''' Fly Copter in SITL AP_FLAKE8_CLEAN ''' from __future__ import print_function import copy import math import os import shutil import time import numpy from pymavlink import quaternion from pymavlink import mavutil from pymavlink import mavextra from pymavlink import rotmat from pysim import util from pysim import vehicleinfo import vehicle_test_suite from vehicle_test_suite import NotAchievedException, AutoTestTimeoutException, PreconditionFailedException from vehicle_test_suite import Test from vehicle_test_suite import MAV_POS_TARGET_TYPE_MASK from vehicle_test_suite import WaitAndMaintainArmed from vehicle_test_suite import WaitModeTimeout from pymavlink.rotmat import Vector3 # get location of scripts testdir = os.path.dirname(os.path.realpath(__file__)) SITL_START_LOCATION = mavutil.location(-35.362938, 149.165085, 584, 270) # Flight mode switch positions are set-up in arducopter.param to be # switch 1 = Circle # switch 2 = Land # switch 3 = RTL # switch 4 = Auto # switch 5 = Loiter # switch 6 = Stabilize class AutoTestCopter(vehicle_test_suite.TestSuite): @staticmethod def get_not_armable_mode_list(): return ["AUTO", "AUTOTUNE", "BRAKE", "CIRCLE", "FLIP", "LAND", "RTL", "SMART_RTL", "AVOID_ADSB", "FOLLOW"] @staticmethod def get_not_disarmed_settable_modes_list(): return ["FLIP", "AUTOTUNE"] @staticmethod def get_no_position_not_settable_modes_list(): return [] @staticmethod def get_position_armable_modes_list(): return ["DRIFT", "GUIDED", "LOITER", "POSHOLD", "THROW"] @staticmethod def get_normal_armable_modes_list(): return ["ACRO", "ALT_HOLD", "STABILIZE", "GUIDED_NOGPS"] def log_name(self): return "ArduCopter" def test_filepath(self): return os.path.realpath(__file__) def default_speedup(self): return 100 def set_current_test_name(self, name): self.current_test_name_directory = "ArduCopter_Tests/" + name + "/" def sitl_start_location(self): return SITL_START_LOCATION def mavproxy_options(self): ret = super(AutoTestCopter, self).mavproxy_options() if self.frame != 'heli': ret.append('--quadcopter') return ret def sitl_streamrate(self): return 5 def vehicleinfo_key(self): return 'ArduCopter' def default_frame(self): return "+" def apply_defaultfile_parameters(self): # Copter passes in a defaults_filepath in place of applying # parameters afterwards. pass def defaults_filepath(self): return self.model_defaults_filepath(self.frame) def wait_disarmed_default_wait_time(self): return 120 def close(self): super(AutoTestCopter, self).close() # [2014/05/07] FC Because I'm doing a cross machine build # (source is on host, build is on guest VM) I cannot hard link # This flag tells me that I need to copy the data out if self.copy_tlog: shutil.copy(self.logfile, self.buildlog) def is_copter(self): return True def get_stick_arming_channel(self): return int(self.get_parameter("RCMAP_YAW")) def get_disarm_delay(self): return int(self.get_parameter("DISARM_DELAY")) def set_autodisarm_delay(self, delay): self.set_parameter("DISARM_DELAY", delay) def takeoff(self, alt_min=30, takeoff_throttle=1700, require_absolute=True, mode="STABILIZE", timeout=120, max_err=5): """Takeoff get to 30m altitude.""" self.progress("TAKEOFF") self.change_mode(mode) if not self.armed(): self.wait_ready_to_arm(require_absolute=require_absolute, timeout=timeout) self.zero_throttle() self.arm_vehicle() if mode == 'GUIDED': self.user_takeoff(alt_min=alt_min, timeout=timeout, max_err=max_err) else: self.set_rc(3, takeoff_throttle) self.wait_altitude(alt_min-1, alt_min+max_err, relative=True, timeout=timeout) self.hover() self.progress("TAKEOFF COMPLETE") def land_and_disarm(self, timeout=60): """Land the quad.""" self.progress("STARTING LANDING") self.change_mode("LAND") self.wait_landed_and_disarmed(timeout=timeout) def wait_landed_and_disarmed(self, min_alt=6, timeout=60): """Wait to be landed and disarmed""" m = self.mav.recv_match(type='GLOBAL_POSITION_INT', blocking=True) alt = m.relative_alt / 1000.0 # mm -> m if alt > min_alt: self.wait_altitude(min_alt-1, min_alt+5, relative=True, timeout=timeout) # self.wait_statustext("SIM Hit ground", timeout=timeout) self.wait_disarmed() def hover(self, hover_throttle=1500): self.set_rc(3, hover_throttle) # Climb/descend to a given altitude def setAlt(self, desiredAlt=50): pos = self.mav.location(relative_alt=True) if pos.alt > desiredAlt: self.set_rc(3, 1300) self.wait_altitude((desiredAlt-5), desiredAlt, relative=True) if pos.alt < (desiredAlt-5): self.set_rc(3, 1800) self.wait_altitude((desiredAlt-5), desiredAlt, relative=True) self.hover() # Takeoff, climb to given altitude, and fly east for 10 seconds def takeoffAndMoveAway(self, dAlt=50, dDist=50): self.progress("Centering sticks") self.set_rc_from_map({ 1: 1500, 2: 1500, 3: 1000, 4: 1500, }) self.takeoff(alt_min=dAlt, mode='GUIDED') self.change_mode("ALT_HOLD") self.progress("Yaw to east") self.set_rc(4, 1580) self.wait_heading(90) self.set_rc(4, 1500) self.progress("Fly eastbound away from home") self.set_rc(2, 1800) self.delay_sim_time(10) self.set_rc(2, 1500) self.hover() self.progress("Copter staging 50 meters east of home at 50 meters altitude In mode Alt Hold") # loiter - fly south west, then loiter within 5m position and altitude def ModeLoiter(self, holdtime=10, maxaltchange=5, maxdistchange=5): """Hold loiter position.""" self.takeoff(10, mode="LOITER") # first aim south east self.progress("turn south east") self.set_rc(4, 1580) self.wait_heading(170) self.set_rc(4, 1500) # fly south east 50m self.set_rc(2, 1100) self.wait_distance(50) self.set_rc(2, 1500) # wait for copter to slow moving self.wait_groundspeed(0, 2) m = self.mav.recv_match(type='VFR_HUD', blocking=True) start_altitude = m.alt start = self.mav.location() tstart = self.get_sim_time() self.progress("Holding loiter at %u meters for %u seconds" % (start_altitude, holdtime)) while self.get_sim_time_cached() < tstart + holdtime: m = self.mav.recv_match(type='VFR_HUD', blocking=True) pos = self.mav.location() delta = self.get_distance(start, pos) alt_delta = math.fabs(m.alt - start_altitude) self.progress("Loiter Dist: %.2fm, alt:%u" % (delta, m.alt)) if alt_delta > maxaltchange: raise NotAchievedException( "Loiter alt shifted %u meters (> limit %u)" % (alt_delta, maxaltchange)) if delta > maxdistchange: raise NotAchievedException( "Loiter shifted %u meters (> limit of %u)" % (delta, maxdistchange)) self.progress("Loiter OK for %u seconds" % holdtime) self.progress("Climb to 30m") self.change_alt(30) self.progress("Descend to 20m") self.change_alt(20) self.do_RTL() def ModeAltHold(self): '''Test AltHold Mode''' self.takeoff(10, mode="ALT_HOLD") self.watch_altitude_maintained(altitude_min=9, altitude_max=11) # feed in full elevator and aileron input and make sure we # retain altitude: self.set_rc_from_map({ 1: 1000, 2: 1000, }) self.watch_altitude_maintained(altitude_min=9, altitude_max=11) self.set_rc_from_map({ 1: 1500, 2: 1500, }) self.do_RTL() def fly_to_origin(self, final_alt=10): origin = self.poll_message("GPS_GLOBAL_ORIGIN") self.change_mode("GUIDED") self.guided_move_global_relative_alt(origin.latitude, origin.longitude, final_alt) def change_alt(self, alt_min, climb_throttle=1920, descend_throttle=1080): """Change altitude.""" def adjust_altitude(current_alt, target_alt, accuracy): if math.fabs(current_alt - target_alt) <= accuracy: self.hover() elif current_alt < target_alt: self.set_rc(3, climb_throttle) else: self.set_rc(3, descend_throttle) self.wait_altitude( (alt_min - 5), alt_min, relative=True, called_function=lambda current_alt, target_alt: adjust_altitude(current_alt, target_alt, 1) ) self.hover() def RecordThenPlayMission(self, side=50, timeout=300): '''Use switches to toggle in mission, then fly it''' self.takeoff(20, mode="ALT_HOLD") """Fly a square, flying N then E .""" tstart = self.get_sim_time() # ensure all sticks in the middle self.set_rc_from_map({ 1: 1500, 2: 1500, 3: 1500, 4: 1500, }) # switch to loiter mode temporarily to stop us from rising self.change_mode('LOITER') # first aim north self.progress("turn right towards north") self.set_rc(4, 1580) self.wait_heading(10) self.set_rc(4, 1500) # save bottom left corner of box as waypoint self.progress("Save WP 1 & 2") self.save_wp() # switch back to ALT_HOLD mode self.change_mode('ALT_HOLD') # pitch forward to fly north self.progress("Going north %u meters" % side) self.set_rc(2, 1300) self.wait_distance(side) self.set_rc(2, 1500) # save top left corner of square as waypoint self.progress("Save WP 3") self.save_wp() # roll right to fly east self.progress("Going east %u meters" % side) self.set_rc(1, 1700) self.wait_distance(side) self.set_rc(1, 1500) # save top right corner of square as waypoint self.progress("Save WP 4") self.save_wp() # pitch back to fly south self.progress("Going south %u meters" % side) self.set_rc(2, 1700) self.wait_distance(side) self.set_rc(2, 1500) # save bottom right corner of square as waypoint self.progress("Save WP 5") self.save_wp() # roll left to fly west self.progress("Going west %u meters" % side) self.set_rc(1, 1300) self.wait_distance(side) self.set_rc(1, 1500) # save bottom left corner of square (should be near home) as waypoint self.progress("Save WP 6") self.save_wp() # reduce throttle again self.set_rc(3, 1500) # descend to 10m self.progress("Descend to 10m in Loiter") self.change_mode('LOITER') self.set_rc(3, 1200) time_left = timeout - (self.get_sim_time() - tstart) self.progress("timeleft = %u" % time_left) if time_left < 20: time_left = 20 self.wait_altitude(-10, 10, timeout=time_left, relative=True) self.set_rc(3, 1500) self.save_wp() # save the stored mission to file mavproxy = self.start_mavproxy() num_wp = self.save_mission_to_file_using_mavproxy( mavproxy, os.path.join(testdir, "ch7_mission.txt")) self.stop_mavproxy(mavproxy) if not num_wp: raise NotAchievedException("save_mission_to_file failed") self.progress("test: Fly a mission from 1 to %u" % num_wp) self.change_mode('AUTO') self.set_current_waypoint(1) self.wait_waypoint(0, num_wp-1, timeout=500) self.progress("test: MISSION COMPLETE: passed!") self.land_and_disarm() # enter RTL mode and wait for the vehicle to disarm def do_RTL(self, distance_min=None, check_alt=True, distance_max=10, timeout=250, quiet=False): """Enter RTL mode and wait for the vehicle to disarm at Home.""" self.change_mode("RTL") self.hover() self.wait_rtl_complete(check_alt=check_alt, distance_max=distance_max, timeout=timeout, quiet=True) def wait_rtl_complete(self, check_alt=True, distance_max=10, timeout=250, quiet=False): """Wait for RTL to reach home and disarm""" self.progress("Waiting RTL to reach Home and disarm") tstart = self.get_sim_time() while self.get_sim_time_cached() < tstart + timeout: m = self.mav.recv_match(type='GLOBAL_POSITION_INT', blocking=True) alt = m.relative_alt / 1000.0 # mm -> m home_distance = self.distance_to_home(use_cached_home=True) home = "" alt_valid = alt <= 1 distance_valid = home_distance < distance_max if check_alt: if alt_valid and distance_valid: home = "HOME" else: if distance_valid: home = "HOME" if not quiet: self.progress("Alt: %.02f HomeDist: %.02f %s" % (alt, home_distance, home)) # our post-condition is that we are disarmed: if not self.armed(): if home == "": raise NotAchievedException("Did not get home") # success! return raise AutoTestTimeoutException("Did not get home and disarm") def LoiterToAlt(self): """Loiter-To-Alt""" self.context_push() self.set_parameters({ "PLND_ENABLED": 1, "PLND_TYPE": 4, }) self.set_analog_rangefinder_parameters() self.reboot_sitl() num_wp = self.load_mission("copter_loiter_to_alt.txt") self.change_mode('LOITER') self.install_terrain_handlers_context() self.wait_ready_to_arm() self.arm_vehicle() self.change_mode('AUTO') self.set_rc(3, 1550) self.wait_current_waypoint(2) self.set_rc(3, 1500) self.wait_waypoint(0, num_wp-1, timeout=500) self.wait_disarmed() self.context_pop() self.reboot_sitl() # Tests all actions and logic behind the radio failsafe def ThrottleFailsafe(self, side=60, timeout=360): '''Test Throttle Failsafe''' self.start_subtest("If you haven't taken off yet RC failure should be instant disarm") self.change_mode("STABILIZE") self.set_parameter("DISARM_DELAY", 0) self.arm_vehicle() self.set_parameter("SIM_RC_FAIL", 1) self.disarm_wait(timeout=1) self.set_parameter("SIM_RC_FAIL", 0) self.set_parameter("DISARM_DELAY", 10) # Trigger an RC failure with the failsafe disabled. Verify no action taken. self.start_subtest("Radio failsafe disabled test: FS_THR_ENABLE=0 should take no failsafe action") self.set_parameter('FS_THR_ENABLE', 0) self.set_parameter('FS_OPTIONS', 0) self.takeoffAndMoveAway() self.set_parameter("SIM_RC_FAIL", 1) self.delay_sim_time(5) self.wait_mode("ALT_HOLD") self.set_parameter("SIM_RC_FAIL", 0) self.delay_sim_time(5) self.wait_mode("ALT_HOLD") self.end_subtest("Completed Radio failsafe disabled test") # Trigger an RC failure, verify radio failsafe triggers, # restore radio, verify RC function by changing modes to cicle # and stabilize. self.start_subtest("Radio failsafe recovery test") self.set_parameter('FS_THR_ENABLE', 1) self.set_parameter("SIM_RC_FAIL", 1) self.wait_mode("RTL") self.delay_sim_time(5) self.set_parameter("SIM_RC_FAIL", 0) self.delay_sim_time(5) self.set_rc(5, 1050) self.wait_mode("CIRCLE") self.set_rc(5, 1950) self.wait_mode("STABILIZE") self.end_subtest("Completed Radio failsafe recovery test") # Trigger and RC failure, verify failsafe triggers and RTL completes self.start_subtest("Radio failsafe RTL with no options test: FS_THR_ENABLE=1 & FS_OPTIONS=0") self.set_parameter("SIM_RC_FAIL", 1) self.wait_mode("RTL") self.wait_rtl_complete() self.set_parameter("SIM_RC_FAIL", 0) self.end_subtest("Completed Radio failsafe RTL with no options test") # Trigger and RC failure, verify failsafe triggers and land completes self.start_subtest("Radio failsafe LAND with no options test: FS_THR_ENABLE=3 & FS_OPTIONS=0") self.set_parameter('FS_THR_ENABLE', 3) self.takeoffAndMoveAway() self.set_parameter("SIM_RC_FAIL", 1) self.wait_mode("LAND") self.wait_landed_and_disarmed() self.set_parameter("SIM_RC_FAIL", 0) self.end_subtest("Completed Radio failsafe LAND with no options test") # Trigger and RC failure, verify failsafe triggers and SmartRTL completes self.start_subtest("Radio failsafe SmartRTL->RTL with no options test: FS_THR_ENABLE=4 & FS_OPTIONS=0") self.set_parameter('FS_THR_ENABLE', 4) self.takeoffAndMoveAway() self.set_parameter("SIM_RC_FAIL", 1) self.wait_mode("SMART_RTL") self.wait_disarmed() self.set_parameter("SIM_RC_FAIL", 0) self.end_subtest("Completed Radio failsafe SmartRTL->RTL with no options test") # Trigger and RC failure, verify failsafe triggers and SmartRTL completes self.start_subtest("Radio failsafe SmartRTL->Land with no options test: FS_THR_ENABLE=5 & FS_OPTIONS=0") self.set_parameter('FS_THR_ENABLE', 5) self.takeoffAndMoveAway() self.set_parameter("SIM_RC_FAIL", 1) self.wait_mode("SMART_RTL") self.wait_disarmed() self.set_parameter("SIM_RC_FAIL", 0) self.end_subtest("Completed Radio failsafe SmartRTL_Land with no options test") # Trigger a GPS failure and RC failure, verify RTL fails into # land mode and completes self.start_subtest("Radio failsafe RTL fails into land mode due to bad position.") self.set_parameter('FS_THR_ENABLE', 1) self.takeoffAndMoveAway() self.set_parameter('SIM_GPS_DISABLE', 1) self.delay_sim_time(5) self.set_parameter("SIM_RC_FAIL", 1) self.wait_mode("LAND") self.wait_landed_and_disarmed() self.set_parameter("SIM_RC_FAIL", 0) self.set_parameter('SIM_GPS_DISABLE', 0) self.wait_ekf_happy() self.end_subtest("Completed Radio failsafe RTL fails into land mode due to bad position.") # Trigger a GPS failure and RC failure, verify SmartRTL fails # into land mode and completes self.start_subtest("Radio failsafe SmartRTL->RTL fails into land mode due to bad position.") self.set_parameter('FS_THR_ENABLE', 4) self.takeoffAndMoveAway() self.set_parameter('SIM_GPS_DISABLE', 1) self.delay_sim_time(5) self.set_parameter("SIM_RC_FAIL", 1) self.wait_mode("LAND") self.wait_landed_and_disarmed() self.set_parameter("SIM_RC_FAIL", 0) self.set_parameter('SIM_GPS_DISABLE', 0) self.wait_ekf_happy() self.end_subtest("Completed Radio failsafe SmartRTL->RTL fails into land mode due to bad position.") # Trigger a GPS failure and RC failure, verify SmartRTL fails # into land mode and completes self.start_subtest("Radio failsafe SmartRTL->LAND fails into land mode due to bad position.") self.set_parameter('FS_THR_ENABLE', 5) self.takeoffAndMoveAway() self.set_parameter('SIM_GPS_DISABLE', 1) self.delay_sim_time(5) self.set_parameter("SIM_RC_FAIL", 1) self.wait_mode("LAND") self.wait_landed_and_disarmed() self.set_parameter("SIM_RC_FAIL", 0) self.set_parameter('SIM_GPS_DISABLE', 0) self.wait_ekf_happy() self.end_subtest("Completed Radio failsafe SmartRTL->LAND fails into land mode due to bad position.") # Trigger a GPS failure, then restore the GPS. Trigger an RC # failure, verify SmartRTL fails into RTL and completes self.start_subtest("Radio failsafe SmartRTL->RTL fails into RTL mode due to no path.") self.set_parameter('FS_THR_ENABLE', 4) self.takeoffAndMoveAway() self.set_parameter('SIM_GPS_DISABLE', 1) self.wait_statustext("SmartRTL deactivated: bad position", timeout=60) self.set_parameter('SIM_GPS_DISABLE', 0) self.wait_ekf_happy() self.delay_sim_time(5) self.set_parameter("SIM_RC_FAIL", 1) self.wait_mode("RTL") self.wait_rtl_complete() self.set_parameter("SIM_RC_FAIL", 0) self.end_subtest("Completed Radio failsafe SmartRTL->RTL fails into RTL mode due to no path.") # Trigger a GPS failure, then restore the GPS. Trigger an RC # failure, verify SmartRTL fails into Land and completes self.start_subtest("Radio failsafe SmartRTL->LAND fails into land mode due to no path.") self.set_parameter('FS_THR_ENABLE', 5) self.takeoffAndMoveAway() self.set_parameter('SIM_GPS_DISABLE', 1) self.wait_statustext("SmartRTL