/* 24 state EKF based on https://github.com/priseborough/InertialNav Converted from Matlab to C++ by Paul Riseborough EKF Tuning parameters refactored by Tom Cauchois This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #pragma once #include #include #include #include #include #include #include #include class NavEKF3_core; class AP_AHRS; class NavEKF3 { public: friend class NavEKF3_core; static const struct AP_Param::GroupInfo var_info[]; NavEKF3(const AP_AHRS *ahrs, AP_Baro &baro, const RangeFinder &rng); // allow logging to determine the number of active cores uint8_t activeCores(void) const { return num_cores; } // Initialise the filter bool InitialiseFilter(void); // Update Filter States - this should be called whenever new IMU data is available void UpdateFilter(void); // check if we should write log messages void check_log_write(void); // Check basic filter health metrics and return a consolidated health status bool healthy(void) const; // returns the index of the primary core // return -1 if no primary core selected int8_t getPrimaryCoreIndex(void) const; // returns the index of the IMU of the primary core // return -1 if no primary core selected int8_t getPrimaryCoreIMUIndex(void) const; // Write the last calculated NE position relative to the reference point (m) for the specified instance. // An out of range instance (eg -1) returns data for the the primary instance // If a calculated solution is not available, use the best available data and return false // If false returned, do not use for flight control bool getPosNE(int8_t instance, Vector2f &posNE); // Write the last calculated D position relative to the reference point (m) for the specified instance. // An out of range instance (eg -1) returns data for the the primary instance // If a calculated solution is not available, use the best available data and return false // If false returned, do not use for flight control bool getPosD(int8_t instance, float &posD); // return NED velocity in m/s for the specified instance // An out of range instance (eg -1) returns data for the the primary instance void getVelNED(int8_t instance, Vector3f &vel); // Return the rate of change of vertical position in the down diection (dPosD/dt) in m/s for the specified instance // An out of range instance (eg -1) returns data for the the primary instance // This can be different to the z component of the EKF velocity state because it will fluctuate with height errors and corrections in the EKF // but will always be kinematically consistent with the z component of the EKF position state float getPosDownDerivative(int8_t instance); // This returns the specific forces in the NED frame void getAccelNED(Vector3f &accelNED) const; // return body axis gyro bias estimates in rad/sec for the specified instance // An out of range instance (eg -1) returns data for the the primary instance void getGyroBias(int8_t instance, Vector3f &gyroBias); // return accelerometer bias estimate in m/s/s // An out of range instance (eg -1) returns data for the the primary instance void getAccelBias(int8_t instance, Vector3f &accelBias); // return tilt error convergence metric for the specified instance // An out of range instance (eg -1) returns data for the the primary instance void getTiltError(int8_t instance, float &ang); // reset body axis gyro bias estimates void resetGyroBias(void); // Resets the baro so that it reads zero at the current height // Resets the EKF height to zero // Adjusts the EKf origin height so that the EKF height + origin height is the same as before // Returns true if the height datum reset has been performed // If using a range finder for height no reset is performed and it returns false bool resetHeightDatum(void); // Commands the EKF to not use GPS. // This command must be sent prior to vehicle arming and EKF commencement of GPS usage // Returns 0 if command rejected // Returns 1 if command accepted uint8_t setInhibitGPS(void); // return the horizontal speed limit in m/s set by optical flow sensor limits // return the scale factor to be applied to navigation velocity gains to compensate for increase in velocity noise with height when using optical flow void getEkfControlLimits(float &ekfGndSpdLimit, float &ekfNavVelGainScaler) const; // return the NED wind speed estimates in m/s (positive is air moving in the direction of the axis) // An out of range instance (eg -1) returns data for the the primary instance void getWind(int8_t instance, Vector3f &wind); // return earth magnetic field estimates in measurement units / 