#include #include "AP_NavEKF2.h" #include "AP_NavEKF2_core.h" #include #include #include #include #include extern const AP_HAL::HAL& hal; #define earthRate 0.000072921f // earth rotation rate (rad/sec) // initial imu bias uncertainty (deg/sec) #define INIT_ACCEL_BIAS_UNCERTAINTY 0.5f // maximum allowed gyro bias (rad/sec) #define GYRO_BIAS_LIMIT 0.5f /* to run EK2 timing tests you need to set ENABLE_EKF_TIMING to 1, plus setup as follows: - copter at 400Hz - INS_FAST_SAMPLE=0 - EKF2_MAG_CAL=4 - GPS_TYPE=14 - load fakegps in mavproxy - ensure a compass is enabled - wait till EK2 reports "using GPS" (this is important, ignore earlier results) DO NOT FLY WITH THIS ENABLED */ #define ENABLE_EKF_TIMING 0 // constructor NavEKF2_core::NavEKF2_core(NavEKF2 *_frontend) : _perf_UpdateFilter(hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK2_UpdateFilter")), _perf_CovariancePrediction(hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK2_CovariancePrediction")), _perf_FuseVelPosNED(hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK2_FuseVelPosNED")), _perf_FuseMagnetometer(hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK2_FuseMagnetometer")), _perf_FuseAirspeed(hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK2_FuseAirspeed")), _perf_FuseSideslip(hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK2_FuseSideslip")), _perf_TerrainOffset(hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK2_TerrainOffset")), _perf_FuseOptFlow(hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK2_FuseOptFlow")), frontend(_frontend) { _perf_test[0] = hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK2_Test0"); _perf_test[1] = hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK2_Test1"); _perf_test[2] = hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK2_Test2"); _perf_test[3] = hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK2_Test3"); _perf_test[4] = hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK2_Test4"); _perf_test[5] = hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK2_Test5"); _perf_test[6] = hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK2_Test6"); _perf_test[7] = hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK2_Test7"); _perf_test[8] = hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK2_Test8"); _perf_test[9] = hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK2_Test9"); } // setup this core backend bool NavEKF2_core::setup_core(uint8_t _imu_index, uint8_t _core_index) { imu_index = _imu_index; gyro_index_active = _imu_index; accel_index_active = _imu_index; core_index = _core_index; _ahrs = frontend->_ahrs; /* the imu_buffer_length needs to cope with a 260ms delay at a maximum fusion rate of 100Hz. Non-imu data coming in at faster than 100Hz is downsampled. For 50Hz main loop rate we need a shorter buffer. */ if (AP::ins().get_sample_rate() < 100) { imu_buffer_length = 13; } else { // maximum 260 msec delay at 100 Hz fusion rate imu_buffer_length = 26; } if(!storedGPS.init(OBS_BUFFER_LENGTH)) { return false; } if(!storedMag.init(OBS_BUFFER_LENGTH)) { return false; } if(!storedBaro.init(OBS_BUFFER_LENGTH)) { return false; } if(!storedTAS.init(OBS_BUFFER_LENGTH)) { return false; } if(!storedOF.init(FLOW_BUFFER_LENGTH)) { return false; } // Note: the use of dual range finders potentially doubles the amount of to be stored if(!storedRange.init(2*OBS_BUFFER_LENGTH)) { return false; } // Note: range beacon data is read one beacon at a time and can arrive at a high rate if(!storedRangeBeacon.init(imu_buffer_length)) { return false; } if(!storedExtNav.init(OBS_BUFFER_LENGTH)) { return false; } if(!storedIMU.init(imu_buffer_length)) { return false; } if(!storedOutput.init(imu_buffer_length)) { return false; } return true; } /******************************************************** * INIT FUNCTIONS * ********************************************************/ // Use a function call rather than a constructor to initialise variables because it enables the filter to be re-started in flight if necessary. void NavEKF2_core::InitialiseVariables() { // calculate the nominal filter update rate const AP_InertialSensor &ins = AP::ins(); localFilterTimeStep_ms = (uint8_t)(1000*ins.get_loop_delta_t()); localFilterTimeStep_ms = MAX(localFilterTimeStep_ms,10); // initialise time stamps imuSampleTime_ms = frontend->imuSampleTime_us / 1000; prevTasStep_ms = imuSampleTime_ms; prevBetaStep_ms = imuSampleTime_ms; lastBaroReceived_ms = imuSampleTime_ms; lastVelPassTime_ms = 0; lastPosPassTime_ms = 0; lastHgtPassTime_ms = 0; lastTasPassTime_ms = 0; lastYawTime_ms = imuSampleTime_ms; lastTimeGpsReceived_ms = 0; secondLastGpsTime_ms = 0; lastDecayTime_ms = imuSampleTime_ms; timeAtLastAuxEKF_ms = imuSampleTime_ms; flowValidMeaTime_ms = imuSampleTime_ms; rngValidMeaTime_ms = imuSampleTime_ms; flowMeaTime_ms = 0; prevFlowFuseTime_ms = 0; gndHgtValidTime_ms = 0; ekfStartTime_ms = imuSampleTime_ms; lastGpsVelFail_ms = 0; lastGpsVelPass_ms = 0; lastGpsAidBadTime_ms = 0; timeTasReceived_ms = 0; lastPreAlignGpsCheckTime_ms = imuSampleTime_ms; lastPosReset_ms = 0; lastVelReset_ms = 0; lastPosResetD_ms = 0; lastRngMeasTime_ms = 0; terrainHgtStableSet_ms = 0; // initialise other variables gpsNoiseScaler = 1.0f; hgtTimeout = true; tasTimeout = true; badIMUdata = false; dtIMUavg = 0.0025f; dtEkfAvg = EKF_TARGET_DT; dt = 0; velDotNEDfilt.zero(); lastKnownPositionNE.zero(); prevTnb.zero(); memset(&P[0][0], 0, sizeof(P)); memset(&KH[0][0], 0, sizeof(KH)); memset(&KHP[0][0], 0, sizeof(KHP)); memset(&nextP[0][0], 0, sizeof(nextP)); flowDataValid = false; rangeDataToFuse = false; Popt = 0.0f; terrainState = 0.0f; prevPosN = stateStruct.position.x; prevPosE = stateStruct.position.y; inhibitGndState = false; flowGyroBias.x = 0; flowGyroBias.y = 0; heldVelNE.zero(); PV_AidingMode = AID_NONE; PV_AidingModePrev = AID_NONE; posTimeout = true; velTimeout = true; memset(&faultStatus, 0, sizeof(faultStatus)); hgtRate = 0.0f; mag_state.q0 = 1; mag_state.DCM.identity(); onGround = true; prevOnGround = true; inFlight = false; prevInFlight = false; manoeuvring = false; inhibitWindStates = true; gndOffsetValid = false; validOrigin = false; takeoffExpectedSet_ms = 0; expectGndEffectTakeoff = false; touchdownExpectedSet_ms = 0; expectGndEffectTouchdown = false; gpsSpdAccuracy = 0.0f; gpsPosAccuracy = 0.0f; gpsHgtAccuracy = 0.0f; baroHgtOffset = 0.0f; yawResetAngle = 0.0f; lastYawReset_ms = 0; tiltErrFilt = 1.0f; tiltAlignComplete = false; stateIndexLim = 23; baroStoreIndex = 0; rangeStoreIndex = 0; magStoreIndex = 0; gpsStoreIndex = 0; tasStoreIndex = 0; ofStoreIndex = 0; delAngCorrection.zero(); velErrintegral.zero(); posErrintegral.zero(); gpsGoodToAlign = false; gpsNotAvailable = true; motorsArmed = false; prevMotorsArmed = false; innovationIncrement = 0; lastInnovation = 0; memset(&gpsCheckStatus, 0, sizeof(gpsCheckStatus)); gpsSpdAccPass = false; ekfInnovationsPass = false; sAccFilterState1 = 0.0f; sAccFilterState2 = 0.0f; lastGpsCheckTime_ms = 0; lastInnovPassTime_ms = 0; lastInnovFailTime_ms = 0; gpsAccuracyGood = false; gpsloc_prev = {}; gpsDriftNE = 0.0f; gpsVertVelFilt = 0.0f; gpsHorizVelFilt = 0.0f; memset(&statesArray, 0, sizeof(statesArray)); memset(&vertCompFiltState, 0, sizeof(vertCompFiltState)); posVelFusionDelayed = false; optFlowFusionDelayed = false; airSpdFusionDelayed = false; sideSlipFusionDelayed = false; posResetNE.zero(); velResetNE.zero(); posResetD = 0.0f; hgtInnovFiltState = 0.0f; imuDataDownSampledNew.delAng.zero(); imuDataDownSampledNew.delVel.zero(); imuDataDownSampledNew.delAngDT = 0.0f; imuDataDownSampledNew.delVelDT = 0.0f; runUpdates = false; framesSincePredict = 0; gpsYawResetRequest = false; quatAtLastMagReset = stateStruct.quat; delAngBiasLearned = false; memset(&filterStatus, 0, sizeof(filterStatus)); gpsInhibit = false; activeHgtSource = 0; memset(&rngMeasIndex, 0, sizeof(rngMeasIndex)); memset(&storedRngMeasTime_ms, 0, sizeof(storedRngMeasTime_ms)); memset(&storedRngMeas, 0, sizeof(storedRngMeas)); terrainHgtStable = true; ekfOriginHgtVar = 0.0f; ekfGpsRefHgt = 0.0; velOffsetNED.zero(); posOffsetNED.zero(); memset(&velPosObs, 0, sizeof(velPosObs)); // range beacon fusion variables memset((void *)&rngBcnDataNew, 0, sizeof(rngBcnDataNew)); memset((void *)&rngBcnDataDelayed, 0, sizeof(rngBcnDataDelayed)); rngBcnStoreIndex = 0; lastRngBcnPassTime_ms = 0; rngBcnTestRatio = 0.0f; rngBcnHealth = false; rngBcnTimeout = true; varInnovRngBcn = 0.0f; innovRngBcn = 0.0f; memset(&lastTimeRngBcn_ms, 0, sizeof(lastTimeRngBcn_ms)); rngBcnDataToFuse = false; beaconVehiclePosNED.zero(); beaconVehiclePosErr = 1.0f; rngBcnLast3DmeasTime_ms = 0; rngBcnGoodToAlign = false; lastRngBcnChecked = 0; receiverPos.zero(); memset(&receiverPosCov, 0, sizeof(receiverPosCov)); rngBcnAlignmentStarted = false; rngBcnAlignmentCompleted = false; lastBeaconIndex = 0; rngBcnPosSum.zero(); numBcnMeas = 0; rngSum = 0.0f; N_beacons = 0; maxBcnPosD = 0.0f; minBcnPosD = 0.0f; bcnPosOffset = 