deactivated: bad position", timeout=60) self.set_parameter('SIM_GPS_DISABLE', 0) self.wait_ekf_happy() self.delay_sim_time(5) self.set_parameter("SIM_RC_FAIL", 1) self.wait_mode("LAND") self.wait_landed_and_disarmed() self.set_parameter("SIM_RC_FAIL", 0) self.end_subtest("Completed Radio failsafe SmartRTL->LAND fails into land mode due to no path.") # Trigger an RC failure in guided mode with the option enabled # to continue in guided. Verify no failsafe action takes place self.start_subtest("Radio failsafe with option to continue in guided mode: FS_THR_ENABLE=1 & FS_OPTIONS=4") self.set_parameter("SYSID_MYGCS", self.mav.source_system) self.setGCSfailsafe(1) self.set_parameter('FS_THR_ENABLE', 1) self.set_parameter('FS_OPTIONS', 4) self.takeoffAndMoveAway() self.change_mode("GUIDED") self.set_parameter("SIM_RC_FAIL", 1) self.delay_sim_time(5) self.wait_mode("GUIDED") self.set_parameter("SIM_RC_FAIL", 0) self.delay_sim_time(5) self.change_mode("ALT_HOLD") self.setGCSfailsafe(0) # self.change_mode("RTL") # self.wait_disarmed() self.end_subtest("Completed Radio failsafe with option to continue in guided mode") # Trigger an RC failure in AUTO mode with the option enabled # to continue the mission. Verify no failsafe action takes # place self.start_subtest("Radio failsafe RTL with option to continue mission: FS_THR_ENABLE=1 & FS_OPTIONS=1") self.set_parameter('FS_OPTIONS', 1) self.progress("# Load copter_mission") num_wp = self.load_mission("copter_mission.txt", strict=False) if not num_wp: raise NotAchievedException("load copter_mission failed") # self.takeoffAndMoveAway() self.change_mode("AUTO") self.set_parameter("SIM_RC_FAIL", 1) self.delay_sim_time(5) self.wait_mode("AUTO") self.set_parameter("SIM_RC_FAIL", 0) self.delay_sim_time(5) self.wait_mode("AUTO") # self.change_mode("RTL") # self.wait_disarmed() self.end_subtest("Completed Radio failsafe RTL with option to continue mission") # Trigger an RC failure in AUTO mode without the option # enabled to continue. Verify failsafe triggers and RTL # completes self.start_subtest("Radio failsafe RTL in mission without " "option to continue should RTL: FS_THR_ENABLE=1 & FS_OPTIONS=0") self.set_parameter('FS_OPTIONS', 0) self.set_parameter("SIM_RC_FAIL", 1) self.wait_mode("RTL") self.wait_rtl_complete() self.clear_mission(mavutil.mavlink.MAV_MISSION_TYPE_MISSION) self.set_parameter("SIM_RC_FAIL", 0) self.end_subtest("Completed Radio failsafe RTL in mission without option to continue") self.progress("All radio failsafe tests complete") self.set_parameter('FS_THR_ENABLE', 0) self.reboot_sitl() def ThrottleFailsafePassthrough(self): '''check servo passthrough on RC failsafe. Make sure it doesn't glitch to the bad RC input value''' channel = 7 trim_value = 1450 self.set_parameters({ 'RC%u_MIN' % channel: 1000, 'RC%u_MAX' % channel: 2000, 'SERVO%u_MIN' % channel: 1000, 'SERVO%u_MAX' % channel: 2000, 'SERVO%u_TRIM' % channel: trim_value, 'SERVO%u_FUNCTION' % channel: 146, # scaled passthrough for channel 7 'FS_THR_ENABLE': 1, 'RC_FS_TIMEOUT': 10, 'SERVO_RC_FS_MSK': 1 << (channel-1), }) self.reboot_sitl() self.context_set_message_rate_hz('SERVO_OUTPUT_RAW', 200) self.set_rc(channel, 1799) expected_servo_output_value = 1778 # 1778 because of weird trim self.wait_servo_channel_value(channel, expected_servo_output_value) # receiver goes into failsafe with wild override values: def ensure_SERVO_values_never_input(mav, m): if m.get_type() != "SERVO_OUTPUT_RAW": return value = getattr(m, "servo%u_raw" % channel) if value != expected_servo_output_value and value != trim_value: raise NotAchievedException("Bad servo value %u received" % value) self.install_message_hook_context(ensure_SERVO_values_never_input) self.progress("Forcing receiver into failsafe") self.set_rc_from_map({ 3: 800, channel: 1300, }) self.wait_servo_channel_value(channel, trim_value) self.delay_sim_time(10) # Tests all actions and logic behind the GCS failsafe def GCSFailsafe(self, side=60, timeout=360): '''Test GCS Failsafe''' try: self.test_gcs_failsafe(side=side, timeout=timeout) except Exception as ex: self.setGCSfailsafe(0) self.set_parameter('FS_OPTIONS', 0) self.disarm_vehicle(force=True) self.reboot_sitl() raise ex def test_gcs_failsafe(self, side=60, timeout=360): # Test double-SmartRTL; ensure we do SmarRTL twice rather than # landing (tests fix for actual bug) self.set_parameter("SYSID_MYGCS", self.mav.source_system) self.context_push() self.start_subtest("GCS failsafe SmartRTL twice") self.setGCSfailsafe(3) self.set_parameter('FS_OPTIONS', 8) self.takeoffAndMoveAway() self.set_heartbeat_rate(0) self.wait_mode("SMART_RTL") self.wait_disarmed() self.set_heartbeat_rate(self.speedup) self.wait_statustext("GCS Failsafe Cleared", timeout=60) self.takeoffAndMoveAway() self.set_heartbeat_rate(0) self.wait_statustext("GCS Failsafe") def ensure_smartrtl(mav, m): if m.get_type() != "HEARTBEAT": return # can't use mode_is here because we're in the message hook print("Mode: %s" % self.mav.flightmode) if self.mav.flightmode != "SMART_RTL": raise NotAchievedException("Not in SMART_RTL") self.install_message_hook_context(ensure_smartrtl) self.set_heartbeat_rate(self.speedup) self.wait_statustext("GCS Failsafe Cleared", timeout=60) self.set_heartbeat_rate(0) self.wait_statustext("GCS Failsafe") self.wait_disarmed() self.end_subtest("GCS failsafe SmartRTL twice") self.set_heartbeat_rate(self.speedup) self.wait_statustext("GCS Failsafe Cleared", timeout=60) self.context_pop() # Trigger telemetry loss with failsafe disabled. Verify no action taken. self.start_subtest("GCS failsafe disabled test: FS_GCS_ENABLE=0 should take no failsafe action") self.setGCSfailsafe(0) self.takeoffAndMoveAway() self.set_heartbeat_rate(0) self.delay_sim_time(5) self.wait_mode("ALT_HOLD") self.set_heartbeat_rate(self.speedup) self.delay_sim_time(5) self.wait_mode("ALT_HOLD") self.end_subtest("Completed GCS failsafe disabled test") # Trigger telemetry loss with failsafe enabled. Verify # failsafe triggers to RTL. Restore telemetry, verify failsafe # clears, and change modes. self.start_subtest("GCS failsafe recovery test: FS_GCS_ENABLE=1 & FS_OPTIONS=0") self.setGCSfailsafe(1) self.set_parameter('FS_OPTIONS', 0) self.set_heartbeat_rate(0) self.wait_mode("RTL") self.set_heartbeat_rate(self.speedup) self.wait_statustext("GCS Failsafe Cleared", timeout=60) self.change_mode("LOITER") self.end_subtest("Completed GCS failsafe recovery test") # Trigger telemetry loss with failsafe enabled. Verify # failsafe triggers to RTL. Restore telemetry, verify failsafe # clears, and change modes. self.start_subtest("GCS failsafe recovery test: FS_GCS_ENABLE=1 & FS_OPTIONS=0 & FS_GCS_TIMEOUT=10") self.setGCSfailsafe(1) self.set_parameter('FS_OPTIONS', 0) old_gcs_timeout = self.get_parameter("FS_GCS_TIMEOUT") new_gcs_timeout = old_gcs_timeout * 2 self.set_parameter("FS_GCS_TIMEOUT", new_gcs_timeout) self.set_heartbeat_rate(0) self.delay_sim_time(old_gcs_timeout + (new_gcs_timeout - old_gcs_timeout) / 2) self.assert_mode("LOITER") self.wait_mode("RTL") self.set_heartbeat_rate(self.speedup) self.wait_statustext("GCS Failsafe Cleared", timeout=60) self.change_mode("LOITER") self.set_parameter('FS_GCS_TIMEOUT', old_gcs_timeout) self.end_subtest("Completed GCS failsafe recovery test") # Trigger telemetry loss with failsafe enabled. Verify failsafe triggers and RTL completes self.start_subtest("GCS failsafe RTL with no options test: FS_GCS_ENABLE=1 & FS_OPTIONS=0") self.setGCSfailsafe(1) self.set_parameter('FS_OPTIONS', 0) self.set_heartbeat_rate(0) self.wait_mode("RTL") self.wait_rtl_complete() self.set_heartbeat_rate(self.speedup) self.wait_statustext("GCS Failsafe Cleared", timeout=60) self.end_subtest("Completed GCS failsafe RTL with no options test") # Trigger telemetry loss with failsafe enabled. Verify failsafe triggers and land completes self.start_subtest("GCS failsafe LAND with no options test: FS_GCS_ENABLE=5 & FS_OPTIONS=0") self.setGCSfailsafe(5) self.takeoffAndMoveAway() self.set_heartbeat_rate(0) self.wait_mode("LAND") self.wait_landed_and_disarmed() self.set_heartbeat_rate(self.speedup) self.wait_statustext("GCS Failsafe Cleared", timeout=60) self.end_subtest("Completed GCS failsafe land with no options test") # Trigger telemetry loss with failsafe enabled. Verify failsafe triggers and SmartRTL completes self.start_subtest("GCS failsafe SmartRTL->RTL with no options test: FS_GCS_ENABLE=3 & FS_OPTIONS=0") self.setGCSfailsafe(3) self.takeoffAndMoveAway() self.set_heartbeat_rate(0) self.wait_mode("SMART_RTL") self.wait_disarmed() self.set_heartbeat_rate(self.speedup) self.wait_statustext("GCS Failsafe Cleared", timeout=60) self.end_subtest("Completed GCS failsafe SmartRTL->RTL with no options test") # Trigger telemetry loss with failsafe enabled. Verify failsafe triggers and SmartRTL completes self.start_subtest("GCS failsafe SmartRTL->Land with no options test: FS_GCS_ENABLE=4 & FS_OPTIONS=0") self.setGCSfailsafe(4) self.takeoffAndMoveAway() self.set_heartbeat_rate(0) self.wait_mode("SMART_RTL") self.wait_disarmed() self.set_heartbeat_rate(self.speedup) self.wait_statustext("GCS Failsafe Cleared", timeout=60) self.end_subtest("Completed GCS failsafe SmartRTL->Land with no options test") # Trigger telemetry loss with an invalid failsafe value. Verify failsafe triggers and RTL completes self.start_subtest("GCS failsafe invalid value with no options test: FS_GCS_ENABLE=99 & FS_OPTIONS=0") self.setGCSfailsafe(99) self.takeoffAndMoveAway() self.set_heartbeat_rate(0) self.wait_mode("RTL") self.wait_rtl_complete() self.set_heartbeat_rate(self.speedup) self.wait_statustext("GCS Failsafe Cleared", timeout=60) self.end_subtest("Completed GCS failsafe invalid value with no options test") # Trigger telemetry loss with failsafe enabled to test FS_OPTIONS settings self.start_subtest("GCS failsafe with option bit tests: FS_GCS_ENABLE=1 & FS_OPTIONS=64/2/16") num_wp = self.load_mission("copter_mission.txt", strict=False) if not num_wp: raise NotAchievedException("load copter_mission failed") self.setGCSfailsafe(1) self.set_parameter('FS_OPTIONS', 16) self.takeoffAndMoveAway() self.progress("Testing continue in pilot controlled modes") self.set_heartbeat_rate(0) self.wait_statustext("GCS Failsafe - Continuing Pilot Control", timeout=60) self.delay_sim_time(5) self.wait_mode("ALT_HOLD") self.set_heartbeat_rate(self.speedup) self.wait_statustext("GCS Failsafe Cleared", timeout=60) self.progress("Testing continue in auto mission") self.set_parameter('FS_OPTIONS', 2) self.change_mode("AUTO") self.delay_sim_time(5) self.set_heartbeat_rate(0) self.wait_statustext("GCS Failsafe - Continuing Auto Mode", timeout=60) self.delay_sim_time(5) self.wait_mode("AUTO") self.set_heartbeat_rate(self.speedup) self.wait_statustext("GCS Failsafe Cleared", timeout=60) self.progress("Testing continue landing in land mode") self.set_parameter('FS_OPTIONS', 8) self.change_mode("LAND") self.delay_sim_time(5) self.set_heartbeat_rate(0) self.wait_statustext("GCS Failsafe - Continuing Landing", timeout=60) self.delay_sim_time(5) self.wait_mode("LAND") self.wait_landed_and_disarmed() self.set_heartbeat_rate(self.speedup) self.wait_statustext("GCS Failsafe Cleared", timeout=60) self.end_subtest("Completed GCS failsafe with option bits") self.setGCSfailsafe(0) self.set_parameter('FS_OPTIONS', 0) self.progress("All GCS failsafe tests complete") def CustomController(self, timeout=300): '''Test Custom Controller''' self.progress("Configure custom controller parameters") self.set_parameters({ 'CC_TYPE': 2, 'CC_AXIS_MASK': 7, 'RC6_OPTION': 109, }) self.set_rc(6, 1000) self.reboot_sitl() if self.get_parameter("CC_TYPE") != 2 : raise NotAchievedException("Custom controller is not switched to PID backend.") # check if we can retrive any param inside PID backend self.get_parameter("CC2_RAT_YAW_P") # takeoff in GPS mode and switch to CIRCLE self.takeoff(10, mode="LOITER", takeoff_throttle=2000) self.change_mode("CIRCLE") self.context_push() self.context_collect('STATUSTEXT') # switch custom controller on self.set_rc(6, 2000) self.wait_statustext("Custom controller is ON", check_context=True) # wait 20 second to see if the custom controller destabilize the aircraft if self.wait_altitude(7, 13, relative=True, minimum_duration=20) : raise NotAchievedException("Custom controller is not stable.") # switch custom controller off self.set_rc(6, 1000) self.wait_statustext("Custom controller is OFF", check_context=True) self.context_pop() self.do_RTL() self.progress("Custom controller test complete") # Tests all actions and logic behind the battery failsafe def BatteryFailsafe(self, timeout=300): '''Fly Battery Failsafe''' self.progress("Configure battery failsafe parameters") self.set_parameters({ 'SIM_SPEEDUP': 4, 'BATT_LOW_VOLT': 11.5, 'BATT_CRT_VOLT': 10.1, 'BATT_FS_LOW_ACT': 0, 'BATT_FS_CRT_ACT': 0, 'FS_OPTIONS': 0, 'SIM_BATT_VOLTAGE': 12.5, }) # Trigger low battery condition with failsafe disabled. Verify # no action taken. self.start_subtest("Batt failsafe disabled test") self.takeoffAndMoveAway() m = self.mav.recv_match(type='BATTERY_STATUS', blocking=True, timeout=1) if m.charge_state != mavutil.mavlink.MAV_BATTERY_CHARGE_STATE_OK: raise NotAchievedException("Expected state ok") self.set_parameter('SIM_BATT_VOLTAGE', 11.4) self.wait_statustext("Battery 1 is low", timeout=60) m = self.mav.recv_match(type='BATTERY_STATUS', blocking=True, timeout=1) if m.charge_state != mavutil.mavlink.MAV_BATTERY_CHARGE_STATE_LOW: raise NotAchievedException("Expected state low") self.delay_sim_time(5) self.wait_mode("ALT_HOLD") self.set_parameter('SIM_BATT_VOLTAGE', 10.0) self.wait_statustext("Battery 1 is critical", timeout=60) m = self.mav.recv_match(type='BATTERY_STATUS', blocking=True, timeout=1) if m.charge_state != mavutil.mavlink.MAV_BATTERY_CHARGE_STATE_CRITICAL: raise NotAchievedException("Expected state critical") self.delay_sim_time(5) self.wait_mode("ALT_HOLD") self.change_mode("RTL") self.wait_rtl_complete() self.set_parameter('SIM_BATT_VOLTAGE', 12.5) self.reboot_sitl() self.end_subtest("Completed Batt failsafe disabled test") # TWO STAGE BATTERY FAILSAFE: Trigger low battery condition, # then critical battery condition. Verify RTL and Land actions # complete. self.start_subtest("Two stage battery failsafe test with RTL and Land") self.takeoffAndMoveAway() self.delay_sim_time(3) self.set_parameters({ 'BATT_FS_LOW_ACT': 2, 'BATT_FS_CRT_ACT': 1, 'SIM_BATT_VOLTAGE': 11.4, }) self.wait_statustext("Battery 1 is low", timeout=60) self.delay_sim_time(5) self.wait_mode("RTL") self.delay_sim_time(10) self.set_parameter('SIM_BATT_VOLTAGE', 10.0) self.wait_statustext("Battery 1 is critical", timeout=60) self.delay_sim_time(5) self.wait_mode("LAND") self.wait_landed_and_disarmed() self.set_parameter('SIM_BATT_VOLTAGE', 12.5) self.reboot_sitl() self.end_subtest("Completed two stage battery failsafe test with RTL and Land") # TWO STAGE BATTERY FAILSAFE: Trigger low battery condition, # then critical battery condition. Verify both SmartRTL # actions complete self.start_subtest("Two stage battery failsafe test with SmartRTL") self.takeoffAndMoveAway() self.set_parameter('BATT_FS_LOW_ACT', 3) self.set_parameter('BATT_FS_CRT_ACT', 4) self.delay_sim_time(10) self.set_parameter('SIM_BATT_VOLTAGE', 11.4) self.wait_statustext("Battery 1 is low", timeout=60) self.delay_sim_time(5) self.wait_mode("SMART_RTL") self.change_mode("LOITER") self.delay_sim_time(10) self.set_parameter('SIM_BATT_VOLTAGE', 10.0) self.wait_statustext("Battery 1 is critical", timeout=60) self.delay_sim_time(5) self.wait_mode("SMART_RTL") self.wait_disarmed() self.set_parameter('SIM_BATT_VOLTAGE', 12.5) self.reboot_sitl() self.end_subtest("Completed two stage battery failsafe test with SmartRTL") # Trigger low battery condition in land mode with FS_OPTIONS # set to allow land mode to continue. Verify landing completes # uninterrupted. self.start_subtest("Battery failsafe with FS_OPTIONS set to continue landing") self.takeoffAndMoveAway() self.set_parameter('FS_OPTIONS', 8) self.change_mode("LAND") self.delay_sim_time(5) self.set_parameter('SIM_BATT_VOLTAGE', 11.4) self.wait_statustext("Battery 1 is low", timeout=60) self.delay_sim_time(5) self.wait_mode("LAND") self.wait_landed_and_disarmed() self.set_parameter('SIM_BATT_VOLTAGE', 12.5) self.reboot_sitl() self.end_subtest("Completed battery failsafe with FS_OPTIONS set to continue landing") # Trigger a critical battery condition, which triggers a land # mode failsafe. Trigger an RC failure. Verify the RC failsafe # is prevented from stopping the low battery landing. self.start_subtest("Battery failsafe critical landing") self.takeoffAndMoveAway(100, 50) self.set_parameters({ 'FS_OPTIONS': 0, 'BATT_FS_LOW_ACT': 1, 'BATT_FS_CRT_ACT': 1, 'FS_THR_ENABLE': 1, }) self.delay_sim_time(5) self.set_parameter('SIM_BATT_VOLTAGE', 10.0) self.wait_statustext("Battery 1 is critical", timeout=60) self.wait_mode("LAND") self.delay_sim_time(10) self.set_parameter("SIM_RC_FAIL", 1) self.delay_sim_time(10) self.wait_mode("LAND") self.wait_landed_and_disarmed() self.set_parameter('SIM_BATT_VOLTAGE', 12.5) self.set_parameter("SIM_RC_FAIL", 0) self.reboot_sitl() self.end_subtest("Completed battery failsafe critical landing") # Trigger low battery condition with failsafe set to terminate. Copter will disarm and crash. self.start_subtest("Battery failsafe terminate") self.takeoffAndMoveAway() self.set_parameter('BATT_FS_LOW_ACT', 5) self.delay_sim_time(10) self.set_parameter('SIM_BATT_VOLTAGE', 11.4) self.wait_statustext("Battery 1 is low", timeout=60) self.wait_disarmed() self.end_subtest("Completed terminate failsafe test") self.progress("All Battery failsafe tests complete") def BatteryMissing(self): ''' Test battery health pre-arm and missing failsafe''' self.context_push() # Should be good to arm with no changes self.wait_ready_to_arm() # Make