1000 for the specified instance // An out of range instance (eg -1) returns data for the the primary instance void getMagNED(int8_t instance, Vector3f &magNED); // return body magnetic field estimates in measurement units / 1000 for the specified instance // An out of range instance (eg -1) returns data for the the primary instance void getMagXYZ(int8_t instance, Vector3f &magXYZ); // return the magnetometer in use for the specified instance // An out of range instance (eg -1) returns data for the the primary instance uint8_t getActiveMag(int8_t instance); // Return estimated magnetometer offsets // Return true if magnetometer offsets are valid bool getMagOffsets(uint8_t mag_idx, Vector3f &magOffsets) const; // Return the last calculated latitude, longitude and height in WGS-84 // If a calculated location isn't available, return a raw GPS measurement // The status will return true if a calculation or raw measurement is available // The getFilterStatus() function provides a more detailed description of data health and must be checked if data is to be used for flight control bool getLLH(struct Location &loc) const; // return the latitude and longitude and height used to set the NED origin // All NED positions calculated by the filter are relative to this location // Returns false if the origin has not been set bool getOriginLLH(struct Location &loc) const; // set the latitude and longitude and height used to set the NED origin // All NED positions calcualted by the filter will be relative to this location // The origin cannot be set if the filter is in a flight mode (eg vehicle armed) // Returns false if the filter has rejected the attempt to set the origin bool setOriginLLH(struct Location &loc); // return estimated height above ground level // return false if ground height is not being estimated. bool getHAGL(float &HAGL) const; // return the Euler roll, pitch and yaw angle in radians for the specified instance // An out of range instance (eg -1) returns data for the the primary instance void getEulerAngles(int8_t instance, Vector3f &eulers); // return the transformation matrix from XYZ (body) to NED axes void getRotationBodyToNED(Matrix3f &mat) const; // return the quaternions defining the rotation from NED to XYZ (body) axes void getQuaternion(Quaternion &quat) const; // return the innovations for the specified instance // An out of range instance (eg -1) returns data for the the primary instance void getInnovations(int8_t index, Vector3f &velInnov, Vector3f &posInnov, Vector3f &magInnov, float &tasInnov, float &yawInnov); // publish output observer angular, velocity and position tracking error void getOutputTrackingError(int8_t instance, Vector3f &error) const; // return the innovation consistency test ratios for the specified instance // An out of range instance (eg -1) returns data for the the primary instance void getVariances(int8_t instance, float &velVar, float &posVar, float &hgtVar, Vector3f &magVar, float &tasVar, Vector2f &offset); // should we use the compass? This is public so it can be used for // reporting via ahrs.use_compass() bool use_compass(void) const; // write the raw optical flow measurements // rawFlowQuality is a measured of quality between 0 and 255, with 255 being the best quality // rawFlowRates are the optical flow rates in rad/sec about the X and Y sensor axes. // rawGyroRates are the sensor rotation rates in rad/sec measured by the sensors internal gyro // The sign convention is that a RH physical rotation of the sensor about an axis produces both a positive flow and gyro rate // msecFlowMeas is the scheduler time in msec when the optical flow data was received from the sensor. // posOffset is the XYZ flow sensor position in the body frame in m void writeOptFlowMeas(uint8_t &rawFlowQuality, Vector2f &rawFlowRates, Vector2f &rawGyroRates, uint32_t &msecFlowMeas, const Vector3f &posOffset); // return data for debugging optical flow fusion for the specified instance // An out of range instance (eg -1) returns data for the the primary instance void getFlowDebug(int8_t instance, float &varFlow, float &gndOffset, float &flowInnovX, float &flowInnovY, float &auxInnov, float &HAGL, float &rngInnov, float &range, float &gndOffsetErr); /* Returns the following data for debugging range beacon fusion ID : beacon identifier rng : measured range to beacon (m) innov : range innovation (m) innovVar : innovation variance (m^2) testRatio : innovation consistency test ratio beaconPosNED : beacon NED position (m) offsetHigh : high hypothesis for range