0.0f; bcnPosOffsetMax = 0.0f; bcnPosOffsetMaxVar = 0.0f; OffsetMaxInnovFilt = 0.0f; bcnPosOffsetMin = 0.0f; bcnPosOffsetMinVar = 0.0f; OffsetMinInnovFilt = 0.0f; rngBcnFuseDataReportIndex = 0; memset(&rngBcnFusionReport, 0, sizeof(rngBcnFusionReport)); last_gps_idx = 0; // external nav data fusion memset((void *)&extNavDataNew, 0, sizeof(extNavDataNew)); memset((void *)&extNavDataDelayed, 0, sizeof(extNavDataDelayed)); extNavDataToFuse = false; extNavMeasTime_ms = 0; extNavLastPosResetTime_ms = 0; extNavUsedForYaw = false; extNavUsedForPos = false; extNavYawResetRequest = false; // zero data buffers storedIMU.reset(); storedGPS.reset(); storedBaro.reset(); storedTAS.reset(); storedRange.reset(); storedOutput.reset(); storedRangeBeacon.reset(); storedExtNav.reset(); // now init mag variables yawAlignComplete = false; have_table_earth_field = false; // initialise pre-arm message hal.util->snprintf(prearm_fail_string, sizeof(prearm_fail_string), "EKF2 still initialising"); InitialiseVariablesMag(); } /* separate out the mag reset so it can be used when compass learning completes */ void NavEKF2_core::InitialiseVariablesMag() { lastHealthyMagTime_ms = imuSampleTime_ms; lastMagUpdate_us = 0; magYawResetTimer_ms = imuSampleTime_ms; magTimeout = false; allMagSensorsFailed = false; badMagYaw = false; finalInflightYawInit = false; finalInflightMagInit = false; inhibitMagStates = true; if (_ahrs->get_compass()) { magSelectIndex = _ahrs->get_compass()->get_primary(); } lastMagOffsetsValid = false; magStateResetRequest = false; magStateInitComplete = false; magYawResetRequest = false; posDownAtLastMagReset = stateStruct.position.z; yawInnovAtLastMagReset = 0.0f; magFieldLearned = false; storedMag.reset(); } // Initialise the states from accelerometer and magnetometer data (if present) // This method can only be used when the vehicle is static bool NavEKF2_core::InitialiseFilterBootstrap(void) { // If we are a plane and don't have GPS lock then don't initialise if (assume_zero_sideslip() && AP::gps().status() < AP_GPS::GPS_OK_FIX_3D) { hal.util->snprintf(prearm_fail_string, sizeof(prearm_fail_string), "EKF2 init failure: No GPS lock"); statesInitialised = false; return false; } if (statesInitialised) { // we are initialised, but we don't return true until the IMU // buffer has been filled. This prevents a timing // vulnerability with a pause in IMU data during filter startup readIMUData(); readMagData(); readGpsData(); readBaroData(); return storedIMU.is_filled(); } // set re-used variables to zero InitialiseVariables(); const AP_InertialSensor &ins = AP::ins(); // Initialise IMU data dtIMUavg = ins.get_loop_delta_t(); readIMUData(); storedIMU.reset_history(imuDataNew); imuDataDelayed = imuDataNew; // acceleration vector in XYZ body axes measured by the IMU (m/s^2) Vector3f initAccVec; // TODO we should average accel readings over several cycles initAccVec = ins.get_accel(accel_index_active); // read the magnetometer data readMagData(); // normalise the acceleration vector float pitch=0, roll=0; if (initAccVec.length() > 0.001f) { initAccVec.normalize(); // calculate initial pitch angle pitch = asinf(initAccVec.x); // calculate initial roll angle roll = atan2f(-initAccVec.y , -initAccVec.z); } // calculate initial roll and pitch orientation stateStruct.quat.from_euler(roll, pitch, 0.0f); // initialise dynamic states stateStruct.velocity.zero(); stateStruct.position.zero(); stateStruct.angErr.zero(); // initialise static process model states stateStruct.gyro_bias.zero(); stateStruct.gyro_scale.x = 1.0f; stateStruct.gyro_scale.y = 1.0f; stateStruct.gyro_scale.z = 1.0f; stateStruct.accel_zbias = 0.0f; stateStruct.wind_vel.zero(); stateStruct.earth_magfield.zero(); stateStruct.body_magfield.zero(); // read the GPS and set the position and velocity states readGpsData(); ResetVelocity(); ResetPosition(); // read the barometer and set the height state readBaroData(); ResetHeight(); // define Earth rotation vector in the NED navigation frame calcEarthRateNED(earthRateNED, _ahrs->get_home().lat); // initialise the covariance matrix CovarianceInit(); // reset output states StoreOutputReset(); // set to true now that states have be initialised statesInitialised = true; // reset inactive biases for (uint8_t i=0; i_gpsHorizVelNoise); P[4][4] = P[3][3]; P[5][5] = sq(frontend->_gpsVertVelNoise); // positions P[6][6] = sq(frontend->_gpsHorizPosNoise); P[7][7] = P[6][6]; P[8][8] = sq(frontend->_baroAltNoise); // gyro delta angle biases P[9][9] = sq(radians(InitialGyroBiasUncertainty() * dtEkfAvg)); P[10][10] = P[9][9]; P[11][11] = P[9][9]; // gyro scale factor biases P[12][12] = sq(1e-3); P[13][13] = P[12][12]; P[14][14] = P[12][12]; // Z delta velocity bias P[15][15] = sq(INIT_ACCEL_BIAS_UNCERTAINTY * dtEkfAvg); // earth magnetic field P[16][16] = 0.0f; P[17][17] = P[16][16]; P[18][18] = P[16][16]; // body magnetic field P[19][19] = 0.0f; P[20][20] = P[19][19]; P[21][21] = P[19][19]; // wind velocities P[22][22] = 0.0f; P[23][23] = P[22][22]; // optical flow ground height covariance Popt = 0.25f; } /******************************************************** * UPDATE FUNCTIONS * ********************************************************/ // Update Filter States - this should be called whenever new IMU data is available void NavEKF2_core::UpdateFilter(bool predict) { // Set the flag to indicate to the filter that the front-end has given permission for a new state prediction cycle to be started startPredictEnabled = predict; // don't run filter updates if states have not been initialised if (!statesInitialised) { return; } // start the timer used for load measurement #if ENABLE_EKF_TIMING void *istate = hal.scheduler->disable_interrupts_save(); static uint32_t timing_start_us; timing_start_us = AP_HAL::micros(); #endif hal.util->perf_begin(_perf_UpdateFilter); fill_scratch_variables(); // TODO - in-flight restart method //get starting time for update step imuSampleTime_ms = frontend->imuSampleTime_us / 1000; // Check arm status and perform required checks and mode changes controlFilterModes(); // read IMU data as delta angles and velocities readIMUData(); // Run the EKF equations to estimate at the fusion time horizon if new IMU data is available in the buffer if (runUpdates) { // Predict states using IMU data from the delayed time horizon UpdateStrapdownEquationsNED(); // Predict the covariance growth CovariancePrediction(); // Update states using magnetometer data SelectMagFusion(); // Update states using GPS and altimeter data SelectVelPosFusion(); // Update states using range beacon data SelectRngBcnFusion(); // Update states using optical flow data SelectFlowFusion(); // Update states using airspeed data SelectTasFusion(); // Update states using sideslip constraint assumption for fly-forward vehicles SelectBetaFusion(); // Update the filter status updateFilterStatus(); } // Wind output forward from the fusion to output time horizon calcOutputStates(); // stop the timer used for load measurement hal.util->perf_end(_perf_UpdateFilter); #if ENABLE_EKF_TIMING static uint32_t total_us; static uint32_t timing_counter; total_us += AP_HAL::micros() - timing_start_us; if (timing_counter++ == 4000) { hal.console->printf("ekf2 avg %.2f us\n", total_us / float(timing_counter)); total_us = 0; timing_counter = 0; } hal.scheduler->restore_interrupts(istate); #endif /* this is a check to cope with a vehicle sitting idle on the ground and getting over-confident of the state. The symptoms would be "gyros still settling" when the user tries to arm. In that state the EKF can't recover, so we do a hard reset and let it try again. */ if (filterStatus.value != 0) { last_filter_ok_ms = AP_HAL::millis(); } if (filterStatus.value == 0 && last_filter_ok_ms != 0 && AP_HAL::millis() - last_filter_ok_ms > 5000 && !hal.util->get_soft_armed()) { // we've been unhealthy for 5 seconds after being healthy, reset the filter gcs().send_text(MAV_SEVERITY_WARNING, "EKF2 IMU%u forced reset",(unsigned)imu_index); last_filter_ok_ms = 0; statesInitialised = false; InitialiseFilterBootstrap(); } } void NavEKF2_core::correctDeltaAngle(Vector3f &delAng, float delAngDT, uint8_t gyro_index) { delAng.x = delAng.x * stateStruct.gyro_scale.x; delAng.y = delAng.y * stateStruct.gyro_scale.y; delAng.z = delAng.z * stateStruct.gyro_scale.z; delAng -= inactiveBias[gyro_index].gyro_bias * (delAngDT / dtEkfAvg); } void NavEKF2_core::correctDeltaVelocity(Vector3f &delVel, float delVelDT, uint8_t accel_index) { delVel.z -= inactiveBias[accel_index].accel_zbias * (delVelDT / dtEkfAvg); } /* * Update the quaternion, velocity and position states using delayed IMU measurements * because the EKF is running on a delayed time horizon. Note that the quaternion is * not used by the EKF equations, which instead estimate the error in the attitude of * the vehicle when each observation is fused. This attitude error is then used to correct * the quaternion. */ void NavEKF2_core::UpdateStrapdownEquationsNED() { // update