monitor unhealthy, this should result in unhealthy prearm self.set_parameters({ 'BATT_VOLT_PIN': -1, }) self.drain_mav() # Battery should go unhealthy immediately self.assert_prearm_failure("Battery 1 unhealthy", other_prearm_failures_fatal=False) # Return monitor to health self.context_pop() self.context_push() self.wait_ready_to_arm() # take off and then trigger in flight self.takeoff(10, mode="LOITER") self.set_parameters({ 'BATT_VOLT_PIN': -1, }) # Should trigger missing failsafe self.wait_statustext("Battery 1 is missing") # Done, reset params and reboot to clear failsafe self.land_and_disarm() self.context_pop() self.reboot_sitl() def VibrationFailsafe(self): '''Test Vibration Failsafe''' self.context_push() # takeoff in Loiter to 20m self.takeoff(20, mode="LOITER") # simulate accel bias caused by high vibration self.set_parameters({ 'SIM_ACC1_BIAS_Z': 2, 'SIM_ACC2_BIAS_Z': 2, 'SIM_ACC3_BIAS_Z': 2, }) # wait for Vibration compensation warning and change to LAND mode self.wait_statustext("Vibration compensation ON", timeout=30) self.change_mode("LAND") # check vehicle descends to 2m or less within 40 seconds self.wait_altitude(-5, 2, timeout=50, relative=True) # force disarm of vehicle (it will likely not automatically disarm) self.disarm_vehicle(force=True) # revert simulated accel bias and reboot to restore EKF health self.context_pop() self.reboot_sitl() def test_takeoff_check_mode(self, mode, user_takeoff=False): # stabilize check self.progress("Motor takeoff check in %s" % mode) self.change_mode(mode) self.zero_throttle() self.wait_ready_to_arm() self.context_push() self.context_collect('STATUSTEXT') self.arm_vehicle() if user_takeoff: self.run_cmd( mavutil.mavlink.MAV_CMD_NAV_TAKEOFF, p7=10, ) else: self.set_rc(3, 1700) # we may never see ourselves as armed in a heartbeat self.wait_statustext("Takeoff blocked: ESC RPM out of range", check_context=True) self.context_pop() self.zero_throttle() self.disarm_vehicle() self.wait_disarmed() # Tests the motor failsafe def TakeoffCheck(self): '''Test takeoff check''' self.set_parameters({ "AHRS_EKF_TYPE": 10, 'SIM_ESC_TELEM': 1, 'SIM_ESC_ARM_RPM': 500, 'TKOFF_RPM_MIN': 1000, }) self.test_takeoff_check_mode("STABILIZE") self.test_takeoff_check_mode("ACRO") self.test_takeoff_check_mode("LOITER") self.test_takeoff_check_mode("ALT_HOLD") # self.test_takeoff_check_mode("FLOWHOLD") self.test_takeoff_check_mode("GUIDED", True) self.test_takeoff_check_mode("POSHOLD") # self.test_takeoff_check_mode("SPORT") self.set_parameters({ "AHRS_EKF_TYPE": 10, 'SIM_ESC_TELEM': 1, 'TKOFF_RPM_MIN': 1, 'TKOFF_RPM_MAX': 3, }) self.test_takeoff_check_mode("STABILIZE") self.test_takeoff_check_mode("ACRO") self.test_takeoff_check_mode("LOITER") self.test_takeoff_check_mode("ALT_HOLD") # self.test_takeoff_check_mode("FLOWHOLD") self.test_takeoff_check_mode("GUIDED", True) self.test_takeoff_check_mode("POSHOLD") # self.test_takeoff_check_mode("SPORT") def assert_dataflash_message_field_level_at(self, mtype, field, level, maintain=1, tolerance=0.05, timeout=30, condition=None, dfreader_start_timestamp=None, verbose=False): '''wait for EKF's accel bias to reach a level and maintain it''' if verbose: self.progress("current onboard log filepath: %s" % self.current_onboard_log_filepath()) dfreader = self.dfreader_for_current_onboard_log() achieve_start = None current_value = None while True: m = dfreader.recv_match(type=mtype, condition=condition) if m is None: raise NotAchievedException("%s.%s did not maintain %f" % (mtype, field, level)) if dfreader_start_timestamp is not None: if m.TimeUS < dfreader_start_timestamp: continue if verbose: print("m=%s" % str(m)) current_value = getattr(m, field) if abs(current_value - level) > tolerance: if achieve_start is not None: self.progress("Achieve stop at %u" % m.TimeUS) achieve_start = None continue dfreader_now = m.TimeUS if achieve_start is None: self.progress("Achieve start at %u (got=%f want=%f)" % (dfreader_now, current_value, level)) if maintain is None: return achieve_start = m.TimeUS continue # we're achieving.... if dfreader_now - achieve_start > maintain*1e6: return dfreader_now # Tests any EK3 accel bias is subtracted from the correct IMU data def EK3AccelBias(self): '''Test EK3 Accel Bias data''' self.context_push() self.start_test("Test zero bias") dfreader_tstart = self.assert_dataflash_message_field_level_at( "XKF2", "AZ", 0.0, condition="XKF2.C==1", ) # Add 2m/s/s bias to the second IMU self.set_parameters({ 'SIM_ACC2_BIAS_Z': 0.7, }) self.start_subtest("Ensuring second core has bias") self.delay_sim_time(30) dfreader_tstart = self.assert_dataflash_message_field_level_at( "XKF2", "AZ", 0.7, condition="XKF2.C==1", ) self.start_subtest("Ensuring earth frame is compensated") self.assert_dataflash_message_field_level_at( "RATE", "A", 0, maintain=1, tolerance=2, # RATE.A is in cm/s/s dfreader_start_timestamp=dfreader_tstart, ) # now switch the EKF to only using the second core: self.set_parameters({ 'SIM_ACC2_BIAS_Z': 0.0, "EK3_IMU_MASK": 0b10, }) self.reboot_sitl() self.delay_sim_time(30) dfreader_tstart = self.assert_dataflash_message_field_level_at( "XKF2", "AZ", 0.0, condition="XKF2.C==0", ) # Add 2m/s/s bias to the second IMU self.set_parameters({ 'SIM_ACC2_BIAS_Z': 0.7, }) self.start_subtest("Ensuring first core now has bias") self.delay_sim_time(30) dfreader_tstart = self.assert_dataflash_message_field_level_at( "XKF2", "AZ", 0.7, condition="XKF2.C==0", ) self.start_subtest("Ensuring earth frame is compensated") self.assert_dataflash_message_field_level_at( "RATE", "A", 0, maintain=1, tolerance=2, # RATE.A is in cm/s/s dfreader_start_timestamp=dfreader_tstart, verbose=True, ) # revert simulated accel bias and reboot to restore EKF health self.context_pop() self.reboot_sitl() # StabilityPatch - fly south, then hold loiter within 5m # position and altitude and reduce 1 motor to 60% efficiency def StabilityPatch(self, holdtime=30, maxaltchange=5, maxdistchange=10): '''Fly stability patch''' self.takeoff(10, mode="LOITER") # first south self.progress("turn south") self.set_rc(4, 1580) self.wait_heading(180) self.set_rc(4, 1500) # fly west 80m self.set_rc(2, 1100) self.wait_distance(80) self.set_rc(2, 1500) # wait for copter to slow moving self.wait_groundspeed(0, 2) m = self.mav.recv_match(type='VFR_HUD', blocking=True) start_altitude = m.alt start = self.mav.location() tstart = self.get_sim_time() self.progress("Holding loiter at %u meters for %u seconds" % (start_altitude, holdtime)) # cut motor 1's to efficiency self.progress("Cutting motor 1 to 65% efficiency") self.set_parameter("SIM_ENGINE_MUL", 0.65) while self.get_sim_time_cached() < tstart + holdtime: m = self.mav.recv_match(type='VFR_HUD', blocking=True) pos = self.mav.location() delta = self.get_distance(start, pos) alt_delta = math.fabs(m.alt - start_altitude) self.progress("Loiter Dist: %.2fm, alt:%u" % (delta, m.alt)) if alt_delta > maxaltchange: raise NotAchievedException( "Loiter alt shifted %u meters (> limit %u)" % (alt_delta, maxaltchange)) if delta > maxdistchange: raise NotAchievedException( ("Loiter shifted %u meters (> limit of %u)" % (delta, maxdistchange))) # restore motor 1 to 100% efficiency self.set_parameter("SIM_ENGINE_MUL", 1.0) self.progress("Stability patch and Loiter OK for %us" % holdtime) self.progress("RTL after stab patch") self.do_RTL() def debug_arming_issue(self): while True: self.send_mavlink_arm_command() m = self.mav.recv_match(blocking=True, timeout=1) if m is None: continue if m.get_type() in ["STATUSTEXT", "COMMAND_ACK"]: print("Got: %s" % str(m)) if self.mav.motors_armed(): self.progress("Armed") return # fly_fence_test - fly east until you hit the horizontal circular fence avoid_behave_slide = 0 def fly_fence_avoid_test_radius_check(self, timeout=180, avoid_behave=avoid_behave_slide): using_mode = "LOITER" # must be something which adjusts velocity! self.change_mode(using_mode) fence_radius = 15 fence_margin = 3 self.set_parameters({ "FENCE_ENABLE": 1, # fence "FENCE_TYPE": 2, # circle "FENCE_RADIUS": fence_radius, "FENCE_MARGIN": fence_margin, "AVOID_ENABLE": 1, "AVOID_BEHAVE": avoid_behave, "RC10_OPTION": 40, # avoid-enable }) self.wait_ready_to_arm() self.set_rc(10, 2000) home_distance = self.distance_to_home(use_cached_home=True) if home_distance > 5: raise PreconditionFailedException("Expected to be within 5m of home") self.zero_throttle() self.arm_vehicle() self.set_rc(3, 1700) self.wait_altitude(10, 100, relative=True) self.set_rc(3, 1500) self.set_rc(2, 1400) self.wait_distance_to_home(12, 20, timeout=30) tstart = self.get_sim_time() push_time = 70 # push against barrier for 60 seconds failed_max = False failed_min = False while True: if self.get_sim_time() - tstart > push_time: self.progress("Push time up") break # make sure we don't RTL: if not self.mode_is(using_mode): raise NotAchievedException("Changed mode away from %s" % using_mode) distance = self.distance_to_home(use_cached_home=True) inner_radius = fence_radius - fence_margin want_min = inner_radius - 1 # allow 1m either way want_max = inner_radius + 1 # allow 1m either way self.progress("Push: distance=%f %f want_max: if failed_max is False: self.progress("Failed max") failed_max = True if failed_min and failed_max: raise NotAchievedException("Failed both min and max checks. Clever") if failed_min: raise NotAchievedException("Failed min") if failed_max: raise NotAchievedException("Failed max") self.set_rc(2, 1500) self.do_RTL() def HorizontalAvoidFence(self, timeout=180): '''Test horizontal Avoidance fence''' self.fly_fence_avoid_test_radius_check(avoid_behave=1, timeout=timeout) self.fly_fence_avoid_test_radius_check(avoid_behave=0, timeout=timeout) # fly_fence_test - fly east until you hit the horizontal circular fence def HorizontalFence(self, timeout=180): '''Test horizontal fence''' # enable fence, disable avoidance self.set_parameters({ "FENCE_ENABLE": 1, "AVOID_ENABLE": 0, }) self.change_mode("LOITER") self.wait_ready_to_arm() # fence requires home to be set: m = self.poll_home_position(quiet=False) self.start_subtest("ensure we can't arm if outside fence") self.load_fence("fence-in-middle-of-nowhere.txt") self.delay_sim_time(5) # let fence check run so it loads-from-eeprom self.assert_prearm_failure("Vehicle breaching Polygon fence") self.progress("Failed to arm outside fence (good!)") self.clear_fence() self.delay_sim_time(5) # let fence breach clear self.drain_mav() self.end_subtest("ensure we can't arm if outside fence") self.start_subtest("ensure we can't arm with bad radius") self.context_push() self.set_parameter("FENCE_RADIUS", -1) self.assert_prearm_failure("Invalid Circle FENCE_RADIUS value") self.context_pop() self.progress("Failed to arm with bad radius") self.drain_mav() self.end_subtest("ensure we can't arm with bad radius") self.start_subtest("ensure we can't arm with bad alt") self.context_push() self.set_parameter("FENCE_ALT_MAX", -1) self.assert_prearm_failure("Invalid FENCE_ALT_MAX value") self.context_pop() self.progress("Failed to arm with bad altitude") self.end_subtest("ensure we can't arm with bad radius") self.start_subtest("Check breach-fence behaviour") self.set_parameter("FENCE_TYPE", 2) self.takeoff(10, mode="LOITER") # first east self.progress("turn east") self.set_rc(4, 1580) self.wait_heading(160, timeout=60) self.set_rc(4, 1500) fence_radius = self.get_parameter("FENCE_RADIUS") self.progress("flying forward (east) until we hit fence") pitching_forward = True self.set_rc(2, 1100) self.progress("Waiting for fence breach") tstart = self.get_sim_time() while not self.mode_is("RTL"): if self.get_sim_time_cached() - tstart > 30: raise NotAchievedException("Did not breach fence") m = self.mav.recv_match(type='GLOBAL_POSITION_INT', blocking=True) alt = m.relative_alt / 1000.0 # mm -> m home_distance = self.distance_to_home(use_cached_home=True) self.progress("Alt: %.02f HomeDistance: %.02f (fence radius=%f)" % (alt, home_distance, fence_radius)) self.progress("Waiting until we get home and disarm") tstart = self.get_sim_time() while self.get_sim_time_cached() < tstart + timeout: m = self.mav.recv_match(type='GLOBAL_POSITION_INT', blocking=True) alt = m.relative_alt / 1000.0 # mm -> m home_distance = self.distance_to_home(use_cached_home=True) self.progress("Alt: %.02f HomeDistance: %.02f" % (alt, home_distance)) # recenter pitch sticks once we're home so we don't fly off again if pitching_forward and home_distance < 50: pitching_forward = False self.set_rc(2, 1475) # disable fence self.set_parameter("FENCE_ENABLE", 0) if (alt <= 1 and home_distance < 10) or (not self.armed() and home_distance < 10): # reduce throttle self.zero_throttle() self.change_mode("LAND") self.wait_landed_and_disarmed() self.progress("Reached home OK") self.zero_throttle() return # give we're testing RTL, doing one here probably doesn't make sense home_distance = self.distance_to_home(use_cached_home=True) raise AutoTestTimeoutException( "Fence test failed to reach home (%fm distance) - " "timed out after %u seconds" % (home_distance, timeout,)) # MaxAltFence - fly up until you hit the fence ceiling def MaxAltFence(self): '''Test Max Alt Fence''' self.takeoff(10, mode="LOITER") """Hold loiter position.""" # enable fence, disable avoidance self.set_parameters({ "FENCE_ENABLE": 1, "AVOID_ENABLE": 0, "FENCE_TYPE": 1, "FENCE_ENABLE" : 1, }) self.change_alt(10) # first east self.progress("turning east") self.set_rc(4, 1580) self.wait_heading(160, timeout=60) self.set_rc(4, 1500) self.progress("flying east 20m") self.set_rc(2, 1100) self.wait_distance(20) self.progress("flying up") self.set_rc_from_map({ 2: 1500, 3: 1800, }) # wait for fence to trigger self.wait_mode('RTL', timeout=120) self.wait_rtl_complete() self.zero_throttle() # MaxAltFence - fly up and make sure fence action does not trigger # Also check that the vehicle will not try and descend too fast when trying to backup from a max alt fence due to avoidance def MaxAltFenceAvoid(self): '''Test Max Alt Fence Avoidance''' self.takeoff(10, mode="LOITER") """Hold loiter position.""" # enable fence, only max altitude, defualt is 100m # No action, rely on avoidance to prevent the breach self.set_parameters({ "FENCE_ENABLE": 1, "FENCE_TYPE": 1, "FENCE_ACTION": 0, }) # Try and fly past the fence self.set_rc(3, 1920) # Avoid should prevent the vehicle flying past the fence, so the altitude wait should timeouts try: self.wait_altitude(140, 150, timeout=90, relative=True) raise NotAchievedException("Avoid should prevent reaching altitude") except AutoTestTimeoutException: pass except Exception as e: raise e # Check descent is not too fast, allow 10% above the configured backup speed max_descent_rate = -self.get_parameter("AVOID_BACKUP_SPD") * 1.1 def get_climb_rate(mav, m): m_type = m.get_type() if m_type != 'VFR_HUD': return if m.climb < max_descent_rate: raise NotAchievedException("Decending too fast want %f got %f" % (max_descent_rate, m.climb)) self.context_push() self.install_message_hook_context(get_climb_rate) # Reduce fence alt, this will result in a fence breach, but there is no action. # Avoid should then backup the vehicle to be under the new fence alt. self.set_parameters({ "FENCE_ALT_MAX": 50, }) self.wait_altitude(40, 50, timeout=90, relative=True) self.context_pop() self.set_rc(3, 1500) self.do_RTL() # fly_alt_min_fence_test - fly down until you hit the fence floor def MinAltFence(self): '''Test Min Alt Fence''' self.takeoff(30, mode="LOITER", timeout=60) # enable fence, disable avoidance self.set_parameters({ "AVOID_ENABLE": 0, "FENCE_ENABLE" : 1, "FENCE_TYPE": 8, "FENCE_ALT_MIN": 20, }) self.change_alt(30) # Activate the floor fence # TODO this test should run without requiring this self.do_fence_enable() # first east self.progress("turn east") self.set_rc(4, 1580) self.wait_heading(160, timeout=60) self.set_rc(4, 1500) # fly forward (east) at least 20m self.set_rc(2, 1100) self.wait_distance(20) # stop flying forward and start flying down: self.set_rc_from_map({ 2: 1500, 3: 1200, }) # wait for fence to trigger self.wait_mode('RTL', timeout=120) self.wait_rtl_complete() # Disable the fence using mavlink command to ensure cleaned up SITL state self.do_fence_disable() self.zero_throttle() # MinAltFenceAvoid - fly down and make sure fence action does not trigger # Also check that the vehicle will not try and ascend too fast when trying to backup from a min alt fence due to avoidance def MinAltFenceAvoid(self): '''Test Min Alt Fence Avoidance''' self.takeoff(30, mode="LOITER") """Hold loiter position.""" # enable fence, only min altitude # No action, rely on avoidance to prevent the breach self.set_parameters({ "FENCE_ENABLE": 1, "FENCE_TYPE": 8, "FENCE_ALT_MIN": 20, "FENCE_ACTION": 0, }) # Try and fly past the fence self.set_rc(3, 1120) # Avoid should prevent the vehicle flying past the fence, so the altitude wait should timeouts try: self.wait_altitude(10, 15, timeout=90, relative=True) raise NotAchievedException("Avoid should prevent reaching altitude") except AutoTestTimeoutException: pass except Exception as e: raise e # Check ascent is not too fast, allow 10% above the configured backup speed max_ascent_rate = self.get_parameter("AVOID_BACKUP_SPD") * 1.1 def get_climb_rate(mav, m): m_type = m.get_type() if m_type != 'VFR_HUD': return if m.climb > max_ascent_rate: raise NotAchievedException("Ascending too fast want %f got %f" % (max_ascent_rate, m.climb)) self.context_push() self.install_message_hook_context(get_climb_rate) # Reduce fence alt, this will result in a fence breach, but there is no action. # Avoid should then backup the vehicle to be over the new fence alt. self.set_parameters({ "FENCE_ALT_MIN": 30, }) self.wait_altitude(30, 40, timeout=90, relative=True) self.context_pop() self.set_rc(3, 1500) self.do_RTL() def FenceFloorEnabledLanding(self): """Ensures we can initiate and