beacons system vertical offset (m) offsetLow : low hypothesis for range beacons system vertical offset (m) posNED : North,East,Down position estimate of receiver from 3-state filter returns true if data could be found, false if it could not */ bool getRangeBeaconDebug(int8_t instance, uint8_t &ID, float &rng, float &innov, float &innovVar, float &testRatio, Vector3f &beaconPosNED, float &offsetHigh, float &offsetLow, Vector3f &posNED); // called by vehicle code to specify that a takeoff is happening // causes the EKF to compensate for expected barometer errors due to ground effect void setTakeoffExpected(bool val); // called by vehicle code to specify that a touchdown is expected to happen // causes the EKF to compensate for expected barometer errors due to ground effect void setTouchdownExpected(bool val); // Set to true if the terrain underneath is stable enough to be used as a height reference // in combination with a range finder. Set to false if the terrain underneath the vehicle // cannot be used as a height reference void setTerrainHgtStable(bool val); /* return the filter fault status as a bitmasked integer for the specified instance An out of range instance (eg -1) returns data for the the primary instance 0 = quaternions are NaN 1 = velocities are NaN 2 = badly conditioned X magnetometer fusion 3 = badly conditioned Y magnetometer fusion 5 = badly conditioned Z magnetometer fusion 6 = badly conditioned airspeed fusion 7 = badly conditioned synthetic sideslip fusion 7 = filter is not initialised */ void getFilterFaults(int8_t instance, uint16_t &faults); /* return filter timeout status as a bitmasked integer for the specified instance An out of range instance (eg -1) returns data for the the primary instance 0 = position measurement timeout 1 = velocity measurement timeout 2 = height measurement timeout 3 = magnetometer measurement timeout 5 = unassigned 6 = unassigned 7 = unassigned 7 = unassigned */ void getFilterTimeouts(int8_t instance, uint8_t &timeouts); /* return filter gps quality check status for the specified instance An out of range instance (eg -1) returns data for the the primary instance */ void getFilterGpsStatus(int8_t instance, nav_gps_status &faults); /* return filter status flags for the specified instance An out of range instance (eg -1) returns data for the the primary instance */ void getFilterStatus(int8_t instance, nav_filter_status &status); // send an EKF_STATUS_REPORT message to GCS void send_status_report(mavlink_channel_t chan); // provides the height limit to be observed by the control loops // returns false if no height limiting is required // this is needed to ensure the vehicle does not fly too high when using optical flow navigation bool getHeightControlLimit(float &height) const; // return the amount of yaw angle change (in radians) due to the last yaw angle reset or core selection switch // returns the time of the last yaw angle reset or 0 if no reset has ever occurred uint32_t getLastYawResetAngle(float &yawAngDelta); // return the amount of NE position change due to the last position reset in metres // returns the time of the last reset or 0 if no reset has ever occurred uint32_t getLastPosNorthEastReset(Vector2f &posDelta); // return the amount of NE velocity change due to the last velocity reset in metres/sec // returns the time of the last reset or 0 if no reset has ever occurred uint32_t getLastVelNorthEastReset(Vector2f &vel) const; // return the amount of vertical position change due to the last reset in metres // returns the time of the last reset or 0 if no reset has ever occurred uint32_t getLastPosDownReset(float &posDelta); // report any reason for why the backend is refusing to initialise const char *prearm_failure_reason(void) const; // allow the enable flag to be set by Replay void set_enable(bool enable) { _enable.set(enable); } // are we doing sensor logging inside the EKF? bool have_ekf_logging(void) const { return logging.enabled && _logging_mask != 0; } private: uint8_t num_cores; // number of allocated cores uint8_t primary; // current primary core NavEKF3_core *core = nullptr; const AP_AHRS *_ahrs; AP_Baro &_baro; const RangeFinder &_rng; // EKF Mavlink Tuneable Parameters AP_Int8 _enable; // zero to disable EKF3 AP_Float _gpsHorizVelNoise; // GPS horizontal velocity measurement noise : m/s AP_Float _gpsVertVelNoise; // GPS vertical velocity measurement noise : m/s AP_Float _gpsHorizPosNoise; // GPS horizontal position measurement noise m AP_Float _baroAltNoise; // Baro height measurement noise : m AP_Float _magNoise; // magnetometer measurement noise : gauss AP_Float _easNoise; // equivalent airspeed measurement noise : m/s AP_Float _windVelProcessNoise; // wind velocity state process noise : m/s^2 AP_Float _wndVarHgtRateScale; // scale factor applied to wind process noise due to height rate AP_Float _magEarthProcessNoise; // Earth magnetic field process noise : gauss/sec AP_Float _magBodyProcessNoise; // Body magnetic field process noise : gauss/sec AP_Float _gyrNoise; // gyro process noise : rad/s AP_Float _accNoise; // accelerometer process noise : m/s^2 AP_Float _gyroBiasProcessNoise; // gyro bias state process noise : rad/s AP_Float _accelBiasProcessNoise;// accel bias state process noise : m/s^2 AP_Int16 _gpsDelay_ms; // effective average delay of GPS measurements relative to inertial measurement (msec) AP_Int16 _hgtDelay_ms; // effective average delay of Height measurements relative to inertial measurements (msec) AP_Int8 _fusionModeGPS; // 0 = use 3D velocity, 1 = use 2D velocity, 2 = use no velocity AP_Int16 _gpsVelInnovGate; // Percentage number of standard deviations applied to GPS velocity innovation consistency check AP_Int16 _gpsPosInnovGate; // Percentage number of standard deviations applied to GPS position innovation consistency check AP_Int16 _hgtInnovGate; // Percentage number of standard deviations applied to height innovation consistency check AP_Int16 _magInnovGate; // Percentage number of standard deviations applied to magnetometer innovation consistency check AP_Int16 _tasInnovGate; // Percentage number of standard deviations applied to true airspeed innovation consistency check AP_Int8 _magCal; // Sets activation condition for in-flight magnetometer calibration AP_Int8 _gpsGlitchRadiusMax; // Maximum allowed discrepancy between inertial and GPS Horizontal position before GPS glitch is declared : m AP_Float _flowNoise; // optical flow rate measurement noise AP_Int16 _flowInnovGate; // Percentage number of standard deviations applied to optical flow innovation consistency check AP_Int8 _flowDelay_ms; // effective average delay of optical flow measurements rel to IMU (msec) AP_Int16 _rngInnovGate; // Percentage number of standard deviations applied to range finder innovation consistency check AP_Float _maxFlowRate; // Maximum flow rate magnitude that will be accepted by the filter AP_Int8 _altSource; // Primary alt source during optical flow navigation. 0 = use Baro, 1 = use range finder. AP_Float _rngNoise; // Range finder noise : m AP_Int8 _gpsCheck; // Bitmask controlling which preflight GPS checks are bypassed AP_Int8 _imuMask; // Bitmask of IMUs to instantiate EKF3 for AP_Int16 _gpsCheckScaler; // Percentage increase to be applied to GPS pre-flight accuracy and drift thresholds AP_Float _noaidHorizNoise; // horizontal position measurement noise assumed when synthesised zero position measurements are used to constrain attitude drift : m AP_Int8 _logging_mask; // mask of IMUs to log AP_Float _yawNoise; // magnetic yaw measurement noise : rad AP_Int16 _yawInnovGate; // Percentage number of standard deviations applied to magnetic yaw innovation consistency check AP_Int8 _tauVelPosOutput; // Time constant of output complementary filter : csec (centi-seconds) AP_Int8 _useRngSwHgt; // Maximum valid range of the range finder as a percentage of the maximum range specified by the sensor driver AP_Float _terrGradMax; // Maximum terrain gradient below the vehicle AP_Float _rngBcnNoise; // Range beacon measurement noise (m) AP_Int16 _rngBcnInnovGate; // Percentage number of standard deviations applied to range beacon innovation consistency check AP_Int8 _rngBcnDelay_ms; // effective average delay of range beacon measurements rel to IMU (msec) AP_Float _useRngSwSpd; // Maximum horizontal ground speed to use range finder as the primary height source (m/s) AP_Float _accBiasLim; // Accelerometer bias limit (m/s/s) // Tuning parameters const float gpsNEVelVarAccScale; // Scale factor applied to NE velocity measurement variance due to manoeuvre acceleration const float gpsDVelVarAccScale; // Scale factor applied to vertical velocity measurement variance due to manoeuvre acceleration const float gpsPosVarAccScale; // Scale factor applied to horizontal position measurement variance due to manoeuvre acceleration const uint16_t magDelay_ms; // Magnetometer measurement delay (msec) const uint16_t tasDelay_ms; // Airspeed measurement delay (msec) const uint16_t tiltDriftTimeMax_ms; // Maximum number of ms allowed without any form of tilt aiding (GPS, flow, TAS, etc) const uint16_t posRetryTimeUseVel_ms; // Position aiding retry time with velocity measurements (msec) const uint16_t posRetryTimeNoVel_ms; // Position aiding retry time without velocity measurements (msec) const uint16_t hgtRetryTimeMode0_ms; // Height retry time with vertical velocity measurement (msec) const uint16_t hgtRetryTimeMode12_ms; // Height retry time without vertical velocity measurement (msec) const uint16_t tasRetryTime_ms; // True airspeed timeout and retry interval (msec) const uint32_t magFailTimeLimit_ms; // number of msec before a magnetometer failing innovation consistency checks is declared failed (msec) const float magVarRateScale; // scale factor applied to magnetometer variance due to angular rate const float gyroBiasNoiseScaler; // scale factor applied to gyro bias state process noise when on ground const uint16_t hgtAvg_ms; // average number of msec between height measurements const uint16_t betaAvg_ms; // average number of msec between synthetic sideslip measurements const float covTimeStepMax; // maximum time (sec) between covariance prediction updates const float covDelAngMax; // maximum delta angle between covariance prediction updates const float DCM33FlowMin; // If Tbn(3,3) is less than this number, optical flow measurements will not be fused as tilt is too high. const float fScaleFactorPnoise; // Process noise added to focal length scale factor state variance at each time step const uint8_t flowTimeDeltaAvg_ms; // average interval between optical flow measurements (msec) const uint32_t flowIntervalMax_ms; // maximum allowable time between flow fusion events const uint16_t gndEffectTimeout_ms; // time in msec that ground effect mode is active after being activated const float gndEffectBaroScaler; // scaler applied to the barometer observation variance when ground effect mode is active const uint8_t gndGradientSigma; // RMS terrain gradient percentage assumed by the terrain height estimation const uint16_t fusionTimeStep_ms; // The minimum time interval between covariance predictions and measurement fusions in msec const uint8_t sensorIntervalMin_ms; // The minimum allowed time between measurements from any non-IMU sensor (msec) struct { bool enabled:1; bool log_compass:1; bool log_gps:1; bool log_baro:1; bool log_imu:1; } logging; // time at start of current filter update uint64_t imuSampleTime_us; struct { uint32_t last_function_call; // last time getLastYawYawResetAngle was called bool core_changed; // true when a core change happened and hasn't been consumed, false otherwise uint32_t last_primary_change; // last time a primary has changed float core_delta; // the amount of yaw change between cores when a change happened } yaw_reset_data; struct { uint32_t last_function_call; // last time getLastPosNorthEastReset was called bool core_changed; // true when a core change happened and hasn't been consumed, false otherwise uint32_t last_primary_change; // last time a primary has changed Vector2f core_delta; // the amount of NE position change between cores when a change happened } pos_reset_data; struct { uint32_t last_function_call; // last time getLastPosDownReset was called bool core_changed; // true when a core change happened and hasn't been consumed, false otherwise uint32_t last_primary_change; // last time a primary has changed float core_delta; // the amount of D position change between cores when a change happened } pos_down_reset_data; bool runCoreSelection; // true when the primary core has stabilised and the core selection logic can be started // update the yaw reset data to capture changes due to a lane switch // new_primary - index of the ekf instance that we are about to switch to as the primary // old_primary - index of the ekf instance that we are currently using as the primary void updateLaneSwitchYawResetData(uint8_t new_primary, uint8_t old_primary); // update the position reset data to capture changes due to a lane switch // new_primary - index of the ekf instance that we are about to switch to as the primary // old_primary - index of the ekf instance that we are currently using as the primary void updateLaneSwitchPosResetData(uint8_t new_primary, uint8_t old_primary); // update the position down reset data to capture changes due to a lane switch // new_primary - index of the ekf instance that we are about to switch to as the primary // old_primary - index of the ekf instance that we are currently using as the primary void updateLaneSwitchPosDownResetData(uint8_t new_primary, uint8_t old_primary); };