the quaternion states by rotating from the previous attitude through // the delta angle rotation quaternion and normalise // apply correction for earth's rotation rate // % * - and + operators have been overloaded stateStruct.quat.rotate(delAngCorrected - prevTnb * earthRateNED*imuDataDelayed.delAngDT); stateStruct.quat.normalize(); // transform body delta velocities to delta velocities in the nav frame // use the nav frame from previous time step as the delta velocities // have been rotated into that frame // * and + operators have been overloaded Vector3f delVelNav; // delta velocity vector in earth axes delVelNav = prevTnb.mul_transpose(delVelCorrected); delVelNav.z += GRAVITY_MSS*imuDataDelayed.delVelDT; // calculate the body to nav cosine matrix stateStruct.quat.inverse().rotation_matrix(prevTnb); // calculate the rate of change of velocity (used for launch detect and other functions) velDotNED = delVelNav / imuDataDelayed.delVelDT; // apply a first order lowpass filter velDotNEDfilt = velDotNED * 0.05f + velDotNEDfilt * 0.95f; // calculate a magnitude of the filtered nav acceleration (required for GPS // variance estimation) accNavMag = velDotNEDfilt.length(); accNavMagHoriz = norm(velDotNEDfilt.x , velDotNEDfilt.y); // if we are not aiding, then limit the horizontal magnitude of acceleration // to prevent large manoeuvre transients disturbing the attitude if ((PV_AidingMode == AID_NONE) && (accNavMagHoriz > 5.0f)) { float gain = 5.0f/accNavMagHoriz; delVelNav.x *= gain; delVelNav.y *= gain; } // save velocity for use in trapezoidal integration for position calcuation Vector3f lastVelocity = stateStruct.velocity; // sum delta velocities to get velocity stateStruct.velocity += delVelNav; // apply a trapezoidal integration to velocities to calculate position stateStruct.position += (stateStruct.velocity + lastVelocity) * (imuDataDelayed.delVelDT*0.5f); // accumulate the bias delta angle and time since last reset by an OF measurement arrival delAngBodyOF += delAngCorrected; delTimeOF += imuDataDelayed.delAngDT; // limit states to protect against divergence ConstrainStates(); } /* * Propagate PVA solution forward from the fusion time horizon to the current time horizon * using simple observer which performs two functions: * 1) Corrects for the delayed time horizon used by the EKF. * 2) Applies a LPF to state corrections to prevent 'stepping' in states due to measurement * fusion introducing unwanted noise into the control loops. * The inspiration for using a complementary filter to correct for time delays in the EKF * is based on the work by A Khosravian. * * "Recursive Attitude Estimation in the Presence of Multi-rate and Multi-delay Vector Measurements" * A Khosravian, J Trumpf, R Mahony, T Hamel, Australian National University */ void NavEKF2_core::calcOutputStates() { // apply corrections to the IMU data Vector3f delAngNewCorrected = imuDataNew.delAng; Vector3f delVelNewCorrected = imuDataNew.delVel; correctDeltaAngle(delAngNewCorrected, imuDataNew.delAngDT, imuDataNew.gyro_index); correctDeltaVelocity(delVelNewCorrected, imuDataNew.delVelDT, imuDataNew.accel_index); // apply corections to track EKF solution Vector3f delAng = delAngNewCorrected + delAngCorrection; // convert the rotation vector to its equivalent quaternion Quaternion deltaQuat; deltaQuat.from_axis_angle(delAng); // update the quaternion states by rotating from the previous attitude through // the delta angle rotation quaternion and normalise outputDataNew.quat *= deltaQuat; outputDataNew.quat.normalize(); // calculate the body to nav cosine matrix Matrix3f Tbn_temp; outputDataNew.quat.rotation_matrix(Tbn_temp); // transform body delta velocities to delta velocities in the nav frame Vector3f delVelNav = Tbn_temp*delVelNewCorrected; delVelNav.z += GRAVITY_MSS*imuDataNew.delVelDT; // save velocity for use in trapezoidal integration for position calcuation Vector3f lastVelocity = outputDataNew.velocity; // sum delta velocities to get velocity outputDataNew.velocity += delVelNav; // Implement third order complementary filter for height and height rate // Reference Paper : // Optimizing the Gains of the Baro-Inertial Vertical Channel // Widnall W.S, Sinha P.K, // AIAA Journal of Guidance and Control, 78-1307R // Perform filter calculation using backwards Euler integration // Coefficients selected to place all three filter poles at omega const float CompFiltOmega = M_2PI * constrain_float(frontend->_hrt_filt_freq, 0.1f, 30.0f); float omega2 = CompFiltOmega * CompFiltOmega; float pos_err = outputDataNew.position.z - vertCompFiltState.pos; float integ1_input = pos_err * omega2 * CompFiltOmega * imuDataNew.delVelDT; vertCompFiltState.acc += integ1_input; float integ2_input = delVelNav.z + (vertCompFiltState.acc + pos_err * omega2 * 3.0f) * imuDataNew.delVelDT; vertCompFiltState.vel += integ2_input; float integ3_input = (vertCompFiltState.vel + pos_err * CompFiltOmega * 3.0f) * imuDataNew.delVelDT; vertCompFiltState.pos += integ3_input; // apply a trapezoidal integration to velocities to calculate position outputDataNew.position += (outputDataNew.velocity + lastVelocity) * (imuDataNew.delVelDT*0.5f); // If the IMU accelerometer is offset from the body frame origin, then calculate corrections // that can be added to the EKF velocity and position outputs so that they represent the velocity // and position of the body frame origin. // Note the * operator has been overloaded to operate as a dot product if (!accelPosOffset.is_zero()) { // calculate the average angular rate across the last IMU update // note delAngDT is prevented from being zero in readIMUData() Vector3f angRate = imuDataNew.delAng * (1.0f/imuDataNew.delAngDT); // Calculate the velocity of the body frame origin relative to the IMU in body frame // and rotate into earth frame. Note % operator has been overloaded to perform a cross product Vector3f velBodyRelIMU = angRate % (- accelPosOffset); velOffsetNED = Tbn_temp * velBodyRelIMU; // calculate the earth frame position of the body frame origin relative to the IMU posOffsetNED = Tbn_temp * (- accelPosOffset); } else { velOffsetNED.zero(); posOffsetNED.zero(); } // store INS states in a ring buffer that with the same length and time coordinates as the IMU data buffer if (runUpdates) { // store the states at the output time horizon storedOutput[storedIMU.get_youngest_index()] = outputDataNew; // recall the states from the fusion time horizon outputDataDelayed = storedOutput[storedIMU.get_oldest_index()]; // compare quaternion data with EKF quaternion at the fusion time horizon and calculate correction // divide the demanded quaternion by the estimated to get the error Quaternion quatErr = stateStruct.quat / outputDataDelayed.quat; // Convert to a delta rotation using a small angle approximation quatErr.normalize(); Vector3f deltaAngErr; float scaler; if (quatErr[0] >= 0.0f) { scaler = 2.0f; } else { scaler = -2.0f; } deltaAngErr.x = scaler * quatErr[1]; deltaAngErr.y = scaler * quatErr[2]; deltaAngErr.z = scaler * quatErr[3]; // calculate a gain that provides tight tracking of the estimator states and // adjust for changes in time delay to maintain consistent damping ratio of ~0.7 float timeDelay = 1e-3f * (float)(imuDataNew.time_ms - imuDataDelayed.time_ms); timeDelay = fmaxf(timeDelay, dtIMUavg); float errorGain = 0.5f / timeDelay; // calculate a corrrection to the delta angle // that will cause the INS to track the EKF quaternions delAngCorrection = deltaAngErr * errorGain * dtIMUavg; // calculate velocity and position tracking errors Vector3f velErr = (stateStruct.velocity - outputDataDelayed.velocity); Vector3f posErr = (stateStruct.position - outputDataDelayed.position); // collect magnitude tracking error for diagnostics outputTrackError.x = deltaAngErr.length(); outputTrackError.y = velErr.length(); outputTrackError.z = posErr.length(); // convert user specified time constant from centi-seconds to seconds float tauPosVel = constrain_float(0.01f*(float)frontend->_tauVelPosOutput, 0.1f, 0.5f); // calculate a gain to track the EKF position states with the specified time constant float velPosGain = dtEkfAvg / constrain_float(tauPosVel, dtEkfAvg, 10.0f); // use a PI feedback to calculate a correction that will be applied to the output state history posErrintegral += posErr; velErrintegral += velErr; Vector3f velCorrection = velErr * velPosGain + velErrintegral * sq(velPosGain) * 0.1f; Vector3f posCorrection = posErr * velPosGain + posErrintegral * sq(velPosGain) * 0.1f; // loop through the output filter state history and apply the corrections to the velocity and position states // this method is too expensive to use for the attitude states due to the quaternion operations required // but does not introduce a time delay in the 'correction loop' and allows smaller tracking time constants // to be used output_elements outputStates; for (unsigned index=0; index < imu_buffer_length; index++) { outputStates = storedOutput[index]; // a constant velocity correction is applied outputStates.velocity += velCorrection; // a constant position correction is applied outputStates.position += posCorrection; // push the updated data to the buffer storedOutput[index] = outputStates; } // update output state to corrected values outputDataNew = storedOutput[storedIMU.get_youngest_index()]; } } /* * Calculate the predicted state covariance matrix using algebraic equations generated with Matlab symbolic toolbox. * The script file used to generate these and other equations in this filter can be found here: * https://github.com/priseborough/InertialNav/blob/master/derivations/RotationVectorAttitudeParameterisation/GenerateNavFilterEquations.m */ void NavEKF2_core::CovariancePrediction() { hal.util->perf_begin(_perf_CovariancePrediction); float windVelSigma; // wind velocity 1-sigma process noise - m/s float dAngBiasSigma;// delta angle bias 1-sigma process noise - rad/s float dVelBiasSigma;// delta velocity bias 1-sigma process noise - m/s float dAngScaleSigma;// delta angle scale factor 1-Sigma process noise float magEarthSigma;// earth magnetic field 1-sigma process noise float magBodySigma; // body magnetic field 1-sigma process noise float daxNoise; // X axis delta angle noise variance rad^2 float dayNoise; // Y axis delta angle noise variance rad^2 float dazNoise; // Z axis delta angle noise variance rad^2 float dvxNoise; // X axis delta velocity variance noise (m/s)^2 float dvyNoise; // Y axis delta velocity variance noise (m/s)^2 float dvzNoise; // Z axis delta velocity variance noise (m/s)^2 float dvx; // X axis delta velocity (m/s) float dvy; // Y axis delta velocity (m/s) float dvz; // Z axis delta velocity (m/s) float dax; // X axis delta angle (rad) float day; // Y axis delta angle (rad) float daz; // Z axis delta angle (rad) float q0; // attitude quaternion float q1; // attitude quaternion float q2; // attitude quaternion float q3; // attitude quaternion float dax_b; // X axis delta angle measurement bias (rad) float day_b; // Y axis delta angle measurement bias (rad) float daz_b; // Z axis delta angle measurement bias (rad) float dax_s; // X axis delta angle measurement scale factor float day_s; // Y axis delta angle measurement scale factor float daz_s; // Z axis delta angle measurement scale factor float dvz_b; // Z axis delta velocity measurement bias (rad) Vector25 SF; Vector5 SG; Vector8 SQ; Vector24 processNoise; // calculate covariance prediction process noise // use filtered height rate to increase wind process noise when climbing or descending // this allows for wind gradient effects. // filter height rate using a 10 second time constant filter dt = imuDataDelayed.delAngDT; float alpha = 0.1f * dt; hgtRate = hgtRate * (1.0f - alpha) - stateStruct.velocity.z * alpha; // use filtered height rate to increase wind process noise when climbing or descending // this allows for wind gradient effects. windVelSigma = dt * constrain_float(frontend->_windVelProcessNoise, 0.0f, 1.0f) * (1.0f + constrain_float(frontend->_wndVarHgtRateScale, 0.0f, 1.0f) * fabsf(hgtRate)); dAngBiasSigma = sq(dt) * constrain_float(frontend->_gyroBiasProcessNoise, 0.0f, 1.0f); dVelBiasSigma = sq(dt) * constrain_float(frontend->_accelBiasProcessNoise, 0.0f, 1.0f); dAngScaleSigma = dt * constrain_float(frontend->_gyroScaleProcessNoise, 0.0f, 1.0f); magEarthSigma = dt * constrain_float(frontend->_magEarthProcessNoise, 0.0f, 1.0f); magBodySigma = dt * constrain_float(frontend->_magBodyProcessNoise, 0.0f, 1.0f); for (uint8_t i= 0; i<=8; i++) processNoise[i] = 0.0f; for (uint8_t i=9; i<=11; i++) processNoise[i] = dAngBiasSigma; for (uint8_t i=12; i<=14; i++) processNoise[i] = dAngScaleSigma; if (expectGndEffectTakeoff) { processNoise[15] = 0.0f; } else { processNoise[15] = dVelBiasSigma; } for (uint8_t i=16; i<=18; i++) processNoise[i] = magEarthSigma; for (uint8_t i=19; i<=21; i++) processNoise[i] = magBodySigma; for (uint8_t i=22; i<=23; i++) processNoise[i] = windVelSigma; for (uint8_t i= 0; i<=stateIndexLim; i++) processNoise[i] = sq(processNoise[i]); // set variables used to calculate covariance growth dvx = imuDataDelayed.delVel.x; dvy = imuDataDelayed.delVel.y; dvz = imuDataDelayed.delVel.z; dax = imuDataDelayed.delAng.x; day = imuDataDelayed.delAng.y; daz = imuDataDelayed.delAng.z; q0 = stateStruct.quat[0]; q1 = stateStruct.quat[1]; q2 = stateStruct.quat[2]; q3 = stateStruct.quat[3]; dax_b = stateStruct.gyro_bias.x; day_b = stateStruct.gyro_bias.y; daz_b = stateStruct.gyro_bias.z; dax_s = stateStruct.gyro_scale.x; day_s = stateStruct.gyro_scale.y; daz_s = stateStruct.gyro_scale.z; dvz_b = stateStruct.accel_zbias; float _gyrNoise = constrain_float(frontend->_gyrNoise, 0.0f, 1.0f); daxNoise = dayNoise = dazNoise = sq(dt*_gyrNoise); float _accNoise = constrain_float(frontend->_accNoise, 0.0f, 10.0f); dvxNoise = dvyNoise = dvzNoise = sq(dt*_accNoise); // calculate the predicted covariance due to inertial sensor error propagation // we calculate the upper diagonal and copy to take advantage of symmetry SF[0] = daz_b/2 - (daz*daz_s)/2; SF[1] = day_b/2 - (day*day_s)/2; SF[2] = dax_b/2 - (dax*dax_s)/2; SF[3] = q3/2 - (q0*SF[0])/2 + (q1*SF[1])/2 - (q2*SF[2])/2; SF[4] = q0/2 - (q1*SF[2])/2 - (q2*SF[1])/2 + (q3*SF[0])/2; SF[5] = q1/2 + (q0*SF[2])/2 - (q2*SF[0])/2 - (q3*SF[1])/2; SF[6] = q3/2 + (q0*SF[0])/2 - (q1*SF[1])/2 - (q2*SF[2])/2; SF[7] = q0/2 - (q1*SF[2])/2 + (q2*SF[1])/2 - (q3*SF[0])/2; SF[8] = q0/2 + (q1*SF[2])/2 - (q2*SF[1])/2 - (q3*SF[0])/2; SF[9] = q2/2 + (q0*SF[1])/2 + (q1*SF[0])/2 + (q3*SF[2])/2; SF[10] = q2/2 - (q0*SF[1])/2 - (q1*SF[0])/2 + (q3*SF[2])/2; SF[11] = q2/2 + (q0*SF[1])/2 - (q1*SF[0])/2 - (q3*SF[2])/2; SF[12] = q1/2 + (q0*SF[2])/2 + (q2*SF[0])/2 + (q3*SF[1])/2; SF[13] = q1/2 - (q0*SF[2])/2 + (q2*SF[0])/2 - (q3*SF[1])/2; SF[14] = q3/2 + (q0*SF[0])/2 + (q1*SF[1])/2 + (q2*SF[2])/2; SF[15] = - sq(q0) - sq(q1) - sq(q2) - sq(q3); SF[16] = dvz_b - dvz; SF[17] = dvx; SF[18] = dvy; SF[19] = sq(q2); SF[20] = SF[19] - sq(q0) + sq(q1) - sq(q3); SF[21] = SF[19] + sq(q0) - sq(q1) - sq(q3); SF[22] = 2*q0*q1 - 2*q2*q3; SF[23] = SF[19] - sq(q0) - sq(q1) + sq(q3); SF[24] = 2*q1*q2; SG[0] = - sq(q0) - sq(q1) - sq(q2) - sq(q3); SG[1] = sq(q3); SG[2] = sq(q2); SG[3] = sq(q1); SG[4] = sq(q0); SQ[0] = - dvyNoise*(2*q0*q1 + 2*q2*q3)*(SG[1] - SG[2] + SG[3] - SG[4]) - dvzNoise*(2*q0*q1 - 2*q2*q3)*(SG[1] - SG[2] - SG[3] + SG[4]) - dvxNoise*(2*q0*q2 - 2*q1*q3)*(2*q0*q3 + 2*q1*q2); SQ[1] = dvxNoise*(2*q0*q2 - 2*q1*q3)*(SG[1] + SG[2] - SG[3] - SG[4]) + dvzNoise*(2*q0*q2 + 2*q1*q3)*(SG[1] - SG[2] - SG[3] + SG[4]) - dvyNoise*(2*q0*q1 + 2*q2*q3)*(2*q0*q3 - 2*q1*q2); SQ[2] = dvyNoise*(2*q0*q3 - 2*q1*q2)*(SG[1] - SG[2] + SG[3] - SG[4]) - dvxNoise*(2*q0*q3 + 2*q1*q2)*(SG[1] + SG[2] - SG[3] - SG[4]) - dvzNoise*(2*q0*q1 - 2*q2*q3)*(2*q0*q2 + 2*q1*q3); SQ[3] = sq(SG[0]); SQ[4] = 2*q2*q3; SQ[5] = 2*q1*q3; SQ[6] = 2*q1*q2; SQ[7] = SG[4]; Vector23 SPP; SPP[0] = SF[17]*(2*q0*q1 + 2*q2*q3) + SF[18]*(2*q0*q2 - 2*q1*q3); SPP[1] = SF[18]*(2*q0*q2 + 2*q1*q3) + SF[16]*(SF[24] - 2*q0*q3); SPP[2] = 2*q3*SF[8] + 2*q1*SF[11] - 2*q0*SF[14] - 2*q2*SF[13]; SPP[3] = 2*q1*SF[7] + 2*q2*SF[6] - 2*q0*SF[12] - 2*q3*SF[10]; SPP[4] = 2*q0*SF[6] - 2*q3*SF[7] - 2*q1*SF[10] + 2*q2*SF[12]; SPP[5] = 2*q0*SF[8] + 2*q2*SF[11] + 2*q1*SF[13] + 2*q3*SF[14]; SPP[6] = 2*q0*SF[7] + 2*q3*SF[6] + 2*q2*SF[10] + 2*q1*SF[12]; SPP[7] = SF[18]*SF[20] - SF[16]*(2*q0*q1 + 2*q2*q3); SPP[8] = 2*q1*SF[3] - 2*q2*SF[4] - 2*q3*SF[5] + 2*q0*SF[9]; SPP[9] = 2*q0*SF[5] - 2*q1*SF[4] - 2*q2*SF[3] + 2*q3*SF[9]; SPP[10] = SF[17]*SF[20] + SF[16]*(2*q0*q2 - 2*q1*q3); SPP[11] = SF[17]*SF[21] - SF[18]*(SF[24] + 2*q0*q3); SPP[12] = SF[17]*SF[22] - SF[16]*(SF[24] + 2*q0*q3); SPP[13] = 2*q0*SF[4] + 2*q1*SF[5] + 2*q3*SF[3] + 2*q2*SF[9]; SPP[14] = 2*q2*SF[8] - 2*q0*SF[11] - 2*q1*SF[14] + 2*q3*SF[13]; SPP[15] = SF[18]*SF[23] + SF[17]*(SF[24] - 2*q0*q3); SPP[16] = daz*SF[19] + daz*sq(q0) + daz*sq(q1) + daz*sq(q3); SPP[17] = day*SF[19] + day*sq(q0) + day*sq(q1) + day*sq(q3); SPP[18] = dax*SF[19] + dax*sq(q0) + dax*sq(q1) + dax*sq(q3); SPP[19] = SF[16]*SF[23] - SF[17]*(2*q0*q2 + 2*q1*q3); SPP[20] = SF[16]*SF[21] - SF[18]*SF[22]; SPP[21] = 2*q0*q2 + 2*q1*q3; SPP[22] = SF[15]; if (inhibitMagStates) { zeroRows(P,16,21); zeroCols(P,16,21); } else if (inhibitWindStates) { zeroRows(P,22,23); zeroCols(P,22,23); } nextP[0][0] = daxNoise*SQ[3] + SPP[5]*(P[0][0]*SPP[5] - P[1][0]*SPP[4] + P[9][0]*SPP[22] + P[12][0]*SPP[18] + P[2][0]*(2*q1*SF[3] - 2*q2*SF[4] - 2*q3*SF[5] + 2*q0*SF[9])) - SPP[4]*(P[0][1]*SPP[5] - P[1][1]*SPP[4] + P[9][1]*SPP[22] + P[12][1]*SPP[18] + P[2][1]*(2*q1*SF[3] - 2*q2*SF[4] - 2*q3*SF[5] + 2*q0*SF[9])) + SPP[8]*(P[0][2]*SPP[5] + P[2][2]*SPP[8] + P[9][2]*SPP[22] + P[12][2]*SPP[18] - P[1][2]*(2*q0*SF[6] - 2*q3*SF[7] - 2*q1*SF[10] + 2*q2*SF[12])) + SPP[22]*(P[0][9]*SPP[5] - P[1][9]*SPP[4] + P[9][9]*SPP[22] + P[12][9]*SPP[18] + P[2][9]*(2*q1*SF[3] - 2*q2*SF[4] - 2*q3*SF[5] + 