#pragma once #include #include #include #include #include #include #include "definitions.h" #include "edc.h" #include "location.h" #include "matrix3.h" #include "polygon.h" #include "quaternion.h" #include "rotations.h" #include "vector2.h" #include "vector3.h" // define AP_Param types AP_Vector3f and Ap_Matrix3f AP_PARAMDEFV(Vector3f, Vector3f, AP_PARAM_VECTOR3F); /* * Check whether two floats are equal */ template typename std::enable_if::type>::value ,bool>::type is_equal(const Arithmetic1 v_1, const Arithmetic2 v_2); template typename std::enable_if::type>::value, bool>::type is_equal(const Arithmetic1 v_1, const Arithmetic2 v_2); /* * @brief: Check whether a float is zero */ template inline bool is_zero(const T fVal1) { static_assert(std::is_floating_point::value || std::is_base_of::value, "Template parameter not of type float"); return (fabsf(static_cast(fVal1)) < FLT_EPSILON); } /* * A variant of asin() that checks the input ranges and ensures a valid angle * as output. If nan is given as input then zero is returned. */ template float safe_asin(const T v); /* * A variant of sqrt() that checks the input ranges and ensures a valid value * as output. If a negative number is given then 0 is returned. The reasoning * is that a negative number for sqrt() in our code is usually caused by small * numerical rounding errors, so the real input should have been zero */ template float safe_sqrt(const T v); // invOut is an inverted 4x4 matrix when returns true, otherwise matrix is Singular bool inverse3x3(float m[], float invOut[]); // invOut is an inverted 3x3 matrix when returns true, otherwise matrix is Singular bool inverse4x4(float m[],float invOut[]); // matrix multiplication of two NxN matrices float *mat_mul(float *A, float *B, uint8_t n); // matrix algebra bool inverse(float x[], float y[], uint16_t dim); /* * Constrain an angle to be within the range: -180 to 180 degrees. The second * parameter changes the units. Default: 1 == degrees, 10 == dezi, * 100 == centi. */ template float wrap_180(const T angle, float unit_mod = 1); /* * Wrap an angle in centi-degrees. See wrap_180(). */ template auto wrap_180_cd(const T angle) -> decltype(wrap_180(angle, 100.f)); /* * Constrain an euler angle to be within the range: 0 to 360 degrees. The * second parameter changes the units. Default: 1 == degrees, 10 == dezi, * 100 == centi. */ template float wrap_360(const T angle, float unit_mod = 1); /* * Wrap an angle in centi-degrees. See wrap_360(). */ template auto wrap_360_cd(const T angle) -> decltype(wrap_360(angle, 100.f)); /* wrap an angle in radians to -PI ~ PI (equivalent to +- 180 degrees) */ template float wrap_PI(const T radian); /* * wrap an angle in radians to 0..2PI */ template float wrap_2PI(const T radian); /* * Constrain a value to be within the range: low and high */ template T constrain_value(const T amt, const T low, const T high); inline float constrain_float(const float amt, const float low, const float high) { return constrain_value(amt, low, high); } inline int16_t constrain_int16(const int16_t amt, const int16_t low, const int16_t high) { return constrain_value(amt, low, high); } inline int32_t constrain_int32(const int32_t amt, const int32_t low, const int32_t high) { return constrain_value(amt, low, high); } // degrees -> radians static inline float radians(float deg) { return deg * DEG_TO_RAD; } // radians -> degrees static inline float degrees(float rad) { return rad * RAD_TO_DEG; } template float sq(const T val) { return powf(static_cast(val), 2); } /* * Variadic template for calculating the square norm of a vector of any * dimension. */ template float sq(const T first, const Params... parameters) { return sq(first) + sq(parameters...); } /* * Variadic template for calculating the norm (pythagoras) of a vector of any * dimension. */ template float norm(const T first, const Params... parameters) { return sqrt(static_cast(sq(first, parameters...))); } template static inline auto MIN(const A &one, const B &two) -> decltype(one < two ? one : two) { return one < two ? one : two; } template static inline auto MAX(const A &one, const B &two) -> decltype(one > two ? one : two) { return one > two ? one : two; } inline uint32_t hz_to_nsec(uint32_t freq) { return AP_NSEC_PER_SEC / freq; } inline uint32_t nsec_to_hz(uint32_t nsec) { return AP_NSEC_PER_SEC / nsec; } inline uint32_t usec_to_nsec(uint32_t usec) { return usec * AP_NSEC_PER_USEC; } inline uint32_t nsec_to_usec(uint32_t nsec) { return nsec / AP_NSEC_PER_USEC; } inline uint32_t hz_to_usec(uint32_t freq) { return AP_USEC_PER_SEC / freq; } inline uint32_t usec_to_hz(uint32_t usec) { return AP_USEC_PER_SEC / usec; } /* linear interpolation based on a variable in a range */ float linear_interpolate(float low_output, float high_output, float var_value, float var_low, float var_high); /* simple 16 bit random number generator */ uint16_t get_random16(void); // generate a random float between -1 and 1, for use in SITL float rand_float(void);