCopter motors library * Code by RandyMackay. DIYDrones.com * */ #include #include #include "AP_MotorsHeli.h" #include extern const AP_HAL::HAL& hal; const AP_Param::GroupInfo AP_MotorsHeli::var_info[] = { // 1 was ROL_MAX which has been replaced by CYC_MAX // 2 was PIT_MAX which has been replaced by CYC_MAX // @Param: COL_MIN // @DisplayName: Collective Pitch Minimum // @Description: Lowest possible servo position for the swashplate // @Range: 1000 2000 // @Units: PWM // @Increment: 1 // @User: Standard AP_GROUPINFO("COL_MIN", 3, AP_MotorsHeli, _collective_min, AP_MOTORS_HELI_COLLECTIVE_MIN), // @Param: COL_MAX // @DisplayName: Collective Pitch Maximum // @Description: Highest possible servo position for the swashplate // @Range: 1000 2000 // @Units: PWM // @Increment: 1 // @User: Standard AP_GROUPINFO("COL_MAX", 4, AP_MotorsHeli, _collective_max, AP_MOTORS_HELI_COLLECTIVE_MAX), // @Param: COL_MID // @DisplayName: Collective Pitch Mid-Point // @Description: Swash servo position corresponding to zero collective pitch (or zero lift for Asymmetrical blades) // @Range: 1000 2000 // @Units: PWM // @Increment: 1 // @User: Standard AP_GROUPINFO("COL_MID", 5, AP_MotorsHeli, _collective_mid, AP_MOTORS_HELI_COLLECTIVE_MID), // @Param: SV_MAN // @DisplayName: Manual Servo Mode // @Description: Manual servo override for swash set-up. Do not set this manually! // @Values: 0:Disabled,1:Passthrough,2:Max collective,3:Mid collective,4:Min collective // @User: Standard AP_GROUPINFO("SV_MAN", 6, AP_MotorsHeli, _servo_mode, SERVO_CONTROL_MODE_AUTOMATED), // @Param: RSC_SETPOINT // @DisplayName: External Motor Governor Setpoint // @Description: PWM passed to the external motor governor when external governor is enabled // @Range: 0 1000 // @Units: PWM // @Increment: 10 // @User: Standard AP_GROUPINFO("RSC_SETPOINT", 7, AP_MotorsHeli, _rsc_setpoint, AP_MOTORS_HELI_RSC_SETPOINT), // @Param: RSC_MODE // @DisplayName: Rotor Speed Control Mode // @Description: Determines the method of rotor speed control // @Values: 1:Ch8 Input, 2:SetPoint, 3:Throttle Curve // @User: Standard AP_GROUPINFO("RSC_MODE", 8, AP_MotorsHeli, _rsc_mode, (int8_t)ROTOR_CONTROL_MODE_SPEED_PASSTHROUGH), // @Param: LAND_COL_MIN // @DisplayName: Landing Collective Minimum // @Description: Minimum collective position while landed or landing // @Range: 0 500 // @Units: PWM // @Increment: 1 // @User: Standard AP_GROUPINFO("LAND_COL_MIN", 9, AP_MotorsHeli, _land_collective_min, AP_MOTORS_HELI_LAND_COLLECTIVE_MIN), // @Param: RSC_RAMP_TIME // @DisplayName: RSC Ramp Time // @Description: Time in seconds for the output to the main rotor's ESC to reach full speed // @Range: 0 60 // @Units: s // @User: Standard AP_GROUPINFO("RSC_RAMP_TIME", 10, AP_MotorsHeli, _rsc_ramp_time, AP_MOTORS_HELI_RSC_RAMP_TIME), // @Param: RSC_RUNUP_TIME // @DisplayName: RSC Runup Time // @Description: Time in seconds for the main rotor to reach full speed. Must be longer than RSC_RAMP_TIME // @Range: 0 60 // @Units: s // @User: Standard AP_GROUPINFO("RSC_RUNUP_TIME", 11, AP_MotorsHeli, _rsc_runup_time, AP_MOTORS_HELI_RSC_RUNUP_TIME), // @Param: RSC_CRITICAL // @DisplayName: Critical Rotor Speed // @Description: Rotor speed below which flight is not possible // @Range: 0 1000 // @Increment: 10 // @User: Standard AP_GROUPINFO("RSC_CRITICAL", 12, AP_MotorsHeli, _rsc_critical, AP_MOTORS_HELI_RSC_CRITICAL), // @Param: RSC_IDLE // @DisplayName: Rotor Speed Output at Idle // @Description: Rotor speed output while armed but rotor control speed is not engaged // @Range: 0 500 // @Increment: 10 // @User: Standard AP_GROUPINFO("RSC_IDLE", 13, AP_MotorsHeli, _rsc_idle_output, AP_MOTORS_HELI_RSC_IDLE_DEFAULT), // @Param: RSC_POWER_LOW // @DisplayName: Throttle Servo Low Power Position // @Description: Throttle output at zero collective pitch. This is on a scale from 0 to 1000, where 1000 is full throttle and 0 is zero throttle. Actual PWM values are controlled by H_RSC_PWM_MIN and H_RSC_PWM_MAX. Zero collective pitch is defined by H_COL_MID. // @Range: 0 1000 // @Increment: 