2*q0*SF[9])) + SPP[18]*(P[0][12]*SPP[5] - P[1][12]*SPP[4] + P[9][12]*SPP[22] + P[12][12]*SPP[18] + P[2][12]*(2*q1*SF[3] - 2*q2*SF[4] - 2*q3*SF[5] + 2*q0*SF[9])); nextP[0][1] = SPP[6]*(P[0][1]*SPP[5] - P[1][1]*SPP[4] + P[2][1]*SPP[8] + P[9][1]*SPP[22] + P[12][1]*SPP[18]) - SPP[2]*(P[0][0]*SPP[5] - P[1][0]*SPP[4] + P[2][0]*SPP[8] + P[9][0]*SPP[22] + P[12][0]*SPP[18]) + SPP[22]*(P[0][10]*SPP[5] - P[1][10]*SPP[4] + P[2][10]*SPP[8] + P[9][10]*SPP[22] + P[12][10]*SPP[18]) + SPP[17]*(P[0][13]*SPP[5] - P[1][13]*SPP[4] + P[2][13]*SPP[8] + P[9][13]*SPP[22] + P[12][13]*SPP[18]) - (2*q0*SF[5] - 2*q1*SF[4] - 2*q2*SF[3] + 2*q3*SF[9])*(P[0][2]*SPP[5] - P[1][2]*SPP[4] + P[2][2]*SPP[8] + P[9][2]*SPP[22] + P[12][2]*SPP[18]); nextP[1][1] = dayNoise*SQ[3] - SPP[2]*(P[1][0]*SPP[6] - P[0][0]*SPP[2] - P[2][0]*SPP[9] + P[10][0]*SPP[22] + P[13][0]*SPP[17]) + SPP[6]*(P[1][1]*SPP[6] - P[0][1]*SPP[2] - P[2][1]*SPP[9] + P[10][1]*SPP[22] + P[13][1]*SPP[17]) - SPP[9]*(P[1][2]*SPP[6] - P[0][2]*SPP[2] - P[2][2]*SPP[9] + P[10][2]*SPP[22] + P[13][2]*SPP[17]) + SPP[22]*(P[1][10]*SPP[6] - P[0][10]*SPP[2] - P[2][10]*SPP[9] + P[10][10]*SPP[22] + P[13][10]*SPP[17]) + SPP[17]*(P[1][13]*SPP[6] - P[0][13]*SPP[2] - P[2][13]*SPP[9] + P[10][13]*SPP[22] + P[13][13]*SPP[17]); nextP[0][2] = SPP[13]*(P[0][2]*SPP[5] - P[1][2]*SPP[4] + P[2][2]*SPP[8] + P[9][2]*SPP[22] + P[12][2]*SPP[18]) - SPP[3]*(P[0][1]*SPP[5] - P[1][1]*SPP[4] + P[2][1]*SPP[8] + P[9][1]*SPP[22] + P[12][1]*SPP[18]) + SPP[22]*(P[0][11]*SPP[5] - P[1][11]*SPP[4] + P[2][11]*SPP[8] + P[9][11]*SPP[22] + P[12][11]*SPP[18]) + SPP[16]*(P[0][14]*SPP[5] - P[1][14]*SPP[4] + P[2][14]*SPP[8] + P[9][14]*SPP[22] + P[12][14]*SPP[18]) + (2*q2*SF[8] - 2*q0*SF[11] - 2*q1*SF[14] + 2*q3*SF[13])*(P[0][0]*SPP[5] - P[1][0]*SPP[4] + P[2][0]*SPP[8] + P[9][0]*SPP[22] + P[12][0]*SPP[18]); nextP[1][2] = SPP[13]*(P[1][2]*SPP[6] - P[0][2]*SPP[2] - P[2][2]*SPP[9] + P[10][2]*SPP[22] + P[13][2]*SPP[17]) - SPP[3]*(P[1][1]*SPP[6] - P[0][1]*SPP[2] - P[2][1]*SPP[9] + P[10][1]*SPP[22] + P[13][1]*SPP[17]) + SPP[22]*(P[1][11]*SPP[6] - P[0][11]*SPP[2] - P[2][11]*SPP[9] + P[10][11]*SPP[22] + P[13][11]*SPP[17]) + SPP[16]*(P[1][14]*SPP[6] - P[0][14]*SPP[2] - P[2][14]*SPP[9] + P[10][14]*SPP[22] + P[13][14]*SPP[17]) + (2*q2*SF[8] - 2*q0*SF[11] - 2*q1*SF[14] + 2*q3*SF[13])*(P[1][0]*SPP[6] - P[0][0]*SPP[2] - P[2][0]*SPP[9] + P[10][0]*SPP[22] + P[13][0]*SPP[17]); nextP[2][2] = dazNoise*SQ[3] - SPP[3]*(P[0][1]*SPP[14] - P[1][1]*SPP[3] + P[2][1]*SPP[13] + P[11][1]*SPP[22] + P[14][1]*SPP[16]) + SPP[14]*(P[0][0]*SPP[14] - P[1][0]*SPP[3] + P[2][0]*SPP[13] + P[11][0]*SPP[22] + P[14][0]*SPP[16]) + SPP[13]*(P[0][2]*SPP[14] - P[1][2]*SPP[3] + P[2][2]*SPP[13] + P[11][2]*SPP[22] + P[14][2]*SPP[16]) + SPP[22]*(P[0][11]*SPP[14] - P[1][11]*SPP[3] + P[2][11]*SPP[13] + P[11][11]*SPP[22] + P[14][11]*SPP[16]) + SPP[16]*(P[0][14]*SPP[14] - P[1][14]*SPP[3] + P[2][14]*SPP[13] + P[11][14]*SPP[22] + P[14][14]*SPP[16]); nextP[0][3] = P[0][3]*SPP[5] - P[1][3]*SPP[4] + P[2][3]*SPP[8] + P[9][3]*SPP[22] + P[12][3]*SPP[18] + SPP[1]*(P[0][0]*SPP[5] - P[1][0]*SPP[4] + P[2][0]*SPP[8] + P[9][0]*SPP[22] + P[12][0]*SPP[18]) + SPP[15]*(P[0][2]*SPP[5] - P[1][2]*SPP[4] + P[2][2]*SPP[8] + P[9][2]*SPP[22] + P[12][2]*SPP[18]) - SPP[21]*(P[0][15]*SPP[5] - P[1][15]*SPP[4] + P[2][15]*SPP[8] + P[9][15]*SPP[22] + P[12][15]*SPP[18]) + (SF[16]*SF[23] - SF[17]*SPP[21])*(P[0][1]*SPP[5] - P[1][1]*SPP[4] + P[2][1]*SPP[8] + P[9][1]*SPP[22] + P[12][1]*SPP[18]); nextP[1][3] = P[1][3]*SPP[6] - P[0][3]*SPP[2] - P[2][3]*SPP[9] + P[10][3]*SPP[22] + P[13][3]*SPP[17] + SPP[1]*(P[1][0]*SPP[6] - P[0][0]*SPP[2] - P[2][0]*SPP[9] + P[10][0]*SPP[22] + P[13][0]*SPP[17]) + SPP[15]*(P[1][2]*SPP[6] - P[0][2]*SPP[2] - P[2][2]*SPP[9] + P[10][2]*SPP[22] + P[13][2]*SPP[17]) - SPP[21]*(P[1][15]*SPP[6] - P[0][15]*SPP[2] - P[2][15]*SPP[9] + P[10][15]*SPP[22] + P[13][15]*SPP[17]) + (SF[16]*SF[23] - SF[17]*SPP[21])*(P[1][1]*SPP[6] - P[0][1]*SPP[2] - P[2][1]*SPP[9] + P[10][1]*SPP[22] + P[13][1]*SPP[17]); nextP[2][3] = P[0][3]*SPP[14] - P[1][3]*SPP[3] + P[2][3]*SPP[13] + P[11][3]*SPP[22] + P[14][3]*SPP[16] + SPP[1]*(P[0][0]*SPP[14] - P[1][0]*SPP[3] + P[2][0]*SPP[13] + P[11][0]*SPP[22] + P[14][0]*SPP[16]) + SPP[15]*(P[0][2]*SPP[14] - P[1][2]*SPP[3] + P[2][2]*SPP[13] + P[11][2]*SPP[22] + P[14][2]*SPP[16]) - SPP[21]*(P[0][15]*SPP[14] - P[1][15]*SPP[3] + P[2][15]*SPP[13] + P[11][15]*SPP[22] + P[14][15]*SPP[16]) + (SF[16]*SF[23] - SF[17]*SPP[21])*(P[0][1]*SPP[14] - P[1][1]*SPP[3] + P[2][1]*SPP[13] + P[11][1]*SPP[22] + P[14][1]*SPP[16]); nextP[3][3] = P[3][3] + P[0][3]*SPP[1] + P[1][3]*SPP[19] + P[2][3]*SPP[15] - P[15][3]*SPP[21] + dvyNoise*sq(SQ[6] - 2*q0*q3) + dvzNoise*sq(SQ[5] + 2*q0*q2) + SPP[1]*(P[3][0] + P[0][0]*SPP[1] + P[1][0]*SPP[19] + P[2][0]*SPP[15] - P[15][0]*SPP[21]) + SPP[19]*(P[3][1] + P[0][1]*SPP[1] + P[1][1]*SPP[19] + P[2][1]*SPP[15] - P[15][1]*SPP[21]) + SPP[15]*(P[3][2] + P[0][2]*SPP[1] + P[1][2]*SPP[19] + P[2][2]*SPP[15] - P[15][2]*SPP[21]) - SPP[21]*(P[3][15] + P[0][15]*SPP[1] + P[2][15]*SPP[15] - P[15][15]*SPP[21] + P[1][15]*(SF[16]*SF[23] - SF[17]*SPP[21])) + dvxNoise*sq(SG[1] + SG[2] - SG[3] - SQ[7]); nextP[0][4] = P[0][4]*SPP[5] - P[1][4]*SPP[4] + P[2][4]*SPP[8] + P[9][4]*SPP[22] + P[12][4]*SPP[18] + SF[22]*(P[0][15]*SPP[5] - P[1][15]*SPP[4] + P[2][15]*SPP[8] + P[9][15]*SPP[22] + P[12][15]*SPP[18]) + SPP[12]*(P[0][1]*SPP[5] - P[1][1]*SPP[4] + P[2][1]*SPP[8] + P[9][1]*SPP[22] + P[12][1]*SPP[18]) + SPP[20]*(P[0][0]*SPP[5] - P[1][0]*SPP[4] + P[2][0]*SPP[8] + P[9][0]*SPP[22] + P[12][0]*SPP[18]) + SPP[11]*(P[0][2]*SPP[5] - P[1][2]*SPP[4] + P[2][2]*SPP[8] + P[9][2]*SPP[22] + P[12][2]*SPP[18]); nextP[1][4] = P[1][4]*SPP[6] - P[0][4]*SPP[2] - P[2][4]*SPP[9] + P[10][4]*SPP[22] + P[13][4]*SPP[17] + SF[22]*(P[1][15]*SPP[6] - P[0][15]*SPP[2] - P[2][15]*SPP[9] + P[10][15]*SPP[22] + P[13][15]*SPP[17]) + SPP[12]*(P[1][1]*SPP[6] - P[0][1]*SPP[2] - P[2][1]*SPP[9] + P[10][1]*SPP[22] + P[13][1]*SPP[17]) + SPP[20]*(P[1][0]*SPP[6] - P[0][0]*SPP[2] - P[2][0]*SPP[9] + P[10][0]*SPP[22] + P[13][0]*SPP[17]) + SPP[11]*(P[1][2]*SPP[6] - P[0][2]*SPP[2] - P[2][2]*SPP[9] + P[10][2]*SPP[22] + P[13][2]*SPP[17]); nextP[2][4] = P[0][4]*SPP[14] - P[1][4]*SPP[3] + P[2][4]*SPP[13] + P[11][4]*SPP[22] + P[14][4]*SPP[16] + SF[22]*(P[0][15]*SPP[14] - P[1][15]*SPP[3] + P[2][15]*SPP[13] + P[11][15]*SPP[22] + P[14][15]*SPP[16]) + SPP[12]*(P[0][1]*SPP[14] - P[1][1]*SPP[3] + P[2][1]*SPP[13] + P[11][1]*SPP[22] + P[14][1]*SPP[16]) + SPP[20]*(P[0][0]*SPP[14] - P[1][0]*SPP[3] + P[2][0]*SPP[13] + P[11][0]*SPP[22] + P[14][0]*SPP[16]) + SPP[11]*(P[0][2]*SPP[14] - P[1][2]*SPP[3] + P[2][2]*SPP[13] + P[11][2]*SPP[22] + P[14][2]*SPP[16]); nextP[3][4] = P[3][4] + SQ[2] + P[0][4]*SPP[1] + P[1][4]*SPP[19] + P[2][4]*SPP[15] - P[15][4]*SPP[21] + SF[22]*(P[3][15] + P[0][15]*SPP[1] + P[1][15]*SPP[19] + P[2][15]*SPP[15] - P[15][15]*SPP[21]) + SPP[12]*(P[3][1] + P[0][1]*SPP[1] + P[1][1]*SPP[19] + P[2][1]*SPP[15] - P[15][1]*SPP[21]) + SPP[20]*(P[3][0] + P[0][0]*SPP[1] + P[1][0]*SPP[19] + P[2][0]*SPP[15] - P[15][0]*SPP[21]) + SPP[11]*(P[3][2] + P[0][2]*SPP[1] + P[1][2]*SPP[19] + P[2][2]*SPP[15] - P[15][2]*SPP[21]); nextP[4][4] = P[4][4] + P[15][4]*SF[22] + P[0][4]*SPP[20] + P[1][4]*SPP[12] + P[2][4]*SPP[11] + dvxNoise*sq(SQ[6] + 2*q0*q3) + dvzNoise*sq(SQ[4] - 2*q0*q1) + SF[22]*(P[4][15] + P[15][15]*SF[22] + P[0][15]*SPP[20] + P[1][15]*SPP[12] + P[2][15]*SPP[11]) + SPP[12]*(P[4][1] + P[15][1]*SF[22] + P[0][1]*SPP[20] + P[1][1]*SPP[12] + P[2][1]*SPP[11]) + SPP[20]*(P[4][0] + P[15][0]*SF[22] + P[0][0]*SPP[20] + P[1][0]*SPP[12] + P[2][0]*SPP[11]) + SPP[11]*(P[4][2] + P[15][2]*SF[22] + P[0][2]*SPP[20] + P[1][2]*SPP[12] + P[2][2]*SPP[11]) + dvyNoise*sq(SG[1] - SG[2] + SG[3] - SQ[7]); nextP[0][5] = P[0][5]*SPP[5] - P[1][5]*SPP[4] + P[2][5]*SPP[8] + P[9][5]*SPP[22] + P[12][5]*SPP[18] + SF[20]*(P[0][15]*SPP[5] - P[1][15]*SPP[4] + P[2][15]*SPP[8] + P[9][15]*SPP[22] + P[12][15]*SPP[18]) - SPP[7]*(P[0][0]*SPP[5] - P[1][0]*SPP[4] + P[2][0]*SPP[8] + P[9][0]*SPP[22] + P[12][0]*SPP[18]) + SPP[0]*(P[0][2]*SPP[5] - P[1][2]*SPP[4] + P[2][2]*SPP[8] + P[9][2]*SPP[22] + P[12][2]*SPP[18]) + SPP[10]*(P[0][1]*SPP[5] - P[1][1]*SPP[4] + P[2][1]*SPP[8] + P[9][1]*SPP[22] + P[12][1]*SPP[18]); nextP[1][5] = P[1][5]*SPP[6] - P[0][5]*SPP[2] - P[2][5]*SPP[9] + P[10][5]*SPP[22] + P[13][5]*SPP[17] + SF[20]*(P[1][15]*SPP[6] - P[0][15]*SPP[2] - P[2][15]*SPP[9] + P[10][15]*SPP[22] + P[13][15]*SPP[17]) - SPP[7]*(P[1][0]*SPP[6] - P[0][0]*SPP[2] - P[2][0]*SPP[9] + P[10][0]*SPP[22] + P[13][0]*SPP[17]) + SPP[0]*(P[1][2]*SPP[6] - P[0][2]*SPP[2] - P[2][2]*SPP[9] + P[10][2]*SPP[22] + P[13][2]*SPP[17]) + SPP[10]*(P[1][1]*SPP[6] - P[0][1]*SPP[2] - P[2][1]*SPP[9] + P[10][1]*SPP[22] + P[13][1]*SPP[17]); nextP[2][5] = P[0][5]*SPP[14] - P[1][5]*SPP[3] + P[2][5]*SPP[13] + P[11][5]*SPP[22] + P[14][5]*SPP[16] + SF[20]*(P[0][15]*SPP[14] - P[1][15]*SPP[3] + P[2][15]*SPP[13] + P[11][15]*SPP[22] + P[14][15]*SPP[16]) - SPP[7]*(P[0][0]*SPP[14] - P[1][0]*SPP[3] + P[2][0]*SPP[13] + P[11][0]*SPP[22] + P[14][0]*SPP[16]) + SPP[0]*(P[0][2]*SPP[14] - P[1][2]*SPP[3] + P[2][2]*SPP[13] + P[11][2]*SPP[22] + P[14][2]*SPP[16]) + SPP[10]*(P[0][1]*SPP[14] - P[1][1]*SPP[3] + P[2][1]*SPP[13] + P[11][1]*SPP[22] + P[14][1]*SPP[16]); nextP[3][5] = P[3][5] + SQ[1] + P[0][5]*SPP[1] + P[1][5]*SPP[19] + P[2][5]*SPP[15] - P[15][5]*SPP[21] + SF[20]*(P[3][15] + P[0][15]*SPP[1] + P[1][15]*SPP[19] + P[2][15]*SPP[15] - P[15][15]*SPP[21]) - SPP[7]*(P[3][0] + P[0][0]*SPP[1] + P[1][0]*SPP[19] + P[2][0]*SPP[15] - P[15][0]*SPP[21]) + SPP[0]*(P[3][2] + P[0][2]*SPP[1] + P[1][2]*SPP[19] + P[2][2]*SPP[15] - P[15][2]*SPP[21]) + SPP[10]*(P[3][1] + P[0][1]*SPP[1] + P[1][1]*SPP[19] + P[2][1]*SPP[15] - P[15][1]*SPP[21]); nextP[4][5] = P[4][5] + SQ[0] + P[15][5]*SF[22] + P[0][5]*SPP[20] + P[1][5]*SPP[12] + P[2][5]*SPP[11] + SF[20]*(P[4][15] + P[15][15]*SF[22] + P[0][15]*SPP[20] + P[1][15]*SPP[12] + P[2][15]*SPP[11]) - SPP[7]*(P[4][0] + P[15][0]*SF[22] + P[0][0]*SPP[20] + P[1][0]*SPP[12] + P[2][0]*SPP[11]) + SPP[0]*(P[4][2] + P[15][2]*SF[22] + P[0][2]*SPP[20] + P[1][2]*SPP[12] + P[2][2]*SPP[11]) + SPP[10]*(P[4][1] + P[15][1]*SF[22] + P[0][1]*SPP[20] + P[1][1]*SPP[12] + P[2][1]*SPP[11]); nextP[5][5] = P[5][5] + P[15][5]*SF[20] - P[0][5]*SPP[7] + P[1][5]*SPP[10] + P[2][5]*SPP[0] + dvxNoise*sq(SQ[5] - 