complete an RTL while the fence is enabled. """ fence_bit = mavutil.mavlink.MAV_SYS_STATUS_GEOFENCE self.progress("Test Landing while fence floor enabled") self.set_parameters({ "AVOID_ENABLE": 0, "FENCE_ENABLE" : 1, "FENCE_TYPE": 15, "FENCE_ALT_MIN": 20, "FENCE_ALT_MAX": 30, }) self.change_mode("GUIDED") self.wait_ready_to_arm() self.arm_vehicle() self.user_takeoff(alt_min=25) # Check fence is enabled self.assert_fence_enabled() # Change to RC controlled mode self.change_mode('LOITER') self.set_rc(3, 1800) self.wait_mode('RTL', timeout=120) # center throttle self.set_rc(3, 1500) # wait until we are below the fence floor and re-enter loiter self.wait_altitude(5, 15, relative=True) self.change_mode('LOITER') # wait for manual recovery to expire self.delay_sim_time(15) # lower throttle and try and land self.set_rc(3, 1300) self.wait_altitude(0, 2, relative=True) self.zero_throttle() self.wait_landed_and_disarmed() self.assert_fence_enabled() # must not be in RTL self.assert_mode("LOITER") # Assert fence is healthy since it was enabled automatically self.assert_sensor_state(fence_bit, healthy=True) # Disable the fence using mavlink command to ensure cleaned up SITL state self.do_fence_disable() self.assert_fence_disabled() def FenceFloorAutoDisableLanding(self): """Ensures we can initiate and complete an RTL while the fence is enabled""" fence_bit = mavutil.mavlink.MAV_SYS_STATUS_GEOFENCE self.progress("Test Landing while fence floor enabled") self.set_parameters({ "AVOID_ENABLE": 0, "FENCE_TYPE": 11, "FENCE_ALT_MIN": 10, "FENCE_ALT_MAX": 20, "FENCE_AUTOENABLE" : 1, }) self.change_mode("GUIDED") self.wait_ready_to_arm() self.arm_vehicle() self.takeoff(alt_min=15, mode="GUIDED") # Check fence is enabled self.assert_fence_enabled() # Change to RC controlled mode self.change_mode('LOITER') self.set_rc(3, 1800) self.wait_mode('RTL', timeout=120) self.wait_landed_and_disarmed(0) # the breach should have cleared since we auto-disable the # fence on landing self.assert_fence_disabled() # Assert fences have gone now that we have landed and disarmed self.assert_sensor_state(fence_bit, present=True, enabled=False) def FenceFloorAutoEnableOnArming(self): """Ensures we can auto-enable fences on arming and still takeoff and land""" fence_bit = mavutil.mavlink.MAV_SYS_STATUS_GEOFENCE self.set_parameters({ "AVOID_ENABLE": 0, "FENCE_TYPE": 11, "FENCE_ALT_MIN": 10, "FENCE_ALT_MAX": 20, "FENCE_AUTOENABLE" : 3, }) self.change_mode("GUIDED") # Check fence is not enabled self.assert_fence_disabled() self.wait_ready_to_arm() self.arm_vehicle() self.takeoff(alt_min=15, mode="GUIDED") # Check fence is enabled self.assert_fence_enabled() # Change to RC controlled mode self.change_mode('LOITER') self.set_rc(3, 1800) self.wait_mode('RTL', timeout=120) # Assert fence is not healthy now that we are in RTL self.assert_sensor_state(fence_bit, healthy=False) self.wait_landed_and_disarmed(0) # the breach should have cleared since we auto-disable the # fence on landing self.assert_fence_disabled() # Assert fences have gone now that we have landed and disarmed self.assert_sensor_state(fence_bit, present=True, enabled=False) # Disable the fence using mavlink command to ensure cleaned up SITL state self.assert_fence_disabled() def GPSGlitchLoiter(self, timeout=30, max_distance=20): """fly_gps_glitch_loiter_test. Fly south east in loiter and test reaction to gps glitch.""" self.takeoff(10, mode="LOITER") # turn on simulator display of gps and actual position if self.use_map: self.show_gps_and_sim_positions(True) # set-up gps glitch array glitch_lat = [0.0002996, 0.0006958, 0.0009431, 0.0009991, 0.0009444, 0.0007716, 0.0006221] glitch_lon = [0.0000717, 0.0000912, 0.0002761, 0.0002626, 0.0002807, 0.0002049, 0.0001304] glitch_num = len(glitch_lat) self.progress("GPS Glitches:") for i in range(1, glitch_num): self.progress("glitch %d %.7f %.7f" % (i, glitch_lat[i], glitch_lon[i])) # turn south east self.progress("turn south east") self.set_rc(4, 1580) try: self.wait_heading(150) self.set_rc(4, 1500) # fly forward (south east) at least 60m self.set_rc(2, 1100) self.wait_distance(60) self.set_rc(2, 1500) # wait for copter to slow down except Exception as e: if self.use_map: self.show_gps_and_sim_positions(False) raise e # record time and position tstart = self.get_sim_time() tnow = tstart start_pos = self.sim_location() # initialise current glitch glitch_current = 0 self.progress("Apply first glitch") self.set_parameters({ "SIM_GPS_GLITCH_X": glitch_lat[glitch_current], "SIM_GPS_GLITCH_Y": glitch_lon[glitch_current], }) # record position for 30 seconds while tnow < tstart + timeout: tnow = self.get_sim_time_cached() desired_glitch_num = int((tnow - tstart) * 2.2) if desired_glitch_num > glitch_current and glitch_current != -1: glitch_current = desired_glitch_num # turn off glitching if we've reached the end of glitch list if glitch_current >= glitch_num: glitch_current = -1 self.progress("Completed Glitches") self.set_parameters({ "SIM_GPS_GLITCH_X": 0, "SIM_GPS_GLITCH_Y": 0, }) else: self.progress("Applying glitch %u" % glitch_current) # move onto the next glitch self.set_parameters({ "SIM_GPS_GLITCH_X": glitch_lat[glitch_current], "SIM_GPS_GLITCH_Y": glitch_lon[glitch_current], }) # start displaying distance moved after all glitches applied if glitch_current == -1: m = self.mav.recv_match(type='GLOBAL_POSITION_INT', blocking=True) alt = m.alt/1000.0 # mm -> m curr_pos = self.sim_location() moved_distance = self.get_distance(curr_pos, start_pos) self.progress("Alt: %.02f Moved: %.0f" % (alt, moved_distance)) if moved_distance > max_distance: raise NotAchievedException( "Moved over %u meters, Failed!" % max_distance) else: self.drain_mav() # disable gps glitch if glitch_current != -1: self.set_parameters({ "SIM_GPS_GLITCH_X": 0, "SIM_GPS_GLITCH_Y": 0, }) if self.use_map: self.show_gps_and_sim_positions(False) self.progress("GPS glitch test passed!" " stayed within %u meters for %u seconds" % (max_distance, timeout)) self.do_RTL() # re-arming is problematic because the GPS is glitching! self.reboot_sitl() def GPSGlitchLoiter2(self): """test vehicle handles GPS glitch (aka EKF Reset) without twitching""" self.context_push() self.takeoff(10, mode="LOITER") # wait for vehicle to level self.wait_attitude(desroll=0, despitch=0, timeout=10, tolerance=1) # apply glitch self.set_parameter("SIM_GPS_GLITCH_X", 0.001) # check lean angles remain stable for 20 seconds tstart = self.get_sim_time() while self.get_sim_time_cached() - tstart < 20: m = self.mav.recv_match(type='ATTITUDE', blocking=True) roll_deg = math.degrees(m.roll) pitch_deg = math.degrees(m.pitch) self.progress("checking att: roll=%f pitch=%f " % (roll_deg, pitch_deg)) if abs(roll_deg) > 2 or abs(pitch_deg) > 2: raise NotAchievedException("fly_gps_glitch_loiter_test2 failed, roll or pitch moved during GPS glitch") # RTL, remove glitch and reboot sitl self.do_RTL() self.context_pop() self.reboot_sitl() def GPSGlitchAuto(self, timeout=180): '''fly mission and test reaction to gps glitch''' # set-up gps glitch array glitch_lat = [0.0002996, 0.0006958, 0.0009431, 0.0009991, 0.0009444, 0.0007716, 0.0006221] glitch_lon = [0.0000717, 0.0000912, 0.0002761, 0.0002626, 0.0002807, 0.0002049, 0.0001304] glitch_num = len(glitch_lat) self.progress("GPS Glitches:") for i in range(1, glitch_num): self.progress("glitch %d %.7f %.7f" % (i, glitch_lat[i], glitch_lon[i])) # Fly mission #1 self.progress("# Load copter_glitch_mission") # load the waypoint count num_wp = self.load_mission("copter_glitch_mission.txt", strict=False) if not num_wp: raise NotAchievedException("load copter_glitch_mission failed") # turn on simulator display of gps and actual position if self.use_map: self.show_gps_and_sim_positions(True) self.progress("test: Fly a mission from 1 to %u" % num_wp) self.set_current_waypoint(1) self.change_mode("STABILIZE") self.wait_ready_to_arm() self.zero_throttle() self.arm_vehicle() # switch into AUTO mode and raise throttle self.change_mode('AUTO') self.set_rc(3, 1500) # wait until 100m from home try: self.wait_distance(100, 5, 90) except Exception as e: if self.use_map: self.show_gps_and_sim_positions(False) raise e # stop and test loss of GPS for a short time - it should resume GPS use without falling back into a non aiding mode self.change_mode("LOITER") self.set_parameters({ "SIM_GPS_DISABLE": 1, }) self.delay_sim_time(2) self.set_parameters({ "SIM_GPS_DISABLE": 0, }) # regaining GPS should not result in it falling back to a non-navigation mode self.wait_ekf_flags(mavutil.mavlink.ESTIMATOR_POS_HORIZ_ABS, 0, timeout=1) # It should still be navigating after enougnh time has passed for any pending timeouts to activate. self.delay_sim_time(10) self.wait_ekf_flags(mavutil.mavlink.ESTIMATOR_POS_HORIZ_ABS, 0, timeout=1) self.change_mode("AUTO") # record time and position tstart = self.get_sim_time() # initialise current glitch glitch_current = 0 self.progress("Apply first glitch") self.set_parameters({ "SIM_GPS_GLITCH_X": glitch_lat[glitch_current], "SIM_GPS_GLITCH_Y": glitch_lon[glitch_current], }) # record position for 30 seconds while glitch_current < glitch_num: tnow = self.get_sim_time() desired_glitch_num = int((tnow - tstart) * 2.2) if desired_glitch_num > glitch_current and glitch_current != -1: glitch_current = desired_glitch_num # apply next glitch if glitch_current < glitch_num: self.progress("Applying glitch %u" % glitch_current) self.set_parameters({ "SIM_GPS_GLITCH_X": glitch_lat[glitch_current], "SIM_GPS_GLITCH_Y": glitch_lon[glitch_current], }) # turn off glitching self.progress("Completed Glitches") self.set_parameters({ "SIM_GPS_GLITCH_X": 0, "SIM_GPS_GLITCH_Y": 0, }) # continue with the mission self.wait_waypoint(0, num_wp-1, timeout=500) # wait for arrival back home self.wait_distance_to_home(0, 10, timeout=timeout) # turn off simulator display of gps and actual position if self.use_map: self.show_gps_and_sim_positions(False) self.progress("GPS Glitch test Auto completed: passed!") self.wait_disarmed() # re-arming is problematic because the GPS is glitching! self.reboot_sitl() # fly_simple - assumes the simple bearing is initialised to be # directly north flies a box with 100m west, 15 seconds north, # 50 seconds east, 15 seconds south def SimpleMode(self, side=50): '''Fly in SIMPLE mode''' self.takeoff(10, mode="LOITER") # set SIMPLE mode for all flight modes self.set_parameter("SIMPLE", 63) # switch to stabilize mode self.change_mode('STABILIZE') self.set_rc(3, 1545) # fly south 50m self.progress("# Flying south %u meters" % side) self.set_rc(1, 1300) self.wait_distance(side, 5, 60) self.set_rc(1, 1500) # fly west 8 seconds self.progress("# Flying west for 8 seconds") self.set_rc(2, 1300) tstart = self.get_sim_time() while self.get_sim_time_cached() < (tstart + 8): self.mav.recv_match(type='VFR_HUD', blocking=True) self.set_rc(2, 1500) # fly north 25 meters self.progress("# Flying north %u meters" % (side/2.0)) self.set_rc(1, 1700) self.wait_distance(side/2, 5, 60) self.set_rc(1, 1500) # fly east 8 seconds self.progress("# Flying east for 8 seconds") self.set_rc(2, 1700) tstart = self.get_sim_time() while self.get_sim_time_cached() < (tstart + 8): self.mav.recv_match(type='VFR_HUD', blocking=True) self.set_rc(2, 1500) # hover in place self.hover() self.do_RTL(timeout=500) # fly_super_simple - flies a circle around home for 45 seconds def SuperSimpleCircle(self, timeout=45): '''Fly a circle in SUPER SIMPLE mode''' self.takeoff(10, mode="LOITER") # fly forward 20m self.progress("# Flying forward 20 meters") self.set_rc(2, 1300) self.wait_distance(20, 5, 60) self.set_rc(2, 1500) # set SUPER SIMPLE mode for all flight modes self.set_parameter("SUPER_SIMPLE", 63) # switch to stabilize mode self.change_mode("ALT_HOLD") self.set_rc(3, 1500) # start copter yawing slowly self.set_rc(4, 1550) # roll left for timeout seconds self.progress("# rolling left from pilot's POV for %u seconds" % timeout) self.set_rc(1, 1300) tstart = self.get_sim_time() while self.get_sim_time_cached() < (tstart + timeout): self.mav.recv_match(type='VFR_HUD', blocking=True) # stop rolling and yawing self.set_rc(1, 1500) self.set_rc(4, 1500) # restore simple mode parameters to default self.set_parameter("SUPER_SIMPLE", 0) # hover in place self.hover() self.do_RTL() # fly_circle - flies a circle with 20m radius def ModeCircle(self, holdtime=36): '''Fly CIRCLE mode''' # the following should not be required. But there appears to # be a physics failure in the simulation which is causing CI # to fall over a lot. -pb 202007021209 self.reboot_sitl() self.takeoff(10, mode="LOITER") # face west self.progress("turn west") self.set_rc(4, 1580) self.wait_heading(270) self.set_rc(4, 1500) # set CIRCLE radius self.set_parameter("CIRCLE_RADIUS", 3000) # fly forward (east) at least 100m self.set_rc(2, 1100) self.wait_distance(100) # return pitch stick back to middle self.set_rc(2, 1500) # set CIRCLE mode self.change_mode('CIRCLE') # wait m = self.mav.recv_match(type='VFR_HUD', blocking=True) start_altitude = m.alt tstart = self.get_sim_time() self.progress("Circle at %u meters for %u seconds" % (start_altitude, holdtime)) while self.get_sim_time_cached() < tstart + holdtime: m = self.mav.recv_match(type='VFR_HUD', blocking=True) self.progress("heading %d" % m.heading) self.progress("CIRCLE OK for %u seconds" % holdtime) self.do_RTL() def CompassMot(self): '''test code that adjust mag field for motor interference''' self.run_cmd( mavutil.mavlink.MAV_CMD_PREFLIGHT_CALIBRATION, 0, # p1 0, # p2 0, # p3 0, # p4 0, # p5 1, # p6 0 # p7 ) self.context_collect("STATUSTEXT") self.wait_statustext("Starting calibration", check_context=True) self.wait_statustext("Current", check_context=True) rc3_min = self.get_parameter('RC3_MIN') rc3_max = self.get_parameter('RC3_MAX') rc3_dz = self.get_parameter('RC3_DZ') def set_rc3_for_throttle_pct(thr_pct): value = int((rc3_min+rc3_dz) + (thr_pct/100.0) * (rc3_max-(rc3_min+rc3_dz))) self.progress("Setting rc3 to %u" % value) self.set_rc(3, value) throttle_in_pct = 0 set_rc3_for_throttle_pct(throttle_in_pct) self.assert_received_message_field_values("COMPASSMOT_STATUS", { "interference": 0, "throttle": throttle_in_pct }, verbose=True, very_verbose=True) tstart = self.get_sim_time() delta = 5 while True: if self.get_sim_time_cached() - tstart > 60: raise NotAchievedException("did not run through entire range") throttle_in_pct += delta self.progress("Using throttle %f%%" % throttle_in_pct) set_rc3_for_throttle_pct(throttle_in_pct) self.wait_message_field_values("COMPASSMOT_STATUS", { "throttle": throttle_in_pct * 10.0, }, verbose=True, very_verbose=True, epsilon=1) if throttle_in_pct == 0: # finished counting down break if throttle_in_pct == 100: # start counting down delta = -delta m = self.wait_message_field_values("COMPASSMOT_STATUS", { "throttle": 0, }, verbose=True) for axis in "X", "Y", "Z": fieldname = "Compensation" + axis if getattr(m, fieldname) <= 0: raise NotAchievedException("Expected non-zero %s" % fieldname) # it's kind of crap - but any command-ack will stop the # calibration self.mav.mav.command_ack_send(0, 1) self.wait_statustext("Calibration successful") def MagFail(self): '''test failover of compass in EKF''' # we want both EK2 and EK3 self.set_parameters({ "EK2_ENABLE": 1, "EK3_ENABLE": 1, }) self.takeoff(10, mode="LOITER") self.change_mode('CIRCLE') self.delay_sim_time(20) self.context_collect("STATUSTEXT") self.progress("Failing first compass") self.set_parameter("SIM_MAG1_FAIL", 1) # we want for the message twice, one for EK2 and again for EK3 self.wait_statustext("EKF2 IMU0 switching to compass 1", check_context=True) self.wait_statustext("EKF3 IMU0 switching to compass 1", check_context=True) self.progress("compass switch 1 OK") self.delay_sim_time(2) self.context_clear_collection("STATUSTEXT") self.progress("Failing 2nd compass") self.set_parameter("SIM_MAG2_FAIL", 1) self.wait_statustext("EKF2 IMU0 switching to compass 2", check_context=True) self.wait_statustext("EKF3 IMU0 switching to compass 2", check_context=True) self.progress("compass switch 2 OK") self.delay_sim_time(2) self.context_clear_collection("STATUSTEXT") self.progress("Failing 3rd compass") self.set_parameter("SIM_MAG3_FAIL", 1) self.delay_sim_time(2) self.set_parameter("SIM_MAG1_FAIL", 0) self.wait_statustext("EKF2 IMU0 switching to compass 0", check_context=True) self.wait_statustext("EKF3 IMU0 switching to compass 0", check_context=True) self.progress("compass switch 0 OK") self.do_RTL() def ModeFlip(self): '''Fly Flip Mode''' self.context_set_message_rate_hz(mavutil.mavlink.MAVLINK_MSG_ID_ATTITUDE, 100) self.takeoff(20) self.progress("Flipping in roll") self.set_rc(1, 1700) self.send_cmd_do_set_mode('FLIP') # don't wait for success self.wait_attitude(despitch=0, desroll=45, tolerance=30) self.wait_attitude(despitch=0, desroll=90, tolerance=30) self.wait_attitude(despitch=0, desroll=-45, tolerance=30) self.progress("Waiting for level") self.set_rc(1, 1500) # can't change quickly enough! self.wait_attitude(despitch=0, desroll=0, tolerance=5) self.progress("Regaining altitude") self.change_mode('ALT_HOLD') self.wait_altitude(19, 60, relative=True) self.progress("Flipping in pitch") self.set_rc(2, 1700) self.send_cmd_do_set_mode('FLIP') # don't wait for success self.wait_attitude(despitch=45, desroll=0, tolerance=30) # can't check roll here as it flips from 0 to -180.. self.wait_attitude(despitch=90, tolerance=30) self.wait_attitude(despitch=-45, tolerance=30) self.progress("Waiting for level") self.set_rc(2, 1500) # can't change quickly enough! self.wait_attitude(despitch=0, desroll=0, tolerance=5) self.do_RTL() def configure_EKFs_to_use_optical_flow_instead_of_GPS(self): '''configure EKF to use optical flow instead of GPS''' ahrs_ekf_type = self.get_parameter("AHRS_EKF_TYPE") if ahrs_ekf_type == 2: self.set_parameter("EK2_GPS_TYPE", 