10 // @User: Standard AP_GROUPINFO("RSC_POWER_LOW", 14, AP_MotorsHeli, _rsc_power_low, AP_MOTORS_HELI_RSC_POWER_LOW_DEFAULT), // @Param: RSC_POWER_HIGH // @DisplayName: Throttle Servo High Power Position // @Description: Throttle output at maximum collective pitch. This is on a scale from 0 to 1000, where 1000 is full throttle and 0 is zero throttle. Actual PWM values are controlled by H_RSC_PWM_MIN and H_RSC_PWM_MAX. // @Range: 0 1000 // @Increment: 10 // @User: Standard AP_GROUPINFO("RSC_POWER_HIGH", 15, AP_MotorsHeli, _rsc_power_high, AP_MOTORS_HELI_RSC_POWER_HIGH_DEFAULT), // @Param: CYC_MAX // @DisplayName: Cyclic Pitch Angle Max // @Description: Maximum pitch angle of the swash plate // @Range: 0 18000 // @Units: cdeg // @Increment: 100 // @User: Advanced AP_GROUPINFO("CYC_MAX", 16, AP_MotorsHeli, _cyclic_max, AP_MOTORS_HELI_SWASH_CYCLIC_MAX), // @Param: SV_TEST // @DisplayName: Boot-up Servo Test Cycles // @Description: Number of cycles to run servo test on boot-up // @Range: 0 10 // @Increment: 1 // @User: Standard AP_GROUPINFO("SV_TEST", 17, AP_MotorsHeli, _servo_test, 0), // @Param: RSC_POWER_NEGC // @DisplayName: Throttle servo negative collective power position // @Description: Throttle output at full negative collective pitch. This is on a scale from 0 to 1000, where 1000 is full throttle and 0 is zero throttle. Actual PWM values are controlled by H_RSC_PWM_MIN and H_RSC_PWM_MAX. If this is equal to H_RSC_POWER_HIGH then you will have a symmetric V-curve for the throttle response. // @Range: 1 1000 // @Increment: 10 // @User: Standard AP_GROUPINFO("RSC_POWER_NEGC", 18, AP_MotorsHeli, _rsc_power_negc, AP_MOTORS_HELI_RSC_POWER_HIGH_DEFAULT), // @Param: RSC_SLEWRATE // @DisplayName: Throttle servo slew rate // @Description: This controls the maximum rate at which the throttle output can change, as a percentage per second. A value of 100 means the throttle can change over its full range in one second. A value of zero gives unlimited slew rate. // @Range: 0 500 // @Increment: 10 // @User: Standard AP_GROUPINFO("RSC_SLEWRATE", 19, AP_MotorsHeli, _rsc_slewrate, 0), AP_GROUPEND }; // // public methods // // init void AP_MotorsHeli::init(motor_frame_class frame_class, motor_frame_type frame_type) { // set update rate set_update_rate(_speed_hz); // load boot-up servo test cycles into counter to be consumed _servo_test_cycle_counter = _servo_test; // ensure inputs are not passed through to servos on start-up _servo_mode = SERVO_CONTROL_MODE_AUTOMATED; // initialise radio passthrough for collective to middle _throttle_radio_passthrough = 0.5f; // initialise Servo/PWM ranges and endpoints if (!init_outputs()) { // don't set initialised_ok return; } // calculate all scalars calculate_scalars(); // record successful initialisation if what we setup was the desired frame_class _flags.initialised_ok = (frame_class == MOTOR_FRAME_HELI); } // set frame class (i.e. quad, hexa, heli) and type (i.e. x, plus) void AP_MotorsHeli::set_frame_class_and_type(motor_frame_class frame_class, motor_frame_type frame_type) { _flags.initialised_ok = (frame_class == MOTOR_FRAME_HELI); } // output_min - sets servos to neutral point with motors stopped void AP_MotorsHeli::output_min() { // move swash to mid move_actuators(0.0f,0.0f,0.5f,0.0f); update_motor_control(ROTOR_CONTROL_STOP); // override limits flags limit.roll_pitch = true; limit.yaw = true; limit.throttle_lower = true; limit.throttle_upper = false; } // output - sends commands to the servos void AP_MotorsHeli::output() { // update throttle filter update_throttle_filter(); if (_flags.armed) { calculate_armed_scalars(); if (!