2*q0*q2) + dvyNoise*sq(SQ[4] + 2*q0*q1) + SF[20]*(P[5][15] + P[15][15]*SF[20] - P[0][15]*SPP[7] + P[1][15]*SPP[10] + P[2][15]*SPP[0]) - SPP[7]*(P[5][0] + P[15][0]*SF[20] - P[0][0]*SPP[7] + P[1][0]*SPP[10] + P[2][0]*SPP[0]) + SPP[0]*(P[5][2] + P[15][2]*SF[20] - P[0][2]*SPP[7] + P[1][2]*SPP[10] + P[2][2]*SPP[0]) + SPP[10]*(P[5][1] + P[15][1]*SF[20] - P[0][1]*SPP[7] + P[1][1]*SPP[10] + P[2][1]*SPP[0]) + dvzNoise*sq(SG[1] - SG[2] - SG[3] + SQ[7]); nextP[0][6] = P[0][6]*SPP[5] - P[1][6]*SPP[4] + P[2][6]*SPP[8] + P[9][6]*SPP[22] + P[12][6]*SPP[18] + dt*(P[0][3]*SPP[5] - P[1][3]*SPP[4] + P[2][3]*SPP[8] + P[9][3]*SPP[22] + P[12][3]*SPP[18]); nextP[1][6] = P[1][6]*SPP[6] - P[0][6]*SPP[2] - P[2][6]*SPP[9] + P[10][6]*SPP[22] + P[13][6]*SPP[17] + dt*(P[1][3]*SPP[6] - P[0][3]*SPP[2] - P[2][3]*SPP[9] + P[10][3]*SPP[22] + P[13][3]*SPP[17]); nextP[2][6] = P[0][6]*SPP[14] - P[1][6]*SPP[3] + P[2][6]*SPP[13] + P[11][6]*SPP[22] + P[14][6]*SPP[16] + dt*(P[0][3]*SPP[14] - P[1][3]*SPP[3] + P[2][3]*SPP[13] + P[11][3]*SPP[22] + P[14][3]*SPP[16]); nextP[3][6] = P[3][6] + P[0][6]*SPP[1] + P[1][6]*SPP[19] + P[2][6]*SPP[15] - P[15][6]*SPP[21] + dt*(P[3][3] + P[0][3]*SPP[1] + P[1][3]*SPP[19] + P[2][3]*SPP[15] - P[15][3]*SPP[21]); nextP[4][6] = P[4][6] + P[15][6]*SF[22] + P[0][6]*SPP[20] + P[1][6]*SPP[12] + P[2][6]*SPP[11] + dt*(P[4][3] + P[15][3]*SF[22] + P[0][3]*SPP[20] + P[1][3]*SPP[12] + P[2][3]*SPP[11]); nextP[5][6] = P[5][6] + P[15][6]*SF[20] - P[0][6]*SPP[7] + P[1][6]*SPP[10] + P[2][6]*SPP[0] + dt*(P[5][3] + P[15][3]*SF[20] - P[0][3]*SPP[7] + P[1][3]*SPP[10] + P[2][3]*SPP[0]); nextP[6][6] = P[6][6] + P[3][6]*dt + dt*(P[6][3] + P[3][3]*dt); nextP[0][7] = P[0][7]*SPP[5] - P[1][7]*SPP[4] + P[2][7]*SPP[8] + P[9][7]*SPP[22] + P[12][7]*SPP[18] + dt*(P[0][4]*SPP[5] - P[1][4]*SPP[4] + P[2][4]*SPP[8] + P[9][4]*SPP[22] + P[12][4]*SPP[18]); nextP[1][7] = P[1][7]*SPP[6] - P[0][7]*SPP[2] - P[2][7]*SPP[9] + P[10][7]*SPP[22] + P[13][7]*SPP[17] + dt*(P[1][4]*SPP[6] - P[0][4]*SPP[2] - P[2][4]*SPP[9] + P[10][4]*SPP[22] + P[13][4]*SPP[17]); nextP[2][7] = P[0][7]*SPP[14] - P[1][7]*SPP[3] + P[2][7]*SPP[13] + P[11][7]*SPP[22] + P[14][7]*SPP[16] + dt*(P[0][4]*SPP[14] - P[1][4]*SPP[3] + P[2][4]*SPP[13] + P[11][4]*SPP[22] + P[14][4]*SPP[16]); nextP[3][7] = P[3][7] + P[0][7]*SPP[1] + P[1][7]*SPP[19] + P[2][7]*SPP[15] - P[15][7]*SPP[21] + dt*(P[3][4] + P[0][4]*SPP[1] + P[1][4]*SPP[19] + P[2][4]*SPP[15] - P[15][4]*SPP[21]); nextP[4][7] = P[4][7] + P[15][7]*SF[22] + P[0][7]*SPP[20] + P[1][7]*SPP[12] + P[2][7]*SPP[11] + dt*(P[4][4] + P[15][4]*SF[22] + P[0][4]*SPP[20] + P[1][4]*SPP[12] + P[2][4]*SPP[11]); nextP[5][7] = P[5][7] + P[15][7]*SF[20] - P[0][7]*SPP[7] + P[1][7]*SPP[10] + P[2][7]*SPP[0] + dt*(P[5][4] + P[15][4]*SF[20] - P[0][4]*SPP[7] + P[1][4]*SPP[10] + P[2][4]*SPP[0]); nextP[6][7] = P[6][7] + P[3][7]*dt + dt*(P[6][4] + P[3][4]*dt); nextP[7][7] = P[7][7] + P[4][7]*dt + dt*(P[7][4] + P[4][4]*dt); nextP[0][8] = P[0][8]*SPP[5] - P[1][8]*SPP[4] + P[2][8]*SPP[8] + P[9][8]*SPP[22] + P[12][8]*SPP[18] + dt*(P[0][5]*SPP[5] - P[1][5]*SPP[4] + P[2][5]*SPP[8] + P[9][5]*SPP[22] + P[12][5]*SPP[18]); nextP[1][8] = P[1][8]*SPP[6] - P[0][8]*SPP[2] - P[2][8]*SPP[9] + P[10][8]*SPP[22] + P[13][8]*SPP[17] + dt*(P[1][5]*SPP[6] - P[0][5]*SPP[2] - P[2][5]*SPP[9] + P[10][5]*SPP[22] + P[13][5]*SPP[17]); nextP[2][8] = P[0][8]*SPP[14] - P[1][8]*SPP[3] + P[2][8]*SPP[13] + P[11][8]*SPP[22] + P[14][8]*SPP[16] + dt*(P[0][5]*SPP[14] - P[1][5]*SPP[3] + P[2][5]*SPP[13] + P[11][5]*SPP[22] + P[14][5]*SPP[16]); nextP[3][8] = P[3][8] + P[0][8]*SPP[1] + P[1][8]*SPP[19] + P[2][8]*SPP[15] - P[15][8]*SPP[21] + dt*(P[3][5] + P[0][5]*SPP[1] + P[1][5]*SPP[19] + P[2][5]*SPP[15] - P[15][5]*SPP[21]); nextP[4][8] = P[4][8] + P[15][8]*SF[22] + P[0][8]*SPP[20] + P[1][8]*SPP[12] + P[2][8]*SPP[11] + dt*(P[4][5] + P[15][5]*SF[22] + P[0][5]*SPP[20] + P[1][5]*SPP[12] + P[2][5]*SPP[11]); nextP[5][8] = P[5][8] + P[15][8]*SF[20] - P[0][8]*SPP[7] + P[1][8]*SPP[10] + P[2][8]*SPP[0] + dt*(P[5][5] + P[15][5]*SF[20] - P[0][5]*SPP[7] + P[1][5]*SPP[10] + P[2][5]*SPP[0]); nextP[6][8] = P[6][8] + P[3][8]*dt + dt*(P[6][5] + P[3][5]*dt); nextP[7][8] = P[7][8] + P[4][8]*dt + dt*(P[7][5] + P[4][5]*dt); nextP[8][8] = P[8][8] + P[5][8]*dt + dt*(P[8][5] + P[5][5]*dt); nextP[0][9] = P[0][9]*SPP[5] - P[1][9]*SPP[4] + P[2][9]*SPP[8] + P[9][9]*SPP[22] + P[12][9]*SPP[18]; nextP[1][9] = P[1][9]*SPP[6] - P[0][9]*SPP[2] - P[2][9]*SPP[9] + P[10][9]*SPP[22] + P[13][9]*SPP[17]; nextP[2][9] = P[0][9]*SPP[14] - P[1][9]*SPP[3] + P[2][9]*SPP[13] + P[11][9]*SPP[22] + P[14][9]*SPP[16]; nextP[3][9] = P[3][9] + P[0][9]*SPP[1] + P[1][9]*SPP[19] + P[2][9]*SPP[15] - P[15][9]*SPP[21]; nextP[4][9] = P[4][9] + P[15][9]*SF[22] + P[0][9]*SPP[20] + P[1][9]*SPP[12] + P[2][9]*SPP[11]; nextP[5][9] = P[5][9] + P[15][9]*SF[20] - P[0][9]*SPP[7] + P[1][9]*SPP[10] + P[2][9]*SPP[0]; nextP[6][9] = P[6][9] + P[3][9]*dt; nextP[7][9] = P[7][9] + P[4][9]*dt; nextP[8][9] = P[8][9] + P[5][9]*dt; nextP[9][9] = P[9][9]; nextP[0][10] = P[0][10]*SPP[5] - P[1][10]*SPP[4] + P[2][10]*SPP[8] + P[9][10]*SPP[22] + P[12][10]*SPP[18]; nextP[1][10] = P[1][10]*SPP[6] - P[0][10]*SPP[2] - P[2][10]*SPP[9] + P[10][10]*SPP[22] + P[13][10]*SPP[17]; nextP[2][10] = P[0][10]*SPP[14] - P[1][10]*SPP[3] + P[2][10]*SPP[13] + P[11][10]*SPP[22] + P[14][10]*SPP[16]; nextP[3][10] = P[3][10] + P[0][10]*SPP[1] + P[1][10]*SPP[19] + P[2][10]*SPP[15] - P[15][10]*SPP[21]; nextP[4][10] = P[4][10] + P[15][10]*SF[22] + P[0][10]*SPP[20] + P[1][10]*SPP[12] + P[2][10]*SPP[11]; nextP[5][10] = P[5][10] + P[15][10]*SF[20] - P[0][10]*SPP[7] + P[1][10]*SPP[10] + P[2][10]*SPP[0]; nextP[6][10] = P[6][10] + P[3][10]*dt; nextP[7][10] = P[7][10] + P[4][10]*dt; nextP[8][10] = P[8][10] + P[5][10]*dt; nextP[9][10] = P[9][10]; nextP[10][10] = P[10][10]; nextP[0][11] = P[0][11]*SPP[5] - P[1][11]*SPP[4] + P[2][11]*SPP[8] + P[9][11]*SPP[22] + P[12][11]*SPP[18]; nextP[1][11] = P[1][11]*SPP[6] - P[0][11]*SPP[2] - P[2][11]*SPP[9] + P[10][11]*SPP[22] + P[13][11]*SPP[17]; nextP[2][11] = P[0][11]*SPP[14] - P[1][11]*SPP[3] + P[2][11]*SPP[13] + P[11][11]*SPP[22] + P[14][11]*SPP[16]; nextP[3][11] = P[3][11] + P[0][11]*SPP[1] + P[1][11]*SPP[19] + P[2][11]*SPP[15] - P[15][11]*SPP[21]; nextP[4][11] = P[4][11] + P[15][11]*SF[22] + P[0][11]*SPP[20] + P[1][11]*SPP[12] + P[2][11]*SPP[11]; nextP[5][11] = P[5][11] + P[15][11]*SF[20] - P[0][11]*SPP[7] + P[1][11]*SPP[10] + P[2][11]*SPP[0]; nextP[6][11] = P[6][11] + P[3][11]*dt; nextP[7][11] = P[7][11] + P[4][11]*dt; nextP[8][11] = P[8][11] + P[5][11]*dt; nextP[9][11] = P[9][11]; nextP[10][11] = P[10][11]; nextP[11][11] = P[11][11]; nextP[0][12] = P[0][12]*SPP[5] - P[1][12]*SPP[4] + P[2][12]*SPP[8] + P[9][12]*SPP[22] + P[12][12]*SPP[18]; nextP[1][12] = P[1][12]*SPP[6] - P[0][12]*SPP[2] - P[2][12]*SPP[9] + P[10][12]*SPP[22] + P[13][12]*SPP[17]; nextP[2][12] = P[0][12]*SPP[14] - P[1][12]*SPP[3] + P[2][12]*SPP[13] + P[11][12]*SPP[22] + P[14][12]*SPP[16]; nextP[3][12] = P[3][12] + P[0][12]*SPP[1] + P[1][12]*SPP[19] + P[2][12]*SPP[15] - P[15][12]*SPP[21]; nextP[4][12] = P[4][12] + P[15][12]*SF[22] + P[0][12]*SPP[20] + P[1][12]*SPP[12] + P[2][12]*SPP[11]; nextP[5][12] = P[5][12] + P[15][12]*SF[20] - P[0][12]*SPP[7] + P[1][12]*SPP[10] + P[2][12]*SPP[0]; nextP[6][12] = P[6][12] + P[3][12]*dt; nextP[7][12] = P[7][12] + P[4][12]*dt; nextP[8][12] = P[8][12] + P[5][12]*dt; nextP[9][12] = P[9][12]; nextP[10][12] = P[10][12]; nextP[11][12] = P[11][12]; nextP[12][12] = P[12][12]; nextP[0][13] = P[0][13]*SPP[5] - P[1][13]*SPP[4] + P[2][13]*SPP[8] + P[9][13]*SPP[22] + P[12][13]*SPP[18]; nextP[1][13] = P[1][13]*SPP[6] - P[0][13]*SPP[2] - P[2][13]*SPP[9] + P[10][13]*SPP[22] + P[13][13]*SPP[17]; nextP[2][13] = P[0][13]*SPP[14] - P[1][13]*SPP[3] + P[2][13]*SPP[13] + P[11][13]*SPP[22] + P[14][13]*SPP[16]; nextP[3][13] = P[3][13] + P[0][13]*SPP[1] + P[1][13]*SPP[19] + P[2][13]*SPP[15] - P[15][13]*SPP[21]; nextP[4][13] = P[4][13] + P[15][13]*SF[22] + P[0][13]*SPP[20] + P[1][13]*SPP[12] + P[2][13]*SPP[11]; nextP[5][13] = P[5][13] + P[15][13]*SF[20] - P[0][13]*SPP[7] + P[1][13]*SPP[10] + P[2][13]*SPP[0]; nextP[6][13] = P[6][13] + P[3][13]*dt; nextP[7][13] = P[7][13] + P[4][13]*dt; nextP[8][13] = P[8][13] + P[5][13]*dt; nextP[9][13] = P[9][13]; nextP[10][13] = P[10][13]; nextP[11][13] = P[11][13]; nextP[12][13] = P[12][13]; nextP[13][13] = P[13][13]; nextP[0][14] = P[0][14]*SPP[5] - P[1][14]*SPP[4] + P[2][14]*SPP[8] + P[9][14]*SPP[22] + P[12][14]*SPP[18]; nextP[1][14] = P[1][14]*SPP[6] - P[0][14]*SPP[2] - P[2][14]*SPP[9] + P[10][14]*SPP[22] + P[13][14]*SPP[17]; nextP[2][14] = P[0][14]*SPP[14] - P[1][14]*SPP[3] + P[2][14]*SPP[13] + P[11][14]*SPP[22] + P[14][14]*SPP[16]; nextP[3][14] = P[3][14] + P[0][14]*SPP[1] + P[1][14]*SPP[19] + P[2][14]*SPP[15] - P[15][14]*SPP[21]; nextP[4][14] = P[4][14] + P[15][14]*SF[22] + P[0][14]*SPP[20] + P[1][14]*SPP[12] + P[2][14]*SPP[11]; nextP[5][14] = P[5][14] + P[15][14]*SF[20] - P[0][14]*SPP[7] + P[1][14]*SPP[10] + P[2][14]*SPP[0]; nextP[6][14] = P[6][14] + P[3][14]*dt; nextP[7][14] = P[7][14] + P[4][14]*dt; nextP[8][14] = P[8][14] + P[5][14]*dt; nextP[9][14] = P[9][14]; nextP[10][14] = P[10][14]; nextP[11][14] = P[11][14]; nextP[12][14] = P[12][14]; nextP[13][14] = P[13][14]; nextP[14][14] = P[14][14]; nextP[0][15] = P[0][15]*SPP[5] - P[1][15]*SPP[4] + P[2][15]*SPP[8] + P[9][15]*SPP[22] + P[12][15]*SPP[18]; nextP[1][15] = P[1][15]*SPP[6] - P[0][15]*SPP[2] - P[2][15]*SPP[9] + P[10][15]*SPP[22] + P[13][15]*SPP[17]; nextP[2][15] = P[0][15]*SPP[14] - P[1][15]*SPP[3] + P[2][15]*SPP[13] + P[11][15]*SPP[22] + P[14][15]*SPP[16]; nextP[3][15] = P[3][15] + P[0][15]*SPP[1] + P[1][15]*SPP[19] + P[2][15]*SPP[15] - P[15][15]*SPP[21]; nextP[4][15] = P[4][15] + P[15][15]*SF[22] + P[0][15]*SPP[20] + P[1][15]*SPP[12] + P[2][15]*SPP[11]; nextP[5][15] = P[5][15] + P[15][15]*SF[20] - P[0][15]*SPP[7] + P[1][15]*SPP[10] + P[2][15]*SPP[0]; nextP[6][15] = P[6][15] + P[3][15]*dt; nextP[7][15] = P[7][15] + P[4][15]*dt; nextP[8][15] = P[8][15] + P[5][15]*dt; nextP[9][15] = P[9][15]; nextP[10][15] = P[10][15]; nextP[11][15] = P[11][15]; nextP[12][15] = P[12][15]; nextP[13][15] = P[13][15]; nextP[14][15] = P[14][15]; nextP[15][15] = P[15][15]; if (stateIndexLim > 15) { nextP[0][16] = P[0][16]*SPP[5] - P[1][16]*SPP[4] + P[2][16]*SPP[8] + P[9][16]*SPP[22] + P[12][16]*SPP[18]; nextP[1][16] = P[1][16]*SPP[6] - P[0][16]*SPP[2] - P[2][16]*SPP[9] + P[10][16]*SPP[22] + P[13][16]*SPP[17]; nextP[2][16] = P[0][16]*SPP[14] - P[1][16]*SPP[3] + P[2][16]*SPP[13] + P[11][16]*SPP[22] + P[14][16]*SPP[16]; nextP[3][16] = P[3][16] + P[0][16]*SPP[1] + P[1][16]*SPP[19] + P[2][16]*SPP[15] - P[15][16]*SPP[21]; nextP[4][16] = P[4][16] + P[15][16]*SF[22] + P[0][16]*SPP[20] + P[1][16]*SPP[12] + P[2][16]*SPP[11]; nextP[5][16] = P[5][16] + P[15][16]*SF[20] - P[0][16]*SPP[7] + P[1][16]*SPP[10] + P[2][16]*SPP[0]; nextP[6][16] = P[6][16] + P[3][16]*dt; nextP[7][16] = P[7][16] + P[4][16]*dt; nextP[8][16] = P[8][16] + P[5][16]*dt; nextP[9][16] = P[9][16]; nextP[10][16] = P[10][16]; nextP[11][16] = P[11][16]; nextP[12][16] = P[12][16]; nextP[13][16] = P[13][16]; nextP[14][16] = P[14][16]; nextP[15][16] = P[15][16]; nextP[16][16] = P[16][16]; nextP[0][17] = P[0][17]*SPP[5] - P[1][17]*SPP[4] + P[2][17]*SPP[8] + P[9][17]*SPP[22] + P[12][17]*SPP[18]; nextP[1][17] = P[1][17]*SPP[6] - P[0][17]*SPP[2] - P[2][17]*SPP[9] + P[10][17]*SPP[22] + P[13][17]*SPP[17]; nextP[2][17] = P[0][17]*SPP[14] - P[1][17]*SPP[3] + P[2][17]*SPP[13] + P[11][17]*SPP[22] + P[14][17]*SPP[16]; nextP[3][17] = P[3][17] + P[0][17]*SPP[1] + P[1][17]*SPP[19] + P[2][17]*SPP[15] - P[15][17]*SPP[21]; nextP[4][17] = P[4][17] + P[15][17]*SF[22] + P[0][17]*SPP[20] + P[1][17]*SPP[12] + P[2][17]*SPP[11]; nextP[5][17] = P[5][17] + P[15][17]*SF[20] - P[0][17]*SPP[7] + P[1][17]*SPP[10] + P[2][17]*SPP[0]; nextP[6][17] = P[6][17] + P[3][17]*dt; nextP[7][17] = P[7][17] + P[4][17]*dt; nextP[8][17] = P[8][17] + P[5][17]*dt; nextP[9][17] = P[9][17]; nextP[10][17] = P[10][17]; nextP[11][17] = P[11][17]; nextP[12][17] = P[12][17]; nextP[13][17] = P[13][17]; nextP[14][17] = P[14][17]; nextP[15][17] = P[15][17]; nextP[16][17] = P[16][17]; nextP[17][17] = P[17][17]; nextP[0][18] = P[0][18]*SPP[5] - P[1][18]*SPP[4] + P[2][18]*SPP[8] + P[9][18]*SPP[22] + P[12][18]*SPP[18]; nextP[1][18] = P[1][18]*SPP[6] - P[0][18]*SPP[2] - P[2][18]*SPP[9] + P[10][18]*SPP[22] + P[13][18]*SPP[17]; nextP[2][18] = P[0][18]*SPP[14] - P[1][18]*SPP[3] + P[2][18]*SPP[13] + P[11][18]*SPP[22] + P[14][18]*SPP[16]; nextP[3][18] = P[3][18] + P[0][18]*SPP[1] + P[1][18]*SPP[19] + P[2][18]*SPP[15] - P[15][18]*SPP[21]; nextP[4][18] = P[4][18] + P[15][18]*SF[22] + P[0][18]*SPP[20] + P[1][18]*SPP[12] + P[2][18]*SPP[11]; nextP[5][18] = P[5][18] + P[15][18]*SF[20] - P[0][18]*SPP[7] + P[1][18]*SPP[10] + P[2][18]*SPP[0]; nextP[6][18] = P[6][18] + P[3][18]*dt; nextP[7][18] = P[7][18] + P[4][18]*dt; nextP[8][18] = P[8][18] + P[5][18]*dt; nextP[9][18] = P[9][18]; nextP[10][18] = P[10][18]; nextP[11][18] = P[11][18]; nextP[12][18] = P[12][18]; nextP[13][18] = P[13][18]; nextP[14][18] = P[14][18]; nextP[15][18] = P[15][18]; nextP[16][18] = P[16][18]; nextP[17][18] = P[17][18]; nextP[18][18] = P[18][18]; nextP[0][19] = P[0][19]*SPP[5] - P[1][19]*SPP[4] + P[2][19]*SPP[8] + P[9][19]*SPP[22] + P[12][19]*SPP[18]; nextP[1][19] = P[1][19]*SPP[6] - P[0][19]*SPP[2] - P[2][19]*SPP[9] + P[10][19]*SPP[22] + P[13][19]*SPP[17]; nextP[2][19] = P[0][19]*SPP[14] - P[1][19]*SPP[3] + P[2][19]*SPP[13] + P[11][19]*SPP[22] + P[14][19]*SPP[16]; nextP[3][19] = P[3][19] + P[0][19]*SPP[1] + P[1][19]*SPP[19] + P[2][19]*SPP[15] - P[15][19]*SPP[21]; nextP[4][19] = P[4][19] + P[15][19]*SF[22] + P[0][19]*SPP[20] + P[1][19]*SPP[12] + P[2][19]*SPP[11]; nextP[5][19] = P[5][19] + P[15][19]*SF[20] - P[0][19]*SPP[7] + P[1][19]*SPP[10] + P[2][19]*SPP[0]; nextP[6][19] = P[6][19] + P[3][19]*dt; nextP[7][19] = P[7][19] + P[4][19]*dt; nextP[8][19] = P[8][19] + P[5][19]*dt; nextP[9][19] = P[9][19]; nextP[10][19] = P[10][19]; nextP[11][19] = P[11][19]; nextP[12][19] = P[12][19]; nextP[13][19] = P[13][19]; nextP[14][19] = P[14][19]; nextP[15][19] = P[15][19]; nextP[16][19] = P[16][19]; nextP[17][19] = P[17][19]; nextP[18][19] = P[18][19]; nextP[19][19] = P[19][19]; nextP[0][20] = P[0][20]*SPP[5] - P[1][20]*SPP[4] + P[2][20]*SPP[8] + P[9][20]*SPP[22] + P[12][20]*SPP[18]; nextP[1][20] = P[1][20]*SPP[6] - P[0][20]*SPP[2] - P[2][20]*SPP[9] + P[10][20]*SPP[22] + P[13][20]*SPP[17]; nextP[2][20] = P[0][20]*SPP[14] - P[1][20]*SPP[3] + P[2][20]*SPP[13] + P[11][20]*SPP[22] + P[14][20]*SPP[16]; nextP[3][20] = P[3][20] + P[0][20]*SPP[1] + P[1][20]*SPP[19] + P[2][20]*SPP[15] - P[15][20]*SPP[21]; nextP[4][20] = P[4][20] + P[15][20]*SF[22] + P[0][20]*SPP[20] + P[1][20]*SPP[12] + P[2][20]*SPP[11]; nextP[5][20] = P[5][20] + P[15][20]*SF[20] - P[0][20]*SPP[7] + P[1][20]*SPP[10] + P[2][20]*SPP[0]; nextP[6][20] = P[6][20] + P[3][20]*dt; nextP[7][20] = P[7][20] + P[4][20]*dt; nextP[8][20] = P[8][20] + P[5][20]*dt; nextP[9][20] = P[9][20]; nextP[10][20] = P[10][20]; nextP[11][20] = P[11][20]; nextP[12][20] = P[12][20]; nextP[13][20] = P[13][20]; nextP[14][20] = P[14][20]; nextP[15][20] = P[15][20]; nextP[16][20] = P[16][20]; nextP[17][20] = P[17][20]; nextP[18][20] = P[18][20]; nextP[19][20] = P[19][20]; nextP[20][20] = P[20][20]; nextP[0][21] = P[0][21]*SPP[5] - P[1][21]*SPP[4] + P[2][21]*SPP[8] + P[9][21]*SPP[22] + P[12][21]*SPP[18]; nextP[1][21] = P[1][21]*SPP[6] - P[0][21]*SPP[2] - P[2][21]*SPP[9] + P[10][21]*SPP[22] + P[13][21]*SPP[17]; nextP[2][21] = P[0][21]*SPP[14] - P[1][21]*SPP[3] + P[2][21]*SPP[13] + P[11][21]*SPP[22] + P[14][21]*SPP[16]; nextP[3][21] = P[3][21] + P[0][21]*SPP[1] + P[1][21]*SPP[19] + P[2][21]*SPP[15] - P[15][21]*SPP[21]; nextP[4][21] = P[4][21] + P[15][21]*SF[22] + P[0][21]*SPP[20] + P[1][21]*SPP[12] + P[2][21]*SPP[11]; nextP[5][21] = P[5][21] + P[15][21]*SF[20] - P[0][21]*SPP[7] + P[1][21]*SPP[10] + P[2][21]*SPP[0]; nextP[6][21] = P[6][21] + P[3][21]*dt; nextP[7][21] = P[7][21] + P[4][21]*dt; nextP[8][21] = P[8][21] + P[5][21]*dt; nextP[9][21] = P[9][21]; nextP[10][21] = P[10][21]; nextP[11][21] = P[11][21]; nextP[12][21] = P[12][21]; nextP[13][21] = P[13][21]; nextP[14][21] = P[14][21]; nextP[15][21] = P[15][21]; nextP[16][21] = P[16][21]; nextP[17][21] = P[17][21]; nextP[18][21] = P[18][21]; nextP[19][21] = P[19][21]; nextP[20][21] = P[20][21]; nextP[21][21] = P[21][21]; if (stateIndexLim > 