3) if ahrs_ekf_type == 3: self.set_parameters({ "EK3_SRC1_POSXY": 0, "EK3_SRC1_VELXY": 5, "EK3_SRC1_VELZ": 0, }) def OpticalFlowLocation(self): '''test optical flow doesn't supply location''' self.context_push() self.assert_sensor_state(mavutil.mavlink.MAV_SYS_STATUS_SENSOR_OPTICAL_FLOW, False, False, False, verbose=True) self.start_subtest("Make sure no crash if no rangefinder") self.set_parameter("SIM_FLOW_ENABLE", 1) self.set_parameter("FLOW_TYPE", 10) self.configure_EKFs_to_use_optical_flow_instead_of_GPS() self.reboot_sitl() self.wait_sensor_state(mavutil.mavlink.MAV_SYS_STATUS_SENSOR_OPTICAL_FLOW, True, True, True, verbose=True) self.change_mode('LOITER') self.delay_sim_time(5) self.wait_statustext("Need Position Estimate", timeout=300) self.context_pop() self.reboot_sitl() def OpticalFlow(self): '''test OpticalFlow in flight''' self.start_subtest("Make sure no crash if no rangefinder") self.set_parameters({ "SIM_FLOW_ENABLE": 1, "FLOW_TYPE": 10, }) self.set_analog_rangefinder_parameters() self.reboot_sitl() self.change_mode('LOITER') # ensure OPTICAL_FLOW message is reasonable: global flow_rate_rads global rangefinder_distance global gps_speed global last_debug_time flow_rate_rads = 0 rangefinder_distance = 0 gps_speed = 0 last_debug_time = 0 def check_optical_flow(mav, m): global flow_rate_rads global rangefinder_distance global gps_speed global last_debug_time m_type = m.get_type() if m_type == "OPTICAL_FLOW": flow_rate_rads = math.sqrt(m.flow_comp_m_x**2+m.flow_comp_m_y**2) elif m_type == "RANGEFINDER": rangefinder_distance = m.distance elif m_type == "GPS_RAW_INT": gps_speed = m.vel/100.0 # cm/s -> m/s of_speed = flow_rate_rads * rangefinder_distance if abs(of_speed - gps_speed) > 3: raise NotAchievedException("gps=%f vs of=%f mismatch" % (gps_speed, of_speed)) now = self.get_sim_time_cached() if now - last_debug_time > 5: last_debug_time = now self.progress("gps=%f of=%f" % (gps_speed, of_speed)) self.install_message_hook_context(check_optical_flow) self.fly_generic_mission("CMAC-copter-navtest.txt") def OpticalFlowLimits(self): '''test EKF navigation limiting''' self.set_parameters({ "SIM_FLOW_ENABLE": 1, "FLOW_TYPE": 10, "SIM_GPS_DISABLE": 1, "SIM_TERRAIN": 0, }) self.configure_EKFs_to_use_optical_flow_instead_of_GPS() self.set_analog_rangefinder_parameters() self.reboot_sitl() # we can't takeoff in loiter as we need flow healthy self.takeoff(alt_min=5, mode='ALT_HOLD', require_absolute=False, takeoff_throttle=1800) self.change_mode('LOITER') # speed should be limited to <10m/s self.set_rc(2, 1000) tstart = self.get_sim_time() timeout = 60 started_climb = False while self.get_sim_time_cached() - tstart < timeout: m = self.assert_receive_message('GLOBAL_POSITION_INT') spd = math.sqrt(m.vx**2 + m.vy**2) * 0.01 alt = m.relative_alt*0.001 # calculate max speed from altitude above the ground margin = 2.0 max_speed = alt * 1.5 + margin self.progress("%0.1f: Low Speed: %f (want <= %u) alt=%.1f" % (self.get_sim_time_cached() - tstart, spd, max_speed, alt)) if spd > max_speed: raise NotAchievedException(("Speed should be limited by" "EKF optical flow limits")) # after 30 seconds start climbing if not started_climb and self.get_sim_time_cached() - tstart > 30: started_climb = True self.set_rc(3, 1900) self.progress("Moving higher") # check altitude is not climbing above 35m if alt > 35: raise NotAchievedException("Alt should be limited by EKF optical flow limits") self.reboot_sitl(force=True) def OpticalFlowCalibration(self): '''test optical flow calibration''' ex = None self.context_push() try: self.set_parameter("SIM_FLOW_ENABLE", 1) self.set_parameter("FLOW_TYPE", 10) self.set_analog_rangefinder_parameters() # RC9 starts/stops calibration self.set_parameter("RC9_OPTION", 158) # initialise flow scaling parameters to incorrect values self.set_parameter("FLOW_FXSCALER", -200) self.set_parameter("FLOW_FYSCALER", 200) self.reboot_sitl() # ensure calibration is off self.set_rc(9, 1000) # takeoff to 10m in loiter self.takeoff(10, mode="LOITER", require_absolute=True, timeout=720) # start calibration self.set_rc(9, 2000) tstart = self.get_sim_time() timeout = 90 veh_dir_tstart = self.get_sim_time() veh_dir = 0 while self.get_sim_time_cached() - tstart < timeout: # roll and pitch vehicle until samples collected # change direction of movement every 2 seconds if self.get_sim_time_cached() - veh_dir_tstart > 2: veh_dir_tstart = self.get_sim_time() veh_dir = veh_dir + 1 if veh_dir > 3: veh_dir = 0 if veh_dir == 0: # move right self.set_rc(1, 1800) self.set_rc(2, 1500) if veh_dir == 1: # move left self.set_rc(1, 1200) self.set_rc(2, 1500) if veh_dir == 2: # move forward self.set_rc(1, 1500) self.set_rc(2, 1200) if veh_dir == 3: # move back self.set_rc(1, 1500) self.set_rc(2, 1800) # return sticks to center self.set_rc(1, 1500) self.set_rc(2, 1500) # stop calibration (not actually necessary) self.set_rc(9, 1000) # check scaling parameters have been restored to values near zero flow_scalar_x = self.get_parameter("FLOW_FXSCALER") flow_scalar_y = self.get_parameter("FLOW_FYSCALER") if ((flow_scalar_x > 30) or (flow_scalar_x < -30)): raise NotAchievedException("FlowCal failed to set FLOW_FXSCALER correctly") if ((flow_scalar_y > 30) or (flow_scalar_y < -30)): raise NotAchievedException("FlowCal failed to set FLOW_FYSCALER correctly") except Exception as e: self.print_exception_caught(e) ex = e self.disarm_vehicle(force=True) self.context_pop() self.reboot_sitl() if ex is not None: raise ex def AutoTune(self): """Test autotune mode""" rlld = self.get_parameter("ATC_RAT_RLL_D") rlli = self.get_parameter("ATC_RAT_RLL_I") rllp = self.get_parameter("ATC_RAT_RLL_P") self.set_parameter("ATC_RAT_RLL_SMAX", 1) self.takeoff(10) # hold position in loiter self.change_mode('AUTOTUNE') tstart = self.get_sim_time() sim_time_expected = 5000 deadline = tstart + sim_time_expected while self.get_sim_time_cached() < deadline: now = self.get_sim_time_cached() m = self.mav.recv_match(type='STATUSTEXT', blocking=True, timeout=1) if m is None: continue self.progress("STATUSTEXT (%u<%u): %s" % (now, deadline, m.text)) if "AutoTune: Success" in m.text: self.progress("AUTOTUNE OK (%u seconds)" % (now - tstart)) # near enough for now: self.change_mode('LAND') self.wait_landed_and_disarmed() # check the original gains have been re-instated if (rlld != self.get_parameter("ATC_RAT_RLL_D") or rlli != self.get_parameter("ATC_RAT_RLL_I") or rllp != self.get_parameter("ATC_RAT_RLL_P")): raise NotAchievedException("AUTOTUNE gains still present") return raise NotAchievedException("AUTOTUNE failed (%u seconds)" % (self.get_sim_time() - tstart)) def AutoTuneYawD(self): """Test autotune mode""" rlld = self.get_parameter("ATC_RAT_RLL_D") rlli = self.get_parameter("ATC_RAT_RLL_I") rllp = self.get_parameter("ATC_RAT_RLL_P") self.set_parameter("ATC_RAT_RLL_SMAX", 1) self.set_parameter("AUTOTUNE_AXES", 15) self.takeoff(10) # hold position in loiter self.change_mode('AUTOTUNE') tstart = self.get_sim_time() sim_time_expected = 5000 deadline = tstart + sim_time_expected while self.get_sim_time_cached() < deadline: now = self.get_sim_time_cached() m = self.mav.recv_match(type='STATUSTEXT', blocking=True, timeout=1) if m is None: continue self.progress("STATUSTEXT (%u<%u): %s" % (now, deadline, m.text)) if "AutoTune: Success" in m.text: self.progress("AUTOTUNE OK (%u seconds)" % (now - tstart)) # near enough for now: self.change_mode('LAND') self.wait_landed_and_disarmed() # check the original gains have been re-instated if (rlld != self.get_parameter("ATC_RAT_RLL_D") or rlli != self.get_parameter("ATC_RAT_RLL_I") or rllp != self.get_parameter("ATC_RAT_RLL_P")): raise NotAchievedException("AUTOTUNE gains still present") return raise NotAchievedException("AUTOTUNE failed (%u seconds)" % (self.get_sim_time() - tstart)) def AutoTuneSwitch(self): """Test autotune on a switch with gains being saved""" # autotune changes a set of parameters on the vehicle which # are not in our context. That changes the flight # characterstics, which we can't afford between runs. So # completely reset the simulated vehicle after the run is # complete by "customising" the commandline here: self.customise_SITL_commandline([]) self.set_parameters({ "RC8_OPTION": 17, "ATC_RAT_RLL_FLTT": 20, }) self.takeoff(10, mode='LOITER') def print_gains(name, gains): self.progress(f"AUTOTUNE {name} gains are P:%f I:%f D:%f" % ( gains["ATC_RAT_RLL_P"], gains["ATC_RAT_RLL_I"], gains["ATC_RAT_RLL_D"] )) def get_roll_gains(name): ret = self.get_parameters([ "ATC_RAT_RLL_D", "ATC_RAT_RLL_I", "ATC_RAT_RLL_P", ], verbose=False) print_gains(name, ret) return ret def gains_same(gains1, gains2): for c in 'P', 'I', 'D': p_name = f"ATC_RAT_RLL_{c}" if abs(gains1[p_name] - gains2[p_name]) > 0.00001: return False return True self.progress("Take a copy of original gains") original_gains = get_roll_gains("pre-tuning") scaled_original_gains = copy.copy(original_gains) scaled_original_gains["ATC_RAT_RLL_I"] *= 0.1 pre_rllt = self.get_parameter("ATC_RAT_RLL_FLTT") # hold position in loiter and run autotune self.set_rc(8, 1850) self.wait_mode('AUTOTUNE') tstart = self.get_sim_time() sim_time_expected = 5000 deadline = tstart + sim_time_expected while self.get_sim_time_cached() < deadline: now = self.get_sim_time_cached() m = self.mav.recv_match(type='STATUSTEXT', blocking=True, timeout=1) if m is None: continue self.progress("STATUSTEXT (%u<%u): %s" % (now, deadline, m.text)) if "Determination Failed" in m.text: break if "AutoTune: Success" in m.text: self.progress("AUTOTUNE OK (%u seconds)" % (now - tstart)) post_gains = get_roll_gains("post") if gains_same(original_gains, post_gains): raise NotAchievedException("AUTOTUNE gains not changed") # because of the way AutoTune works, once autotune is # complete we return the original parameters via # parameter-fetching, but fly on the tuned parameters # (both sets with the I term scaled down). This test # makes sure that's still the case. It would be nice # if the PIDs parameters were `set` on success, but # they aren't... Note that if we use the switch to # restore the original gains and then start testing # again (with the switch) then we see the new gains! # gains are scaled during the testing phase: if not gains_same(scaled_original_gains, post_gains): raise NotAchievedException("AUTOTUNE gains were reported as just original gains in test-mode. If you're fixing this, good!") # noqa self.progress("Check original gains are re-instated by switch") self.set_rc(8, 1100) self.delay_sim_time(1) current_gains = get_roll_gains("set-original") if not gains_same(original_gains, current_gains): raise NotAchievedException("AUTOTUNE original gains not restored") self.progress("Use autotuned gains") self.set_rc(8, 1850) self.delay_sim_time(1) tuned_gains = get_roll_gains("tuned") if gains_same(tuned_gains, original_gains): raise NotAchievedException("AUTOTUNE tuned gains same as pre gains") if gains_same(tuned_gains, scaled_original_gains): raise NotAchievedException("AUTOTUNE tuned gains same as scaled pre gains") self.progress("land without changing mode") self.set_rc(3, 1000) self.wait_altitude(-1, 5, relative=True) self.wait_disarmed() self.progress("Check gains are still there after disarm") disarmed_gains = get_roll_gains("post-disarm") if not gains_same(tuned_gains, disarmed_gains): raise NotAchievedException("AUTOTUNE gains not present on disarm") self.reboot_sitl() self.progress("Check gains are still there after reboot") reboot_gains = get_roll_gains("post-reboot") if not gains_same(tuned_gains, reboot_gains): raise NotAchievedException("AUTOTUNE gains not present on reboot") self.progress("Check FLTT is unchanged") if pre_rllt != self.get_parameter("ATC_RAT_RLL_FLTT"): raise NotAchievedException("AUTOTUNE FLTT was modified") return raise NotAchievedException("AUTOTUNE failed (%u seconds)" % (self.get_sim_time() - tstart)) def EK3_RNG_USE_HGT(self): '''basic tests for using rangefinder when speed and height below thresholds''' # this takes advantage of some code in send_status_report # which only reports terrain variance when using switch-height # and using the rangefinder self.context_push() self.set_analog_rangefinder_parameters() # set use-height to 20m (the parameter is a percentage of max range) self.set_parameters({ 'EK3_RNG_USE_HGT': 200000 / self.get_parameter('RNGFND1_MAX_CM'), }) self.reboot_sitl() # add a listener that verifies rangefinder innovations look good global alt alt = None def verify_innov(mav, m): global alt if m.get_type() == 'GLOBAL_POSITION_INT': alt = m.relative_alt * 0.001 # mm -> m return if m.get_type() != 'EKF_STATUS_REPORT': return if alt is None: return if alt > 1 and alt < 8: # 8 is very low, but it takes a long time to start to use the rangefinder again zero_variance_wanted = False elif alt > 20: zero_variance_wanted = True else: return variance = m.terrain_alt_variance if zero_variance_wanted and variance > 0.00001: raise NotAchievedException("Wanted zero variance at height %f, got %f" % (alt, variance)) elif not zero_variance_wanted and variance == 0: raise NotAchievedException("Wanted non-zero variance at alt=%f, got zero" % alt) self.install_message_hook_context(verify_innov) self.takeoff(50, mode='GUIDED') current_alt = self.mav.location().alt target_position = mavutil.location( -35.362938, 149.165185, current_alt, 0 ) self.fly_guided_move_to(target_position, timeout=300) self.change_mode('LAND') self.wait_disarmed() self.context_pop() self.reboot_sitl() def TerrainDBPreArm(self): '''test that pre-arm checks are working corrctly for terrain database''' self.context_push() self.progress("# Load msission with terrain alt") # load the waypoint num_wp = self.load_mission("terrain_wp.txt", strict=False) if not num_wp: raise NotAchievedException("load terrain_wp failed") self.set_analog_rangefinder_parameters() self.set_parameters({ "WPNAV_RFND_USE": 1, "TERRAIN_ENABLE": 1, }) self.reboot_sitl() self.wait_ready_to_arm() # make sure we can still arm with valid rangefinder and terrain db disabled self.set_parameter("TERRAIN_ENABLE", 0) self.wait_ready_to_arm() self.progress("# Vehicle armed with terrain db disabled") # make sure we can't arm with terrain db enabled and no rangefinder in us self.set_parameter("WPNAV_RFND_USE", 0) self.assert_prearm_failure("terrain disabled") self.context_pop() self.reboot_sitl() def CopterMission(self): '''fly mission which tests a significant number of commands''' # Fly mission #1 self.progress("# Load copter_mission") # load the waypoint count num_wp = self.load_mission("copter_mission.txt", strict=False) if not num_wp: raise NotAchievedException("load copter_mission failed") self.fly_loaded_mission(num_wp) self.progress("Auto mission completed: passed!") def set_origin(self, loc, timeout=60): '''set the GPS global origin to loc''' tstart = self.get_sim_time() while True: if self.get_sim_time_cached() - tstart > timeout: raise AutoTestTimeoutException("Did not get non-zero lat") target_system = 1 self.mav.mav.set_gps_global_origin_send( target_system, int(loc.lat * 1e7), int(loc.lng * 1e7), int(loc.alt * 1e3) ) gpi = self.assert_receive_message('GLOBAL_POSITION_INT') self.progress("gpi=%s" % str(gpi)) if gpi.lat != 0: break def FarOrigin(self): '''fly a mission far from the vehicle origin''' # Fly mission #1 self.set_parameters({ "SIM_GPS_DISABLE": 1, }) self.reboot_sitl() nz = mavutil.location(-43.730171, 169.983118, 1466.3, 270) self.set_origin(nz) self.set_parameters({ "SIM_GPS_DISABLE": 0, }) self.progress("# Load copter_mission") # load the waypoint count num_wp = self.load_mission("copter_mission.txt", strict=False) if not num_wp: raise NotAchievedException("load copter_mission failed") self.fly_loaded_mission(num_wp) self.progress("Auto mission completed: passed!") def fly_loaded_mission(self, num_wp): '''fly mission loaded on vehicle. FIXME: get num_wp from vehicle''' self.progress("test: Fly a mission from 1 to %u" % num_wp) self.set_current_waypoint(1) self.change_mode("LOITER") self.wait_ready_to_arm() self.arm_vehicle() # switch into AUTO mode and raise throttle self.change_mode("AUTO") self.set_rc(3, 1500) # fly the mission self.wait_waypoint(0, num_wp-1, timeout=500) # set throttle to minimum self.zero_throttle() # wait for disarm self.wait_disarmed() self.progress("MOTORS DISARMED OK") def CANGPSCopterMission(self): '''fly mission which tests normal operation alongside CAN GPS''' self.set_parameters({ "CAN_P1_DRIVER": 1, "GPS1_TYPE": 9, "GPS2_TYPE": 9, # disable simulated GPS, so only via DroneCAN "SIM_GPS_DISABLE": 1, "SIM_GPS2_DISABLE": 1, # this ensures we use DroneCAN baro and compass "SIM_BARO_COUNT" : 0, "SIM_MAG1_DEVID" : 0, "SIM_MAG2_DEVID" : 0, "SIM_MAG3_DEVID" : 0, "COMPASS_USE2" : 0, "COMPASS_USE3" : 0, # use DroneCAN rangefinder "RNGFND1_TYPE" : 24, "RNGFND1_MAX_CM" : 11000, # use DroneCAN battery monitoring, and enforce with a arming voltage "BATT_MONITOR" : 8, "BATT_ARM_VOLT" : 12.0, "SIM_SPEEDUP": 2, }) self.context_push() self.set_parameter("ARMING_CHECK", 1 << 3) self.context_collect('STATUSTEXT') self.reboot_sitl() # Test UAVCAN GPS ordering working gps1_det_text = self.wait_text("GPS 1: specified as DroneCAN.*", regex=True, check_context=True) gps2_det_text = self.wait_text("GPS 2: specified as DroneCAN.