_flags.interlock) { output_armed_zero_throttle(); } else { output_armed_stabilizing(); } } else { output_disarmed(); } }; // sends commands to the motors void AP_MotorsHeli::output_armed_stabilizing() { // if manual override active after arming, deactivate it and reinitialize servos if (_servo_mode != SERVO_CONTROL_MODE_AUTOMATED) { reset_flight_controls(); } move_actuators(_roll_in, _pitch_in, get_throttle(), _yaw_in); update_motor_control(ROTOR_CONTROL_ACTIVE); } // output_armed_zero_throttle - sends commands to the motors void AP_MotorsHeli::output_armed_zero_throttle() { // if manual override active after arming, deactivate it and reinitialize servos if (_servo_mode != SERVO_CONTROL_MODE_AUTOMATED) { reset_flight_controls(); } move_actuators(_roll_in, _pitch_in, get_throttle(), _yaw_in); update_motor_control(ROTOR_CONTROL_IDLE); } // output_disarmed - sends commands to the motors void AP_MotorsHeli::output_disarmed() { if (_servo_test_cycle_counter > 0){ // perform boot-up servo test cycle if enabled servo_test(); } else { // manual override (i.e. when setting up swash) switch (_servo_mode) { case SERVO_CONTROL_MODE_MANUAL_PASSTHROUGH: // pass pilot commands straight through to swash _roll_in = _roll_radio_passthrough; _pitch_in = _pitch_radio_passthrough; _throttle_filter.reset(_throttle_radio_passthrough); _yaw_in = _yaw_radio_passthrough; break; case SERVO_CONTROL_MODE_MANUAL_CENTER: // fixate mid collective _roll_in = 0.0f; _pitch_in = 0.0f; _throttle_filter.reset(_collective_mid_pct); _yaw_in = 0.0f; break; case SERVO_CONTROL_MODE_MANUAL_MAX: // fixate max collective _roll_in = 0.0f; _pitch_in = 0.0f; _throttle_filter.reset(1.0f); _yaw_in = 1.0f; break; case SERVO_CONTROL_MODE_MANUAL_MIN: // fixate min collective _roll_in = 0.0f; _pitch_in = 0.0f; _throttle_filter.reset(0.0f); _yaw_in = -1.0f; break; case SERVO_CONTROL_MODE_MANUAL_OSCILLATE: // use servo_test function from child classes servo_test(); break; default: // no manual override break; } } // ensure swash servo endpoints haven't been moved init_outputs(); // continuously recalculate scalars to allow setup calculate_scalars(); // helicopters always run stabilizing flight controls move_actuators(_roll_in, _pitch_in, get_throttle(), _yaw_in); update_motor_control(ROTOR_CONTROL_STOP); } // parameter_check - check if helicopter specific parameters are sensible bool AP_MotorsHeli::parameter_check(bool display_msg) const { // returns false if _rsc_setpoint is not higher than _rsc_critical as this would not allow rotor_runup_complete to ever return true if (_rsc_critical >= _rsc_setpoint) { if (display_msg) { GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_CRITICAL, "PreArm: H_RSC_CRITICAL too large"); } return false; } // returns false if RSC Mode is not set to a valid control mode if (_rsc_mode <= (int8_t)ROTOR_CONTROL_MODE_DISABLED || _rsc_mode > (int8_t)ROTOR_CONTROL_MODE_CLOSED_LOOP_POWER_OUTPUT) { if (display_msg) { GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_CRITICAL, "PreArm: H_RSC_MODE invalid"); } return false; } // returns false if RSC Runup Time is less than Ramp time as this could cause undesired behaviour of rotor speed estimate if (_rsc_runup_time <= _rsc_ramp_time){ if (display_msg) { GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_CRITICAL, "PreArm: H_RUNUP_TIME too small"); } return false; } // returns false if idle output is higher than critical rotor speed as this could block runup_complete from going false if ( _rsc_idle_output >= _rsc_critical){ if (display_msg) { GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_CRITICAL, "PreArm: H_RSC_IDLE too large"); } return false; } // all other cases parameters are OK return true; } // reset_swash_servo void AP_MotorsHeli::reset_swash_servo(SRV_Channel *servo) { servo->set_range(1000); // swash servos always use full endpoints as restricting them would lead to scaling errors servo->set_output_min(1000); servo->set_output_max(2000); } // update the throttle input filter void AP_MotorsHeli::update_throttle_filter() { _throttle_filter.apply(_throttle_in, 1.0f/_loop_rate); // constrain filtered throttle if (_throttle_filter.get() < 0.0f) { _throttle_filter.reset(0.0f); } if (_throttle_filter.get() > 1.0f) { _throttle_filter.reset(1.0f); } } // reset_flight_controls - resets all controls and scalars to flight status void AP_MotorsHeli::reset_flight_controls() { _servo_mode = SERVO_CONTROL_MODE_AUTOMATED; init_outputs(); calculate_scalars(); }