21) { nextP[0][22] = P[0][22]*SPP[5] - P[1][22]*SPP[4] + P[2][22]*SPP[8] + P[9][22]*SPP[22] + P[12][22]*SPP[18]; nextP[1][22] = P[1][22]*SPP[6] - P[0][22]*SPP[2] - P[2][22]*SPP[9] + P[10][22]*SPP[22] + P[13][22]*SPP[17]; nextP[2][22] = P[0][22]*SPP[14] - P[1][22]*SPP[3] + P[2][22]*SPP[13] + P[11][22]*SPP[22] + P[14][22]*SPP[16]; nextP[3][22] = P[3][22] + P[0][22]*SPP[1] + P[1][22]*SPP[19] + P[2][22]*SPP[15] - P[15][22]*SPP[21]; nextP[4][22] = P[4][22] + P[15][22]*SF[22] + P[0][22]*SPP[20] + P[1][22]*SPP[12] + P[2][22]*SPP[11]; nextP[5][22] = P[5][22] + P[15][22]*SF[20] - P[0][22]*SPP[7] + P[1][22]*SPP[10] + P[2][22]*SPP[0]; nextP[6][22] = P[6][22] + P[3][22]*dt; nextP[7][22] = P[7][22] + P[4][22]*dt; nextP[8][22] = P[8][22] + P[5][22]*dt; nextP[9][22] = P[9][22]; nextP[10][22] = P[10][22]; nextP[11][22] = P[11][22]; nextP[12][22] = P[12][22]; nextP[13][22] = P[13][22]; nextP[14][22] = P[14][22]; nextP[15][22] = P[15][22]; nextP[16][22] = P[16][22]; nextP[17][22] = P[17][22]; nextP[18][22] = P[18][22]; nextP[19][22] = P[19][22]; nextP[20][22] = P[20][22]; nextP[21][22] = P[21][22]; nextP[22][22] = P[22][22]; nextP[0][23] = P[0][23]*SPP[5] - P[1][23]*SPP[4] + P[2][23]*SPP[8] + P[9][23]*SPP[22] + P[12][23]*SPP[18]; nextP[1][23] = P[1][23]*SPP[6] - P[0][23]*SPP[2] - P[2][23]*SPP[9] + P[10][23]*SPP[22] + P[13][23]*SPP[17]; nextP[2][23] = P[0][23]*SPP[14] - P[1][23]*SPP[3] + P[2][23]*SPP[13] + P[11][23]*SPP[22] + P[14][23]*SPP[16]; nextP[3][23] = P[3][23] + P[0][23]*SPP[1] + P[1][23]*SPP[19] + P[2][23]*SPP[15] - P[15][23]*SPP[21]; nextP[4][23] = P[4][23] + P[15][23]*SF[22] + P[0][23]*SPP[20] + P[1][23]*SPP[12] + P[2][23]*SPP[11]; nextP[5][23] = P[5][23] + P[15][23]*SF[20] - P[0][23]*SPP[7] + P[1][23]*SPP[10] + P[2][23]*SPP[0]; nextP[6][23] = P[6][23] + P[3][23]*dt; nextP[7][23] = P[7][23] + P[4][23]*dt; nextP[8][23] = P[8][23] + P[5][23]*dt; nextP[9][23] = P[9][23]; nextP[10][23] = P[10][23]; nextP[11][23] = P[11][23]; nextP[12][23] = P[12][23]; nextP[13][23] = P[13][23]; nextP[14][23] = P[14][23]; nextP[15][23] = P[15][23]; nextP[16][23] = P[16][23]; nextP[17][23] = P[17][23]; nextP[18][23] = P[18][23]; nextP[19][23] = P[19][23]; nextP[20][23] = P[20][23]; nextP[21][23] = P[21][23]; nextP[22][23] = P[22][23]; nextP[23][23] = P[23][23]; } } // Copy upper diagonal to lower diagonal taking advantage of symmetry for (uint8_t colIndex=0; colIndex<=stateIndexLim; colIndex++) { for (uint8_t rowIndex=0; rowIndex 1e4f) { for (uint8_t i=6; i<=7; i++) { for (uint8_t j=0; j<=stateIndexLim; j++) { nextP[i][j] = P[i][j]; nextP[j][i] = P[j][i]; } } } // copy covariances to output CopyCovariances(); // constrain diagonals to prevent ill-conditioning ConstrainVariances(); hal.util->perf_end(_perf_CovariancePrediction); } // zero specified range of rows in the state covariance matrix void NavEKF2_core::zeroRows(Matrix24 &covMat, uint8_t first, uint8_t last) { uint8_t row; for (row=first; row<=last; row++) { memset(&covMat[row][0], 0, sizeof(covMat[0][0])*24); } } // zero specified range of columns in the state covariance matrix void NavEKF2_core::zeroCols(Matrix24 &covMat, uint8_t first, uint8_t last) { uint8_t row; for (row=0; row<=23; row++) { memset(&covMat[row][first], 0, sizeof(covMat[0][0])*(1+last-first)); } } // reset the output data to the current EKF state void NavEKF2_core::StoreOutputReset() { outputDataNew.quat = stateStruct.quat; outputDataNew.velocity = stateStruct.velocity; outputDataNew.position = stateStruct.position; // write current measurement to entire table for (uint8_t i=0; i_mag_ef_limit * 0.001f; stateStruct.earth_magfield.x = constrain_float(stateStruct.earth_magfield.x, table_earth_field_ga.x-limit_ga, table_earth_field_ga.x+limit_ga); stateStruct.earth_magfield.y = constrain_float(stateStruct.earth_magfield.y, table_earth_field_ga.y-limit_ga, table_earth_field_ga.y+limit_ga); stateStruct.earth_magfield.z = constrain_float(stateStruct.earth_magfield.z, table_earth_field_ga.z-limit_ga, table_earth_field_ga.z+limit_ga); } // constrain states to prevent ill-conditioning void NavEKF2_core::ConstrainStates() { // attitude errors are limited between +-1 for (uint8_t i=0; i<=2; i++) statesArray[i] = constrain_float(statesArray[i],-1.0f,1.0f); // velocity limit 500 m/sec (could set this based on some multiple of max airspeed * EAS2TAS) for (uint8_t i=3; i<=5; i++) statesArray[i] = constrain_float(statesArray[i],-5.0e2f,5.0e2f); // position limit 1000 km - TODO apply circular limit for (uint8_t i=6; i<=7; i++) statesArray[i] = constrain_float(statesArray[i],-1.0e6f,1.0e6f); // height limit covers home alt on everest through to home alt at SL and ballon drop stateStruct.position.z = constrain_float(stateStruct.position.z,-4.0e4f,1.0e4f); // gyro bias limit (this needs to be set based on manufacturers specs) for (uint8_t i=9; i<=11; i++) statesArray[i] = constrain_float(statesArray[i],-GYRO_BIAS_LIMIT*dtEkfAvg,GYRO_BIAS_LIMIT*dtEkfAvg); // gyro scale factor limit of +-5% (this needs to be set based on manufacturers specs) for (uint8_t i=12; i<=14; i++) statesArray[i] = constrain_float(statesArray[i],0.95f,1.05f); // Z accel bias limit 1.0 m/s^2 (this needs to be finalised from test data) stateStruct.accel_zbias = constrain_float(stateStruct.accel_zbias,-1.0f*dtEkfAvg,1.0f*dtEkfAvg); // earth magnetic field limit if (frontend->_mag_ef_limit <= 0 || !have_table_earth_field) { // constrain to +/-1Ga for (uint8_t i=16; i<=18; i++) statesArray[i] = constrain_float(statesArray[i],-1.0f,1.0f); } else { // use table constrain MagTableConstrain(); } // body magnetic field limit for (uint8_t i=19; i<=21; i++) statesArray[i] = constrain_float(statesArray[i],-0.5f,0.5f); // wind velocity limit 100 m/s (could be based on some multiple of max airspeed * EAS2TAS) - TODO apply circular limit for (uint8_t i=22; i<=23; i++) statesArray[i] = constrain_float(statesArray[i],-100.0f,100.0f); // constrain the terrain state to be below the vehicle height unless we are using terrain as the height datum if (!inhibitGndState) { terrainState = MAX(terrainState, stateStruct.position.z + rngOnGnd); } } // calculate the NED earth spin vector in rad/sec void NavEKF2_core::calcEarthRateNED(Vector3f &omega, int32_t latitude) const { float lat_rad = radians(latitude*1.0e-7f); omega.x = earthRate*cosf(lat_rad); omega.y = 0; omega.z = -earthRate*sinf(lat_rad); } // initialise the earth magnetic field states using declination, suppled roll/pitch // and magnetometer measurements and return initial attitude quaternion Quaternion NavEKF2_core::calcQuatAndFieldStates(float roll, float pitch) { // declare local variables required to calculate initial orientation and magnetic field float yaw; Matrix3f Tbn; Vector3f initMagNED; Quaternion initQuat; if (use_compass()) { // calculate rotation matrix from body to NED frame Tbn.from_euler(roll, pitch, 0.0f); // read the magnetometer data readMagData(); // rotate the magnetic field into NED axes initMagNED = Tbn * magDataDelayed.mag; // calculate heading of mag field rel to body heading float magHeading = atan2f(initMagNED.y, initMagNED.x); // get the magnetic declination float magDecAng = MagDeclination(); // calculate yaw angle rel to true north yaw = magDecAng - magHeading; // calculate initial filter quaternion states using yaw from magnetometer // store the yaw change so that it can be retrieved externally for use by the control loops to prevent yaw disturbances following a reset Vector3f tempEuler; stateStruct.quat.to_euler(tempEuler.x, tempEuler.y, tempEuler.z); // this check ensures we accumulate the resets that occur within a single iteration of the EKF if (imuSampleTime_ms != lastYawReset_ms) { yawResetAngle = 0.0f; } yawResetAngle += wrap_PI(yaw - tempEuler.z); lastYawReset_ms = imuSampleTime_ms; // calculate an initial quaternion using the new yaw value initQuat.from_euler(roll, pitch, yaw); // zero the attitude covariances because the corelations will now be invalid zeroAttCovOnly(); // calculate initial Tbn matrix and rotate Mag measurements into NED // to set initial NED magnetic field states // don't do this if the earth field has already been learned if (!magFieldLearned) { initQuat.rotation_matrix(Tbn); if (have_table_earth_field && frontend->_mag_ef_limit > 0) { stateStruct.earth_magfield = table_earth_field_ga; } else { stateStruct.earth_magfield = Tbn * magDataDelayed.mag; } // set the NE earth magnetic field states using the published declination // and set the corresponding variances and covariances alignMagStateDeclination(); // set the remaining variances and covariances zeroRows(P,18,21); zeroCols(P,18,21); P[18][18] = sq(frontend->_magNoise); P[19][19] = P[18][18]; P[20][20] = P[18][18]; P[21][21] = P[18][18]; } // record the fact we have initialised the magnetic field states recordMagReset(); // clear mag state reset request magStateResetRequest = false; } else { // this function should not be called if there is no compass data but if is is, return the // current attitude initQuat = stateStruct.quat; } // return attitude quaternion return initQuat; } // zero the attitude covariances, but preserve the variances void NavEKF2_core::zeroAttCovOnly() { float varTemp[3]; for (uint8_t index=0; index<=2; index++) { varTemp[index] = P[index][index]; } zeroCols(P,0,2); zeroRows(P,0,2); for (uint8_t index=0; index<=2; index++) { P[index][index] = varTemp[index]; } }