*", regex=True, check_context=True) gps1_nodeid = int(gps1_det_text.split('-')[1]) gps2_nodeid = int(gps2_det_text.split('-')[1]) if gps1_nodeid is None or gps2_nodeid is None: raise NotAchievedException("GPS not ordered per the order of Node IDs") self.context_stop_collecting('STATUSTEXT') GPS_Order_Tests = [[gps2_nodeid, gps2_nodeid, gps2_nodeid, 0, "PreArm: Same Node Id {} set for multiple GPS".format(gps2_nodeid)], [gps1_nodeid, int(gps2_nodeid/2), gps1_nodeid, 0, "Selected GPS Node {} not set as instance {}".format(int(gps2_nodeid/2), 2)], [int(gps1_nodeid/2), gps2_nodeid, 0, gps2_nodeid, "Selected GPS Node {} not set as instance {}".format(int(gps1_nodeid/2), 1)], [gps1_nodeid, gps2_nodeid, gps1_nodeid, gps2_nodeid, ""], [gps2_nodeid, gps1_nodeid, gps2_nodeid, gps1_nodeid, ""], [gps1_nodeid, 0, gps1_nodeid, gps2_nodeid, ""], [0, gps2_nodeid, gps1_nodeid, gps2_nodeid, ""]] for case in GPS_Order_Tests: self.progress("############################### Trying Case: " + str(case)) self.set_parameters({ "GPS1_CAN_OVRIDE": case[0], "GPS2_CAN_OVRIDE": case[1], }) self.drain_mav() self.context_collect('STATUSTEXT') self.reboot_sitl() gps1_det_text = None gps2_det_text = None try: gps1_det_text = self.wait_text("GPS 1: specified as DroneCAN.*", regex=True, check_context=True) except AutoTestTimeoutException: pass try: gps2_det_text = self.wait_text("GPS 2: specified as DroneCAN.*", regex=True, check_context=True) except AutoTestTimeoutException: pass self.context_stop_collecting('STATUSTEXT') self.change_mode('LOITER') if case[2] == 0 and case[3] == 0: if gps1_det_text or gps2_det_text: raise NotAchievedException("Failed ordering for requested CASE:", case) if case[2] == 0 or case[3] == 0: if bool(gps1_det_text is not None) == bool(gps2_det_text is not None): print(gps1_det_text) print(gps2_det_text) raise NotAchievedException("Failed ordering for requested CASE:", case) if gps1_det_text: if case[2] != int(gps1_det_text.split('-')[1]): raise NotAchievedException("Failed ordering for requested CASE:", case) if gps2_det_text: if case[3] != int(gps2_det_text.split('-')[1]): raise NotAchievedException("Failed ordering for requested CASE:", case) if len(case[4]): self.context_collect('STATUSTEXT') self.run_cmd( mavutil.mavlink.MAV_CMD_COMPONENT_ARM_DISARM, p1=1, # ARM timeout=10, want_result=mavutil.mavlink.MAV_RESULT_FAILED, ) self.wait_statustext(case[4], check_context=True) self.context_stop_collecting('STATUSTEXT') self.progress("############################### All GPS Order Cases Tests Passed") self.progress("############################### Test Healthy Prearm check") self.set_parameter("ARMING_CHECK", 1) self.stop_sup_program(instance=0) self.start_sup_program(instance=0, args="-M") self.stop_sup_program(instance=1) self.start_sup_program(instance=1, args="-M") self.delay_sim_time(2) self.context_collect('STATUSTEXT') self.run_cmd( mavutil.mavlink.MAV_CMD_COMPONENT_ARM_DISARM, p1=1, # ARM timeout=10, want_result=mavutil.mavlink.MAV_RESULT_FAILED, ) self.wait_statustext(".*Node .* unhealthy", check_context=True, regex=True) self.stop_sup_program(instance=0) self.start_sup_program(instance=0) self.stop_sup_program(instance=1) self.start_sup_program(instance=1) self.context_stop_collecting('STATUSTEXT') self.context_pop() self.set_parameters({ # use DroneCAN ESCs for flight "CAN_D1_UC_ESC_BM" : 0x0f, # this stops us using local servo output, guaranteeing we are # flying on DroneCAN ESCs "SIM_CAN_SRV_MSK" : 0xFF, # we can do the flight faster "SIM_SPEEDUP" : 5, }) self.CopterMission() def TakeoffAlt(self): '''Test Takeoff command altitude''' # Test case #1 (set target altitude to relative -10m from the ground, -10m is invalid, so it is set to 1m) self.progress("Testing relative alt from the ground") self.do_takeoff_alt("copter_takeoff.txt", 1, False) # Test case #2 (set target altitude to relative -10m during flight, -10m is invalid, so keeps current altitude) self.progress("Testing relative alt during flight") self.do_takeoff_alt("copter_takeoff.txt", 10, True) self.progress("Takeoff mission completed: passed!") def do_takeoff_alt(self, mission_file, target_alt, during_flight=False): self.progress("# Load %s" % mission_file) # load the waypoint count num_wp = self.load_mission(mission_file, strict=False) if not num_wp: raise NotAchievedException("load %s failed" % mission_file) self.set_current_waypoint(1) self.change_mode("GUIDED") self.wait_ready_to_arm() self.arm_vehicle() if during_flight: self.user_takeoff(alt_min=target_alt) # switch into AUTO mode and raise throttle self.change_mode("AUTO") self.set_rc(3, 1500) # fly the mission self.wait_waypoint(0, num_wp-1, timeout=500) # altitude check self.wait_altitude(target_alt - 1 , target_alt + 1, relative=True) self.change_mode('LAND') # set throttle to minimum self.zero_throttle() # wait for disarm self.wait_disarmed() self.progress("MOTORS DISARMED OK") def GuidedEKFLaneChange(self): '''test lane change with GPS diff on startup''' self.set_parameters({ "EK3_SRC1_POSZ": 3, "EK3_AFFINITY" : 1, "GPS2_TYPE" : 1, "SIM_GPS2_DISABLE" : 0, "SIM_GPS2_GLTCH_Z" : -30 }) self.reboot_sitl() self.change_mode("GUIDED") self.wait_ready_to_arm() self.delay_sim_time(10, reason='"both EKF lanes to init"') self.set_parameters({ "SIM_GPS2_GLTCH_Z" : 0 }) self.delay_sim_time(20, reason="EKF to do a position Z reset") self.arm_vehicle() self.user_takeoff(alt_min=20) gps_alt = self.get_altitude(altitude_source='GPS_RAW_INT.alt') self.progress("Initial guided alt=%.1fm" % gps_alt) self.context_collect('STATUSTEXT') self.progress("force a lane change") self.set_parameters({ "INS_ACCOFFS_X" : 5 }) self.wait_statustext("EKF3 lane switch 1", timeout=10, check_context=True) self.watch_altitude_maintained( altitude_min=gps_alt-2, altitude_max=gps_alt+2, altitude_source='GPS_RAW_INT.alt', minimum_duration=10, ) self.disarm_vehicle(force=True) self.reboot_sitl() def MotorFail(self, ): """Test flight with reduced motor efficiency""" # we only expect an octocopter to survive ATM: self.MotorFail_test_frame('octa', 8, frame_class=3) # self.MotorFail_test_frame('hexa', 6, frame_class=2) # self.MotorFail_test_frame('y6', 6, frame_class=5) def MotorFail_test_frame(self, model, servo_count, frame_class, fail_servo=0, fail_mul=0.0, holdtime=30): self.set_parameters({ 'FRAME_CLASS': frame_class, }) self.customise_SITL_commandline([], model=model) self.takeoff(25, mode="LOITER") # Get initial values start_hud = self.assert_receive_message('VFR_HUD') start_attitude = self.assert_receive_message('ATTITUDE') hover_time = 5 tstart = self.get_sim_time() int_error_alt = 0 int_error_yaw_rate = 0 int_error_yaw = 0 self.progress("Hovering for %u seconds" % hover_time) failed = False while True: now = self.get_sim_time_cached() if now - tstart > holdtime + hover_time: break servo = self.assert_receive_message('SERVO_OUTPUT_RAW') hud = self.assert_receive_message('VFR_HUD') attitude = self.assert_receive_message('ATTITUDE') if not failed and now - tstart > hover_time: self.progress("Killing motor %u (%u%%)" % (fail_servo+1, fail_mul)) self.set_parameters({ "SIM_ENGINE_FAIL": fail_servo, "SIM_ENGINE_MUL": fail_mul, }) failed = True if failed: self.progress("Hold Time: %f/%f" % (now-tstart, holdtime)) servo_pwm = [ servo.servo1_raw, servo.servo2_raw, servo.servo3_raw, servo.servo4_raw, servo.servo5_raw, servo.servo6_raw, servo.servo7_raw, servo.servo8_raw, ] self.progress("PWM output per motor") for i, pwm in enumerate(servo_pwm[0:servo_count]): if pwm > 1900: state = "oversaturated" elif pwm < 1200: state = "undersaturated" else: state = "OK" if failed and i == fail_servo: state += " (failed)" self.progress("servo %u [pwm=%u] [%s]" % (i+1, pwm, state)) alt_delta = hud.alt - start_hud.alt yawrate_delta = attitude.yawspeed - start_attitude.yawspeed yaw_delta = attitude.yaw - start_attitude.yaw self.progress("Alt=%fm (delta=%fm)" % (hud.alt, alt_delta)) self.progress("Yaw rate=%f (delta=%f) (rad/s)" % (attitude.yawspeed, yawrate_delta)) self.progress("Yaw=%f (delta=%f) (deg)" % (attitude.yaw, yaw_delta)) dt = self.get_sim_time() - now int_error_alt += abs(alt_delta/dt) int_error_yaw_rate += abs(yawrate_delta/dt) int_error_yaw += abs(yaw_delta/dt) self.progress("## Error Integration ##") self.progress(" Altitude: %fm" % int_error_alt) self.progress(" Yaw rate: %f rad/s" % int_error_yaw_rate) self.progress(" Yaw: %f deg" % int_error_yaw) self.progress("----") if int_error_yaw > 5: raise NotAchievedException("Vehicle is spinning") if alt_delta < -20: raise NotAchievedException("Vehicle is descending") self.progress("Fixing motors") self.set_parameters({ "SIM_ENGINE_FAIL": 0, "SIM_ENGINE_MUL": 1.0, }) self.do_RTL() def hover_for_interval(self, hover_time): '''hovers for an interval of hover_time seconds. Returns the bookend times for that interval (in time-since-boot frame), and the output throttle level at the end of the period. ''' self.progress("Hovering for %u seconds" % hover_time) tstart = self.get_sim_time() self.delay_sim_time(hover_time, reason='data collection') vfr_hud = self.poll_message('VFR_HUD') tend = self.get_sim_time() return tstart, tend, vfr_hud.throttle def MotorVibration(self): """Test flight with motor vibration""" # magic tridge EKF type that dramatically speeds up the test self.set_parameters({ "AHRS_EKF_TYPE": 10, "INS_LOG_BAT_MASK": 3, "INS_LOG_BAT_OPT": 0, "LOG_BITMASK": 958, "LOG_DISARMED": 0, "SIM_VIB_MOT_MAX": 350, # these are real values taken from a 180mm Quad: "SIM_GYR1_RND": 20, "SIM_ACC1_RND": 5, "SIM_ACC2_RND": 5, "SIM_INS_THR_MIN": 0.1, }) self.reboot_sitl() # do a simple up-and-down flight to gather data: self.takeoff(15, mode="ALT_HOLD") tstart, tend, hover_throttle = self.hover_for_interval(15) # if we don't reduce vibes here then the landing detector # may not trigger self.set_parameter("SIM_VIB_MOT_MAX", 0) self.do_RTL() psd = self.mavfft_fttd(1, 0, tstart * 1.0e6, tend * 1.0e6) # ignore the first 20Hz and look for a peak at -15dB or more # it should be at about 190Hz, each bin is 1000/1024Hz wide ignore_bins = int(100 * 1.024) # start at 100Hz to be safe freq = psd["F"][numpy.argmax(psd["X"][ignore_bins:]) + ignore_bins] if numpy.amax(psd["X"][ignore_bins:]) < -15 or freq < 100 or freq > 300: raise NotAchievedException( "Did not detect a motor peak, found %f at %f dB" % (freq, numpy.amax(psd["X"][ignore_bins:]))) else: self.progress("Detected motor peak at %fHz" % freq) # now add a notch and check that post-filter the peak is squashed below 40dB self.set_parameters({ "INS_LOG_BAT_OPT": 2, "INS_HNTC2_ENABLE": 1, "INS_HNTC2_FREQ": freq, "INS_HNTC2_ATT": 50, "INS_HNTC2_BW": freq/2, "INS_HNTC2_MODE": 0, "SIM_VIB_MOT_MAX": 350, }) self.reboot_sitl() # do a simple up-and-down flight to gather data: self.takeoff(15, mode="ALT_HOLD") tstart, tend, hover_throttle = self.hover_for_interval(15) self.set_parameter("SIM_VIB_MOT_MAX", 0) self.do_RTL() psd = self.mavfft_fttd(1, 0, tstart * 1.0e6, tend * 1.0e6) freq = psd["F"][numpy.argmax(psd["X"][ignore_bins:]) + ignore_bins] peakdB = numpy.amax(psd["X"][ignore_bins:]) if peakdB < -23: self.progress("Did not detect a motor peak, found %f at %f dB" % (freq, peakdB)) else: raise NotAchievedException("Detected peak %.1f Hz %.2f dB" % (freq, peakdB)) def VisionPosition(self): """Disable GPS navigation, enable Vicon input.""" # scribble down a location we can set origin to: self.customise_SITL_commandline(["--serial5=sim:vicon:"]) self.progress("Waiting for location") self.change_mode('LOITER') self.wait_ready_to_arm() old_pos = self.mav.recv_match(type='GLOBAL_POSITION_INT', blocking=True) print("old_pos=%s" % str(old_pos)) # configure EKF to use external nav instead of GPS ahrs_ekf_type = self.get_parameter("AHRS_EKF_TYPE") if ahrs_ekf_type == 2: self.set_parameter("EK2_GPS_TYPE", 3) if ahrs_ekf_type == 3: self.set_parameters({ "EK3_SRC1_POSXY": 6, "EK3_SRC1_VELXY": 6, "EK3_SRC1_POSZ": 6, "EK3_SRC1_VELZ": 6, }) self.set_parameters({ "GPS1_TYPE": 0, "VISO_TYPE": 1, "SERIAL5_PROTOCOL": 1, }) self.reboot_sitl() # without a GPS or some sort of external prompting, AP # doesn't send system_time messages. So prompt it: self.mav.mav.system_time_send(int(time.time() * 1000000), 0) self.progress("Waiting for non-zero-lat") tstart = self.get_sim_time() while True: if self.get_sim_time_cached() - tstart > 60: raise AutoTestTimeoutException("Did not get non-zero lat") self.mav.mav.set_gps_global_origin_send(1, old_pos.lat, old_pos.lon, old_pos.alt) gpi = self.assert_receive_message('GLOBAL_POSITION_INT') self.progress("gpi=%s" % str(gpi)) if gpi.lat != 0: break self.takeoff() self.set_rc(1, 1600) tstart = self.get_sim_time() while True: vicon_pos = self.assert_receive_message('VISION_POSITION_ESTIMATE') # print("vpe=%s" % str(vicon_pos)) # gpi = self.assert_receive_message('GLOBAL_POSITION_INT') # self.progress("gpi=%s" % str(gpi)) if vicon_pos.x > 40: break if self.get_sim_time_cached() - tstart > 100: raise AutoTestTimeoutException("Vicon showed no movement") # recenter controls: self.set_rc(1, 1500) self.progress("# Enter RTL") self.change_mode('RTL') self.set_rc(3, 1500) tstart = self.get_sim_time() # self.install_messageprinter_handlers_context(['SIMSTATE', 'GLOBAL_POSITION_INT']) self.wait_disarmed(timeout=200) def BodyFrameOdom(self): """Disable GPS navigation, enable input of VISION_POSITION_DELTA.""" if self.get_parameter("AHRS_EKF_TYPE") != 3: # only tested on this EKF return self.customise_SITL_commandline(["--serial5=sim:vicon:"]) if self.current_onboard_log_contains_message("XKFD"): raise NotAchievedException("Found unexpected XKFD message") # scribble down a location we can set origin to: self.progress("Waiting for location") self.change_mode('LOITER') self.wait_ready_to_arm() old_pos = self.mav.recv_match(type='GLOBAL_POSITION_INT', blocking=True) print("old_pos=%s" % str(old_pos)) # configure EKF to use external nav instead of GPS self.set_parameters({ "EK3_SRC1_POSXY": 6, "EK3_SRC1_VELXY": 6, "EK3_SRC1_POSZ": 6, "EK3_SRC1_VELZ": 6, "GPS1_TYPE": 0, "VISO_TYPE": 1, "SERIAL5_PROTOCOL": 1, "SIM_VICON_TMASK": 8, # send VISION_POSITION_DELTA }) self.reboot_sitl() # without a GPS or some sort of external prompting, AP # doesn't send system_time messages. So prompt it: self.mav.mav.system_time_send(int(time.time() * 1000000), 0) self.progress("Waiting for non-zero-lat") tstart = self.get_sim_time() while True: self.mav.mav.set_gps_global_origin_send(1, old_pos.lat, old_pos.lon, old_pos.alt) gpi = self.mav.recv_match(type='GLOBAL_POSITION_INT', blocking=True) self.progress("gpi=%s" % str(gpi)) if gpi.lat != 0: break if self.get_sim_time_cached() - tstart > 60: raise AutoTestTimeoutException("Did not get non-zero lat") self.takeoff(alt_min=5, mode='ALT_HOLD', require_absolute=False, takeoff_throttle=1800) self.change_mode('LAND') # TODO: something more elaborate here - EKF will only aid # relative position self.wait_disarmed() if not self.current_onboard_log_contains_message("XKFD"): raise NotAchievedException("Did not find expected XKFD message") def FlyMissionTwice(self): '''fly a mission twice in a row without changing modes in between. Seeks to show bugs in mission state machine''' self.upload_simple_relhome_mission([ (mavutil.mavlink.MAV_CMD_NAV_TAKEOFF, 0, 0, 20), (mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 20, 0, 20), (mavutil.mavlink.MAV_CMD_NAV_RETURN_TO_LAUNCH, 0, 0, 0), ]) num_wp = self.get_mission_count() self.set_parameter("AUTO_OPTIONS", 3) self.change_mode('AUTO') self.wait_ready_to_arm() for i in 1, 2: self.progress("run %u" % i) self.arm_vehicle() self.wait_waypoint(num_wp-1, num_wp-1) self.wait_disarmed() self.delay_sim_time(20) def FlyMissionTwiceWithReset(self): '''Fly a mission twice in a row without changing modes in between. Allow the mission to complete, then reset the mission state machine and restart the mission.''' self.upload_simple_relhome_mission([ (mavutil.mavlink.MAV_CMD_NAV_TAKEOFF, 0, 0, 20), (mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 20, 0, 20), (mavutil.mavlink.MAV_CMD_NAV_RETURN_TO_LAUNCH, 0, 0, 0), ]) num_wp = self.get_mission_count() self.set_parameter("AUTO_OPTIONS", 3) self.change_mode('AUTO') self.wait_ready_to_arm() for i in 1, 2: self.progress("run %u" % i) # Use the "Reset Mission" param of DO_SET_MISSION_CURRENT to reset mission state machine self.set_current_waypoint_using_mav_cmd_do_set_mission_current(seq=0, reset=1) self.arm_vehicle() self.wait_waypoint(num_wp-1, num_wp-1) self.wait_disarmed() self.delay_sim_time(20) def MissionIndexValidity(self): '''Confirm that attempting to select an invalid mission item is rejected.''' self.upload_simple_relhome_mission([ (mavutil.mavlink.MAV_CMD_NAV_TAKEOFF, 0, 0, 20), (mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 20, 0, 20), (mavutil.mavlink.MAV_CMD_NAV_RETURN_TO_LAUNCH, 0, 0, 0), ]) num_wp = self.get_mission_count() accepted_indices = [0, 1, num_wp-1] denied_indices = [-1, num_wp] for seq in accepted_indices: self.run_cmd(mavutil.mavlink.MAV_CMD_DO_SET_MISSION_CURRENT, p1=seq, timeout=1, want_result=mavutil.mavlink.MAV_RESULT_ACCEPTED) for seq in denied_indices: self.run_cmd(mavutil.mavlink.MAV_CMD_DO_SET_MISSION_CURRENT, p1=seq, timeout=1, want_result=mavutil.mavlink.MAV_RESULT_DENIED) def InvalidJumpTags(self): '''Verify the behaviour when selecting invalid jump tags.''' MAX_TAG_NUM = 65535 # Jump tag is not present, so expect FAILED self.run_cmd(mavutil.mavlink.MAV_CMD_DO_JUMP_TAG, p1=MAX_TAG_NUM, timeout=1, want_result=mavutil.mavlink.MAV_RESULT_FAILED) # Jump tag is too big, so expect DENIED self.run_cmd(mavutil.mavlink.MAV_CMD_DO_JUMP_TAG, p1=MAX_TAG_NUM+1, timeout=1, want_result=mavutil.mavlink.MAV_RESULT_DENIED) def GPSViconSwitching(self): """Fly GPS and Vicon switching test""" """Setup parameters including switching to EKF3""" self.set_parameters({ "VISO_TYPE": 2, # enable vicon "SERIAL5_PROTOCOL": 2, "EK3_ENABLE": 1, "EK3_SRC2_POSXY": 6, # External Nav "EK3_SRC2_POSZ": 6, # External Nav "EK3_SRC2_VELXY": 6, # External Nav "EK3_SRC2_VELZ": 6, # External Nav "EK3_SRC2_YAW": 6, # External Nav "RC7_OPTION": 80, # RC aux switch 7 set to Viso Align "RC8_OPTION": 90, # RC aux switch 8 set to EKF source selector "EK2_ENABLE": 0, "AHRS_EKF_TYPE": 3, }) self.customise_SITL_commandline(["--serial5=sim:vicon:"]) # switch to use GPS self.set_rc(8, 1000) # ensure we can get a global position: self.poll_home_position(timeout=120) # record starting position old_pos = self.get_global_position_int() print("old_pos=%s" % str(old_pos)) # align vicon yaw with ahrs heading self.set_rc(7, 2000) # takeoff to 10m in Loiter self.progress("Moving to ensure location is tracked") self.takeoff(10, mode="LOITER", require_absolute=True, timeout=720) # fly forward in Loiter self.set_rc(2, 1300) # disable vicon self.set_parameter("SIM_VICON_FAIL", 1) # ensure vehicle remain in Loiter for 15 seconds tstart = self.get_sim_time() while self.get_sim_time() - tstart < 15: if not self.mode_is('LOITER'): raise NotAchievedException("Expected to stay in loiter for >15 seconds") # re-enable vicon self.set_parameter("SIM_VICON_FAIL", 0) # switch to vicon, disable GPS and wait 10sec to ensure vehicle remains in Loiter self.set_rc(8, 1500) self.set_parameter("GPS1_TYPE", 0) # ensure vehicle remain in Loiter for 15 seconds tstart = self.get_sim_time() while self.get_sim_time() - tstart < 15: if not self.mode_is('LOITER'): raise NotAchievedException("Expected to stay in loiter for >15 seconds") # RTL and check vehicle arrives within 10m of home self.set_rc(2, 1500) self.do_RTL() def RTLSpeed(self): """Test RTL Speed parameters""" rtl_speed_ms = 7 wpnav_speed_ms = 4 wpnav_accel_mss = 3 tolerance = 0.5 self.load_mission("copter_rtl_speed.txt") self.set_parameters({ 'WPNAV_ACCEL': wpnav_accel_mss * 100, 'RTL_SPEED': rtl_speed_ms * 100, 'WPNAV_SPEED': wpnav_speed_ms * 100, }) self.change_mode('LOITER') self.wait_ready_to_arm() self.arm_vehicle() self.change_mode('AUTO') self.set_rc(3, 1600) self.wait_altitude(19, 25, relative=True) self.wait_groundspeed(wpnav_speed_ms-tolerance, wpnav_speed_ms+tolerance) self.monitor_groundspeed(wpnav_speed_ms, timeout=20) self.change_mode('RTL') self.wait_groundspeed(rtl_speed_ms-tolerance, rtl_speed_ms+tolerance) self.monitor_groundspeed(rtl_speed_ms, timeout=5) self.change_mode('AUTO') self.wait_groundspeed(0-tolerance, 0+tolerance) self.wait_groundspeed(wpnav_speed_ms-tolerance, wpnav_speed_ms+tolerance) self.monitor_groundspeed(wpnav_speed_ms, tolerance=0.6, timeout=5) self.do_RTL() def NavDelay(self): """Fly a simple mission that has a delay in it.""" self.load_mission("copter_nav_delay.txt") self.set_parameter("DISARM_DELAY", 0) self.change_mode("LOITER") self.wait_ready_to_arm() self.arm_vehicle() self.change_mode("AUTO") self.set_rc(3, 1600) count_start = -1 count_stop = -1 tstart = self.get_sim_time() last_mission_current_msg = 0 last_seq = None while self.armed(): # we RTL at end of mission now = self.get_sim_time_cached() if now - tstart > 200: raise AutoTestTimeoutException("Did not disarm as expected") m = self.mav.recv_match(type='MISSION_CURRENT', blocking=True) at_delay_item = "" if m.seq == 3: at_delay_item = "(At delay item)" if count_start == -1: count_start = now if ((now - last_mission_current_msg) > 1 or m.seq != last_seq): dist = None x = self.mav.messages.get("NAV_CONTROLLER_OUTPUT", None) if x is not None: dist = x.wp_dist self.progress("MISSION_CURRENT.seq=%u dist=%s %s" % (m.seq, dist, at_delay_item)) last_mission_current_msg = self.get_sim_time_cached() last_seq = m.seq if m.seq > 3: if count_stop == -1: count_stop = now calculated_delay = count_stop - count_start want_delay = 59 # should reflect what's in the mission file self.progress("Stopped for %u seconds (want >=%u seconds)" % (calculated_delay, want_delay)) if calculated_delay < want_delay: raise NotAchievedException("Did not delay for long enough") def RangeFinder(self): '''Test RangeFinder Basic Functionality''' self.progress("Making sure we don't ordinarily get RANGEFINDER") m = self.mav.recv_match(type='RANGEFINDER', blocking=True, timeout=5) if m is not None: raise NotAchievedException("Received unexpected RANGEFINDER msg") # may need to force a rotation if some other test has used the # rangefinder... self.progress("Ensure no RFND messages in log") self.set_parameter("LOG_DISARMED", 1) if self.current_onboard_log_contains_message("RFND"): raise NotAchievedException("Found unexpected RFND message") self.set_analog_rangefinder_parameters() self.set_parameter("RC9_OPTION", 10) # rangefinder self.set_rc(9, 2000) self.reboot_sitl() self.progress("Making sure we now get RANGEFINDER messages") m = self.assert_receive_message('RANGEFINDER', timeout=10) self.progress("Checking RangeFinder is marked as enabled in mavlink") m = self.mav.recv_match(type='SYS_STATUS', blocking=True, timeout=10) flags = m.onboard_control_sensors_enabled if not flags & mavutil.mavlink.MAV_SYS_STATUS_SENSOR_LASER_POSITION: raise NotAchievedException("Laser not enabled in SYS_STATUS") self.progress("Disabling laser using switch") self.set_rc(9, 1000) self.delay_sim_time(1) self.progress("Checking RangeFinder is marked as disabled in mavlink") m = self.mav.recv_match(type='SYS_STATUS', blocking=True, timeout=10) flags = m.onboard_control_sensors_enabled if flags & mavutil.mavlink.MAV_SYS_STATUS_SENSOR_LASER_POSITION: raise NotAchievedException("Laser enabled in SYS_STATUS") self.progress("Re-enabling rangefinder") self.set_rc(9, 2000) self.delay_sim_time(1) m = self.mav.recv_match(type='SYS_STATUS', blocking=True, timeout=10) flags = m.onboard_control_sensors_enabled if not flags & mavutil.mavlink.MAV_SYS_STATUS_SENSOR_LASER_POSITION: raise NotAchievedException("Laser not enabled in SYS_STATUS") self.takeoff(10, mode="LOITER") m_r = self.mav.recv_match(type='RANGEFINDER', blocking=True) m_p = self.mav.recv_match(type='GLOBAL_POSITION_INT', blocking=True) if abs(m_r.distance - m_p.relative_alt/1000) > 1: raise NotAchievedException( "rangefinder/global position int mismatch %0.2f vs %0.2f" % (m_r.distance, m_p.relative_alt/1000)) self.land_and_disarm() if not self.current_onboard_log_contains_message("RFND"): raise NotAchievedException("Did not see expected RFND message") def SplineTerrain(self): '''Test Splines and Terrain''' self.set_parameter("TERRAIN_ENABLE", 0) self.fly_mission("wp.txt") def WPNAV_SPEED(self): '''ensure resetting WPNAV_SPEED during a mission works''' loc = self.poll_home_position() alt = 20 loc.alt = alt items = [] # 100 waypoints in a line, 10m apart in a northerly direction # for i in range(1, 100): # items.append((mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, i*10, 0, alt)) # 1 waypoint a long way away items.append((mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 2000, 0, alt),) items.append((mavutil.mavlink.MAV_CMD_NAV_RETURN_TO_LAUNCH, 0, 0, 0)) self.upload_simple_relhome_mission(items) start_speed_ms = self.get_parameter('WPNAV_SPEED') / 100.0 self.takeoff(20) self.change_mode('AUTO') self.wait_groundspeed(start_speed_ms-1, start_speed_ms+1, minimum_duration=10) for speed_ms in 7, 8, 7, 8, 9, 10, 11, 7: self.set_parameter('WPNAV_SPEED', speed_ms*100) self.wait_groundspeed(speed_ms-1, speed_ms+1, minimum_duration=10) self.do_RTL() def WPNAV_SPEED_UP(self): '''Change speed (up) during mission''' items = [] # 1 waypoint a long way up items.append((mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 0, 0, 20000),) items.append((mavutil.mavlink.MAV_CMD_NAV_RETURN_TO_LAUNCH, 0, 0, 0)) self.upload_simple_relhome_mission(items) start_speed_ms = self.get_parameter('WPNAV_SPEED_UP') / 100.0 minimum_duration = 5 self.takeoff(20) self.change_mode('AUTO') self.wait_climbrate(start_speed_ms-1, start_speed_ms+1, minimum_duration=minimum_duration) for speed_ms in 7, 8, 7, 8, 6, 2: self.set_parameter('WPNAV_SPEED_UP', speed_ms*100) self.wait_climbrate(speed_ms-1, speed_ms+1, minimum_duration=minimum_duration) self.do_RTL(timeout=240) def WPNAV_SPEED_DN(self): '''Change speed (down) during mission''' items = [] # 1 waypoint a long way back down items.append((mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 0, 0, 10),) items.append((mavutil.mavlink.MAV_CMD_NAV_RETURN_TO_LAUNCH, 0, 0, 0)) self.upload_simple_relhome_mission(items) minimum_duration = 5 self.takeoff(500, timeout=70) self.change_mode('AUTO') start_speed_ms = self.get_parameter('WPNAV_SPEED_DN') / 100.0 self.wait_climbrate(-start_speed_ms-1, -start_speed_ms+1, minimum_duration=minimum_duration) for speed_ms in 7, 8, 7, 8, 6, 2: self.set_parameter('WPNAV_SPEED_DN', speed_ms*100) self.wait_climbrate(-speed_ms-1, -speed_ms+1, minimum_duration=minimum_duration) self.do_RTL() def fly_mission(self, filename, strict=True): num_wp = self.load_mission(filename, strict=strict) self.set_parameter("AUTO_OPTIONS", 3) self.change_mode('AUTO') self.wait_ready_to_arm() self.arm_vehicle() self.wait_waypoint(num_wp-1, num_wp-1) self.wait_disarmed() def fly_generic_mission(self, filename, strict=True): num_wp = self.load_generic_mission(filename, strict=strict) self.set_parameter("AUTO_OPTIONS", 3) self.change_mode('AUTO') self.wait_ready_to_arm() self.arm_vehicle() self.wait_waypoint(num_wp-1, num_wp-1) self.wait_disarmed() def SurfaceTracking(self): '''Test Surface Tracking''' ex = None self.context_push() self.install_terrain_handlers_context() try: self.set_analog_rangefinder_parameters() self.set_parameter("RC9_OPTION", 10) # rangefinder self.set_rc(9, 2000) self.reboot_sitl() # needed for both rangefinder and initial position self.assert_vehicle_location_is_at_startup_location() self.takeoff(10, mode="LOITER") lower_surface_pos = mavutil.location(-35.362421, 149.164534, 584, 270) here = self.mav.location() bearing = self.get_bearing(here, lower_surface_pos) self.change_mode("GUIDED") self.guided_achieve_heading(bearing) self.change_mode("LOITER") self.delay_sim_time(2) m = self.mav.recv_match(type='GLOBAL_POSITION_INT', blocking=True) orig_absolute_alt_mm = m.alt self.progress("Original alt: absolute=%f" % orig_absolute_alt_mm) self.progress("Flying somewhere which surface is known lower compared to takeoff point") self.set_rc(2, 1450) tstart = self.get_sim_time() while True: if self.get_sim_time() - tstart > 200: raise NotAchievedException("Did not reach lower point") m = self.mav.recv_match(type='GLOBAL_POSITION_INT', blocking=True) x = mavutil.location(m.lat/1e7, m.lon/1e7, m.alt/1e3, 0) dist = self.get_distance(x, lower_surface_pos) delta = (orig_absolute_alt_mm - m.alt)/1000.0 self.progress("Distance: %fm abs-alt-delta: %fm" % (dist, delta)) if dist < 15: if delta < 0.8: raise NotAchievedException("Did not dip in altitude as expected") break self.set_rc(2, 1500) self.do_RTL() except Exception as e: self.print_exception_caught(e) self.disarm_vehicle(force=True) ex = e self.context_pop() self.reboot_sitl() if ex is not None: raise ex def test_rangefinder_switchover(self): """test that the EKF correctly handles the switchover between baro and rangefinder""" ex = None self.context_push() try: self.set_analog_rangefinder_parameters() self.set_parameters({ "RNGFND1_MAX_CM": 1500 }) # configure EKF to use rangefinder for altitude at low altitudes ahrs_ekf_type = self.get_parameter("AHRS_EKF_TYPE") if ahrs_ekf_type == 2: self.set_parameter("EK2_RNG_USE_HGT", 70) if ahrs_ekf_type == 3: self.set_parameter("EK3_RNG_USE_HGT", 70) self.reboot_sitl() # needed for both rangefinder and initial position self.assert_vehicle_location_is_at_startup_location() self.change_mode("LOITER") self.wait_ready_to_arm() self.arm_vehicle() self.set_rc(3, 1800) self.set_rc(2, 1200) # wait till we get to 50m self.wait_altitude(50, 52, True, 60) self.change_mode("RTL") # wait till we get to 25m self.wait_altitude(25, 27, True, 120) # level up self.set_rc(2, 1500) self.wait_altitude(14, 15, relative=True) self.wait_rtl_complete() except Exception as e: self.print_exception_caught(e) self.disarm_vehicle(force=True) ex = e self.context_pop() self.reboot_sitl() if ex is not None: raise ex def _Parachute(self, command): '''Test Parachute Functionality using specific mavlink command''' self.set_rc(9, 1000) self.set_parameters({ "CHUTE_ENABLED": 1, "CHUTE_TYPE": 10, "SERVO9_FUNCTION": 27, "SIM_PARA_ENABLE": 1, "SIM_PARA_PIN": 9, }) self.progress("Test triggering parachute in mission") self.load_mission("copter_parachute_mission.txt") self.change_mode('LOITER') self.wait_ready_to_arm() self.arm_vehicle() self.change_mode('AUTO') self.set_rc(3, 1600) self.wait_statustext('BANG', timeout=60) self.disarm_vehicle(force=True) self.reboot_sitl() self.progress("Test triggering with mavlink message") self.takeoff(20) command( mavutil.mavlink.MAV_CMD_DO_PARACHUTE, p1=2, # release ) self.wait_statustext('BANG', timeout=60) self.disarm_vehicle(force=True) self.reboot_sitl() self.progress("Testing three-position switch") self.set_parameter("RC9_OPTION", 23) # parachute 3pos self.progress("Test manual triggering") self.takeoff(20) self.set_rc(9, 2000) self.wait_statustext('BANG', timeout=60) self.set_rc(9, 1000) self.disarm_vehicle(force=True) self.reboot_sitl() self.progress("Test mavlink triggering") self.takeoff(20) command( mavutil.mavlink.MAV_CMD_DO_PARACHUTE, p1=mavutil.mavlink.PARACHUTE_DISABLE, ) ok = False try: self.wait_statustext('BANG', timeout=2) except AutoTestTimeoutException: ok = True if not ok: raise NotAchievedException("Disabled parachute fired") command( mavutil.mavlink.MAV_CMD_DO_PARACHUTE, p1=mavutil.mavlink.PARACHUTE_ENABLE, ) ok = False try: self.wait_statustext('BANG', timeout=2) except AutoTestTimeoutException: ok = True if not ok: raise NotAchievedException("Enabled parachute fired") self.set_rc(9, 1000) self.disarm_vehicle(force=True) self.reboot_sitl() # parachute should not fire if you go from disabled to release: self.takeoff(20) command( mavutil.mavlink.MAV_CMD_DO_PARACHUTE, p1=mavutil.mavlink.PARACHUTE_RELEASE, ) ok = False try: self.wait_statustext('BANG', timeout=2) except AutoTestTimeoutException: ok = True if not ok: raise NotAchievedException("Parachute fired when going straight from disabled to release") # now enable then release parachute: command( mavutil.mavlink.MAV_CMD_DO_PARACHUTE, p1=mavutil.mavlink.PARACHUTE_ENABLE, ) command( mavutil.mavlink.MAV_CMD_DO_PARACHUTE, p1=mavutil.mavlink.PARACHUTE_RELEASE, ) self.wait_statustext('BANG! Parachute deployed', timeout=2) self.disarm_vehicle(force=True) self.reboot_sitl() self.context_push() self.progress("Crashing with 3pos switch in enable position") self.takeoff(40) self.set_rc(9, 1500) self.set_parameters({ "SIM_ENGINE_MUL": 0, "SIM_ENGINE_FAIL": 1, }) self.wait_statustext('BANG! Parachute deployed', timeout=60) self.set_rc(9, 1000) self.disarm_vehicle(force=True) self.reboot_sitl() self.context_pop() self.progress("Crashing with 3pos switch in disable position") loiter_alt = 10 self.takeoff(loiter_alt, mode='LOITER') self.set_rc(9, 1100) self.set_parameters({ "SIM_ENGINE_MUL": 0, "SIM_ENGINE_FAIL": 1, }) tstart = self.get_sim_time() while self.get_sim_time_cached() < tstart + 5: m = self.mav.recv_match(type='STATUSTEXT', blocking=True, timeout=1) if m is None: continue if "BANG" in m.text: self.set_rc(9, 1000) self.reboot_sitl() raise NotAchievedException("Parachute deployed when disabled") self.set_rc(9, 1000) self.disarm_vehicle(force=True) self.reboot_sitl() def Parachute(self): '''Test Parachute Functionality''' self._Parachute(self.run_cmd) self._Parachute(self.run_cmd_int) def PrecisionLanding(self): """Use PrecLand backends precision messages to land aircraft.""" self.context_push() for backend in [4, 2]: # SITL, SITL-IRLOCK ex = None try: self.set_parameters({ "PLND_ENABLED": 1, "PLND_TYPE": backend, }) self.set_analog_rangefinder_parameters() self.set_parameter("SIM_SONAR_SCALE", 12) start = self.mav.location() target = start (target.lat, target.lng) = mavextra.gps_offset(start.lat, start.lng, 4, -4) self.progress("Setting target to %f %f" % (target.lat, target.lng)) self.set_parameters({ "SIM_PLD_ENABLE": 1, "SIM_PLD_LAT": target.lat, "SIM_PLD_LON": target.lng, "SIM_PLD_HEIGHT": 0, "SIM_PLD_ALT_LMT": 15, "SIM_PLD_DIST_LMT": 10, }) self.reboot_sitl() self.progress("Waiting for location") self.zero_throttle() self.takeoff(10, 1800, mode="LOITER") self.change_mode("LAND") self.zero_throttle() self.wait_landed_and_disarmed() self.mav.recv_match(type='GLOBAL_POSITION_INT', blocking=True) new_pos = self.mav.location() delta = self.get_distance(target, new_pos) self.progress("Landed %f metres from target position" % delta) max_delta = 1.5 if delta > max_delta: raise NotAchievedException("Did not land close enough to target position (%fm > %fm" % (delta, max_delta)) if not self.current_onboard_log_contains_message("PL"): raise NotAchievedException("Did not see expected PL message") except Exception as e: self.print_exception_caught(e) ex = e self.reboot_sitl() self.zero_throttle() self.context_pop() self.reboot_sitl() self.progress("All done") if ex is not None: raise ex def Landing(self): """Test landing the aircraft.""" def check_landing_speeds(land_speed_high, land_speed_low, land_alt_low, land_speed_high_accuracy=0.1): self.progress("Checking landing speeds (speed_high=%f speed_low=%f alt_low=%f" % (land_speed_high, land_speed_low, land_alt_low)) land_high_maintain = 5 land_low_maintain = land_alt_low / land_speed_low / 2 takeoff_alt = (land_high_maintain * land_speed_high + land_alt_low) + 20 # this is pretty rough, but takes *so much longer* in LOITER self.takeoff(takeoff_alt, mode='STABILIZE', timeout=200, takeoff_throttle=2000) # check default landing speeds: self.change_mode('LAND') # ensure higher-alt descent rate: self.wait_descent_rate(land_speed_high, minimum_duration=land_high_maintain, accuracy=land_speed_high_accuracy) self.wait_descent_rate(land_speed_low) # ensure we transition to low descent rate at correct height: self.assert_altitude(land_alt_low, relative=True) # now make sure we maintain that descent rate: self.wait_descent_rate(land_speed_low, minimum_duration=land_low_maintain) self.wait_disarmed() # test the defaults. By default LAND_SPEED_HIGH is 0 so # WPNAV_SPEED_DN is used check_landing_speeds( self.get_parameter("WPNAV_SPEED_DN") / 100, # cm/s -> m/s self.get_parameter("LAND_SPEED") / 100, # cm/s -> m/s self.get_parameter("LAND_ALT_LOW") / 100 # cm -> m ) def test_landing_speeds(land_speed_high, land_speed_low, land_alt_low, **kwargs): self.set_parameters({ "LAND_SPEED_HIGH": land_speed_high * 100, # m/s -> cm/s "LAND_SPEED": land_speed_low * 100, # m/s -> cm/s "LAND_ALT_LOW": land_alt_low * 100, # m -> cm }) check_landing_speeds(land_speed_high, land_speed_low, land_alt_low, **kwargs) test_landing_speeds( 5, # descent speed high 1, # descent speed low 30, # transition altitude land_speed_high_accuracy=0.5 ) def get_system_clock_utc(self, time_seconds): # this is a copy of ArduPilot's AP_RTC function! # separate time into ms, sec, min, hour and days but all expressed # in milliseconds time_ms = time_seconds * 1000 ms = time_ms % 1000 sec_ms = (time_ms % (60 * 1000)) - ms min_ms = (time_ms % (60 * 60 * 1000)) - sec_ms - ms hour_ms = (time_ms % (24 * 60 * 60 * 1000)) - min_ms - sec_ms - ms # convert times as milliseconds into appropriate units secs = sec_ms / 1000 mins = min_ms / (60 * 1000) hours = hour_ms / (60 * 60 * 1000) return (hours, mins, secs, 0) def calc_delay(self, seconds, delay_for_seconds): # delay-for-seconds has to be long enough that we're at the # waypoint before that time. Otherwise we'll try to wait a # day.... if delay_for_seconds >= 3600: raise ValueError("Won't handle large delays") (hours, mins, secs, ms) = self.get_system_clock_utc(seconds) self.progress("Now is %uh %um %us" % (hours, mins, secs)) secs += delay_for_seconds # add seventeen seconds mins += int(secs/60) secs %= 60 hours += int(mins / 60) mins %= 60 if hours > 24: raise ValueError("Way too big a delay") self.progress("Delay until %uh %um %us" % (hours, mins, secs)) return (hours, mins, secs, 0) def reset_delay_item(self, seq, seconds_in_future): frame = mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT_INT command = mavutil.mavlink.MAV_CMD_NAV_DELAY # retrieve mission item and check it: tried_set = False hours = None mins = None secs = None while True: self.progress("Requesting item") self.mav.mav.mission_request_send(1, 1, seq) st = self.mav.recv_match(type='MISSION_ITEM', blocking=True, timeout=1) if st is None: continue print("Item: %s" % str(st)) have_match = (tried_set and st.seq == seq and st.command == command and st.param2 == hours and st.param3 == mins and st.param4 == secs) if have_match: return self.progress("Mission mismatch") m = None tstart = self.get_sim_time() while True: if self.get_sim_time_cached() - tstart > 3: raise NotAchievedException( "Did not receive MISSION_REQUEST") self.mav.mav.mission_write_partial_list_send(1, 1, seq, seq) m = self.mav.recv_match(type='MISSION_REQUEST', blocking=True, timeout=1) if m is None: continue if m.seq != st.seq: continue break self.progress("Sending absolute-time mission item") # we have to change out the delay time... now = self.mav.messages["SYSTEM_TIME"] if now is None: raise PreconditionFailedException("Never got SYSTEM_TIME") if now.time_unix_usec == 0: raise PreconditionFailedException("system time is zero") (hours, mins, secs, ms) = self.calc_delay(now.time_unix_usec/1000000, seconds_in_future) self.mav.mav.mission_item_send( 1, # target system 1, # target component seq, # seq frame, # frame command, # command 0, # current 1, # autocontinue 0, # p1 (relative seconds) hours, # p2 mins, # p3 secs, # p4 0, # p5 0, # p6 0) # p7 tried_set = True ack = self.mav.recv_match(type='MISSION_ACK', blocking=True, timeout=1) self.progress("Received ack: %s" % str(ack)) def NavDelayAbsTime(self): """fly a simple mission that has a delay in it""" self.fly_nav_delay_abstime_x(87) def fly_nav_delay_abstime_x(self, delay_for, expected_delay=None): """fly a simple mission that has a delay in it, expect a delay""" if expected_delay is None: expected_delay = delay_for self.load_mission("copter_nav_delay.txt") self.change_mode("LOITER") self.wait_ready_to_arm() delay_item_seq = 3 self.reset_delay_item(delay_item_seq, delay_for) delay_for_seconds = delay_for reset_at_m = self.mav.recv_match(type='SYSTEM_TIME', blocking=True) reset_at = reset_at_m.time_unix_usec/1000000 self.arm_vehicle() self.change_mode("AUTO") self.set_rc(3, 1600) count_stop = -1 tstart = self.get_sim_time() while self.armed(): # we RTL at end of mission now = self.get_sim_time_cached() if now - tstart > 240: raise AutoTestTimeoutException("Did not disarm as expected") m = self.mav.recv_match(type='MISSION_CURRENT', blocking=True) at_delay_item = "" if m.seq == delay_item_seq: at_delay_item = "(delay item)" self.progress("MISSION_CURRENT.seq=%u %s" % (m.seq, at_delay_item)) if m.seq > delay_item_seq: if count_stop == -1: count_stop_m = self.mav.recv_match(type='SYSTEM_TIME', blocking=True) count_stop = count_stop_m.time_unix_usec/1000000 calculated_delay = count_stop - reset_at error = abs(calculated_delay - expected_delay) self.progress("Stopped for %u seconds (want >=%u seconds)" % (calculated_delay, delay_for_seconds)) if error > 2: raise NotAchievedException("delay outside expectations") def NavDelayTakeoffAbsTime(self): """make sure taking off at a specific time works""" self.load_mission("copter_nav_delay_takeoff.txt") self.change_mode("LOITER") self.wait_ready_to_arm() delay_item_seq = 2 delay_for_seconds = 77 self.reset_delay_item(delay_item_seq, delay_for_seconds) reset_at = self.get_sim_time_cached() self.arm_vehicle() self.change_mode("AUTO") self.set_rc(3, 1600) # should not take off for about least 77 seconds tstart = self.get_sim_time() took_off = False while self.armed(): now = self.get_sim_time_cached() if now - tstart > 200: # timeout break m = self.mav.recv_match(type='MISSION_CURRENT', blocking=True) now = self.get_sim_time_cached() self.progress("%s" % str(m)) if m.seq > delay_item_seq: if not took_off: took_off = True delta_time = now - reset_at if abs(delta_time - delay_for_seconds) > 2: raise NotAchievedException(( "Did not take off on time " "measured=%f want=%f" % (delta_time, delay_for_seconds))) if not took_off: raise NotAchievedException("Did not take off") def ModeZigZag(self): '''test zigzag mode''' # set channel 8 for zigzag savewp and recentre it self.set_parameter("RC8_OPTION", 61) self.takeoff(alt_min=5, mode='LOITER') ZIGZAG = 24 j = 0 slowdown_speed = 0.3 # because Copter takes a long time to actually stop self.start_subtest("Conduct ZigZag test for all 4 directions") while j < 4: self.progress("## Align heading with the run-way (j=%d)##" % j) self.set_rc(8, 1500) self.set_rc(4, 1420) self.wait_heading(352-j*90) self.set_rc(4, 1500) self.change_mode(ZIGZAG) self.progress("## Record Point A ##") self.set_rc(8, 1100) # record point A self.set_rc(1, 1700) # fly side-way for 20m self.wait_distance(20) self.set_rc(1, 1500) self.wait_groundspeed(0, slowdown_speed) # wait until the copter slows down self.progress("## Record Point A ##") self.set_rc(8, 1500) # pilot always have to cross mid position when changing for low to high position self.set_rc(8, 1900) # record point B i = 1 while i < 2: self.start_subtest("Run zigzag A->B and B->A (i=%d)" % i) self.progress("## fly forward for 10 meter ##") self.set_rc(2, 1300) self.wait_distance(10) self.set_rc(2, 1500) # re-centre pitch rc control self.wait_groundspeed(0, slowdown_speed) # wait until the copter slows down self.set_rc(8, 1500) # switch to mid position self.progress("## auto execute vector BA ##") self.set_rc(8, 1100) self.wait_distance(17) # wait for it to finish self.wait_groundspeed(0, slowdown_speed) # wait until the copter slows down self.progress("## fly forward for 10 meter ##") self.set_rc(2, 1300) # fly forward for 10 meter self.wait_distance(10) self.set_rc(2, 1500) # re-centre pitch rc control self.wait_groundspeed(0, slowdown_speed) # wait until the copter slows down self.set_rc(8, 1500) # switch to mid position self.progress("## auto execute vector AB ##") self.set_rc(8, 1900) self.wait_distance(17) # wait for it to finish self.wait_groundspeed(0, slowdown_speed) # wait until the copter slows down i = i + 1 # test the case when pilot switch to manual control during the auto flight self.start_subtest("test the case when pilot switch to manual control during the auto flight") self.progress("## fly forward for 10 meter ##") self.set_rc(2, 1300) # fly forward for 10 meter self.wait_distance(10) self.set_rc(2, 1500) # re-centre pitch rc control self.wait_groundspeed(0, 0.3) # wait until the copter slows down self.set_rc(8, 1500) # switch to mid position self.progress("## auto execute vector BA ##") self.set_rc(8, 1100) # switch to low position, auto execute vector BA self.wait_distance(8) # purposely switch to manual halfway self.set_rc(8, 1500) self.wait_groundspeed(0, slowdown_speed) # copter should slow down here self.progress("## Manual control to fly forward ##") self.set_rc(2, 1300) # manual control to fly forward self.wait_distance(8) self.set_rc(2, 1500) # re-centre pitch rc control self.wait_groundspeed(0, slowdown_speed) # wait until the copter slows down self.progress("## continue vector BA ##") self.set_rc(8, 1100) # copter should continue mission here self.wait_distance(8) # wait for it to finish rest of BA self.wait_groundspeed(0, slowdown_speed) # wait until the copter slows down self.set_rc(8, 1500) # switch to mid position self.progress("## auto execute vector AB ##") self.set_rc(8, 1900) # switch to execute AB again self.wait_distance(17) # wait for it to finish self.wait_groundspeed(0, slowdown_speed) # wait until the copter slows down self.change_mode('LOITER') j = j + 1 self.do_RTL() def SetModesViaModeSwitch(self): '''Set modes via modeswitch''' fltmode_ch = 5 self.set_parameter("FLTMODE_CH", fltmode_ch) self.set_rc(fltmode_ch, 1000) # PWM for mode1 testmodes = [("FLTMODE1", 4, "GUIDED", 1165), ("FLTMODE2", 2, "ALT_HOLD", 1295), ("FLTMODE3", 6, "RTL", 1425), ("FLTMODE4", 7, "CIRCLE", 1555), ("FLTMODE5", 1, "ACRO", 1685), ("FLTMODE6", 17, "BRAKE", 1815), ] for mode in testmodes: (parm, parm_value, name, pwm) = mode self.set_parameter(parm, parm_value) for mode in reversed(testmodes): (parm, parm_value, name, pwm) = mode self.set_rc(fltmode_ch, pwm) self.wait_mode(name) for mode in testmodes: (parm, parm_value, name, pwm) = mode self.set_rc(fltmode_ch, pwm) self.wait_mode(name) for mode in reversed(testmodes): (parm, parm_value, name, pwm) = mode self.set_rc(fltmode_ch, pwm) self.wait_mode(name) def SetModesViaAuxSwitch(self): '''"Set modes via auxswitch"''' fltmode_ch = int(self.get_parameter("FLTMODE_CH")) self.set_rc(fltmode_ch, 1000) self.wait_mode("CIRCLE") self.set_rc(9, 1000) self.set_rc(10, 1000) self.set_parameters({ "RC9_OPTION": 18, # land "RC10_OPTION": 55, # guided }) self.set_rc(9, 1900) self.wait_mode("LAND") self.set_rc(10, 1900) self.wait_mode("GUIDED") self.set_rc(10, 1000) # this re-polls the mode switch self.wait_mode("CIRCLE") def fly_guided_stop(self, timeout=20, groundspeed_tolerance=0.05, climb_tolerance=0.01): """stop the vehicle moving in guided mode""" self.progress("Stopping vehicle") tstart = self.get_sim_time() # send a position-control command self.mav.mav.set_position_target_local_ned_send( 0, # timestamp 1, # target system_id 1, # target component id mavutil.mavlink.MAV_FRAME_BODY_NED, MAV_POS_TARGET_TYPE_MASK.POS_ONLY | MAV_POS_TARGET_TYPE_MASK.LAST_BYTE, # mask specifying use-only-x-y-z 0, # x 0, # y 0, # z 0, # vx 0, # vy 0, # vz 0, # afx 0, # afy 0, # afz 0, # yaw 0, # yawrate ) while True: if self.get_sim_time_cached() - tstart > timeout: raise NotAchievedException("Vehicle did not stop") m = self.mav.recv_match(type='VFR_HUD', blocking=True) print("%s" % str(m)) if (m.groundspeed < groundspeed_tolerance and m.climb < climb_tolerance): break def send_set_position_target_global_int(self, lat, lon, alt): self.mav.mav.set_position_target_global_int_send( 0, # timestamp 1, # target system_id 1, # target component id mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT_INT, MAV_POS_TARGET_TYPE_MASK.POS_ONLY, # mask specifying use-only-lat-lon-alt lat, # lat lon, # lon alt, # alt 0, # vx 0, # vy 0, # vz 0, # afx 0, # afy 0, # afz 0, # yaw 0, # yawrate ) def fly_guided_move_global_relative_alt(self, lat, lon, alt): startpos = self.mav.recv_match(type='GLOBAL_POSITION_INT', blocking=True) self.send_set_position_target_global_int(lat, lon, alt) tstart = self.get_sim_time() while True: if self.get_sim_time_cached() - tstart > 200: raise NotAchievedException("Did not move far enough") # send a position-control command pos = self.mav.recv_match(type='GLOBAL_POSITION_INT', blocking=True) delta = self.get_distance_int(startpos, pos) self.progress("delta=%f (want >10)" % delta) if delta > 10: break def fly_guided_move_local(self, x, y, z_up, timeout=100): """move the vehicle using MAVLINK_MSG_ID_SET_POSITION_TARGET_LOCAL_NED""" startpos = self.mav.recv_match(type='LOCAL_POSITION_NED', blocking=True) self.progress("startpos=%s" % str(startpos)) tstart = self.get_sim_time() # send a position-control command self.mav.mav.set_position_target_local_ned_send( 0, # timestamp 1, # target system_id 1, # target component id mavutil.mavlink.MAV_FRAME_LOCAL_NED, MAV_POS_TARGET_TYPE_MASK.POS_ONLY | MAV_POS_TARGET_TYPE_MASK.LAST_BYTE, # mask specifying use-only-x-y-z x, # x y, # y -z_up, # z 0, # vx 0, # vy 0, # vz 0, # afx 0, # afy 0, # afz 0, # yaw 0, # yawrate ) while True: if self.get_sim_time_cached() - tstart > timeout: raise NotAchievedException("Did not reach destination") if self.distance_to_local_position((x, y, -z_up)) < 1: break def test_guided_local_position_target(self, x, y, z_up): """ Check target position being received by vehicle """ # set POSITION_TARGET_LOCAL_NED message rate using SET_MESSAGE_INTERVAL self.progress("Setting local target in NED: (%f, %f, %f)" % (x, y, -z_up)) self.progress("Setting rate to 1 Hz") self.set_message_rate_hz(mavutil.mavlink.MAVLINK_MSG_ID_POSITION_TARGET_LOCAL_NED, 1) # mask specifying use only xyz target_typemask = MAV_POS_TARGET_TYPE_MASK.POS_ONLY # set position target self.mav.mav.set_position_target_local_ned_send( 0, # timestamp 1, # target system_id 1, # target component id mavutil.mavlink.MAV_FRAME_LOCAL_NED, target_typemask | MAV_POS_TARGET_TYPE_MASK.LAST_BYTE, x, # x y, # y -z_up, # z 0, # vx 0, # vy 0, # vz 0, # afx 0, # afy 0, # afz 0, # yaw 0, # yawrate ) m = self.mav.recv_match(type='POSITION_TARGET_LOCAL_NED', blocking=True, timeout=2) self.progress("Received local target: %s" % str(m)) if not (m.type_mask == (target_typemask | MAV_POS_TARGET_TYPE_MASK.LAST_BYTE) or m.type_mask == target_typemask): raise NotAchievedException("Did not receive proper mask: expected=%u or %u, got=%u" % ((target_typemask | MAV_POS_TARGET_TYPE_MASK.LAST_BYTE), target_typemask, m.type_mask)) if x - m.x > 0.1: raise NotAchievedException("Did not receive proper target position x: wanted=%f got=%f" % (x, m.x)) if y - m.y > 0.1: raise NotAchievedException("Did not receive proper target position y: wanted=%f got=%f" % (y, m.y)) if z_up - (-m.z) > 0.1: raise NotAchievedException("Did not receive proper target position z: wanted=%f got=%f" % (z_up, -m.z)) def test_guided_local_velocity_target(self, vx, vy, vz_up, timeout=3): " Check local target velocity being received by vehicle " self.progress("Setting local NED velocity target: (%f, %f, %f)" % (vx, vy, -vz_up)) self.progress("Setting POSITION_TARGET_LOCAL_NED message rate to 10Hz") self.set_message_rate_hz(mavutil.mavlink.MAVLINK_MSG_ID_POSITION_TARGET_LOCAL_NED, 10) # mask specifying use only vx,vy,vz & accel. Even though we don't test acceltargets below currently # a velocity only mask returns a velocity & accel mask target_typemask = (MAV_POS_TARGET_TYPE_MASK.POS_IGNORE | MAV_POS_TARGET_TYPE_MASK.YAW_IGNORE | MAV_POS_TARGET_TYPE_MASK.YAW_RATE_IGNORE) # Drain old messages and ignore the ramp-up to the required target velocity tstart = self.get_sim_time() while self.get_sim_time_cached() - tstart < timeout: # send velocity-control command self.mav.mav.set_position_target_local_ned_send( 0, # timestamp 1, # target system_id 1, # target component id mavutil.mavlink.MAV_FRAME_LOCAL_NED, target_typemask | MAV_POS_TARGET_TYPE_MASK.LAST_BYTE, 0, # x 0, # y 0, # z vx, # vx vy, # vy -vz_up, # vz 0, # afx 0, # afy 0, # afz 0, # yaw 0, # yawrate ) m = self.assert_receive_message('POSITION_TARGET_LOCAL_NED') self.progress("Received local target: %s" % str(m)) # Check the last received message if not (m.type_mask == (target_typemask | MAV_POS_TARGET_TYPE_MASK.LAST_BYTE) or m.type_mask == target_typemask): raise NotAchievedException("Did not receive proper mask: expected=%u or %u, got=%u" % ((target_typemask | MAV_POS_TARGET_TYPE_MASK.LAST_BYTE), target_typemask, m.type_mask)) if vx - m.vx > 0.1: raise NotAchievedException("Did not receive proper target velocity vx: wanted=%f got=%f" % (vx, m.vx)) if vy - m.vy > 0.1: raise NotAchievedException("Did not receive proper target velocity vy: wanted=%f got=%f" % (vy, m.vy)) if vz_up - (-m.vz) > 0.1: raise NotAchievedException("Did not receive proper target velocity vz: wanted=%f got=%f" % (vz_up, -m.vz)) self.progress("Received proper target velocity commands") def wait_for_local_velocity(self, vx, vy, vz_up, timeout=10): """ Wait for local target velocity""" # debug messages self.progress("Waiting for local NED velocity target: (%f, %f, %f)" % (vx, vy, -vz_up)) self.progress("Setting LOCAL_POSITION_NED message rate to 10Hz") # set position local ned message stream rate self.set_message_rate_hz(mavutil.mavlink.MAVLINK_MSG_ID_LOCAL_POSITION_NED, 10) # wait for position local ned message tstart = self.get_sim_time() while self.get_sim_time_cached() - tstart < timeout: # get position target local ned message m = self.mav.recv_match(type="LOCAL_POSITION_NED", blocking=True, timeout=1) # could not be able to get a valid target local ned message within given time if m is None: # raise an error that did not receive a valid target local ned message within given time raise NotAchievedException("Did not receive any position local ned message for 1 second!") # got a valid target local ned message within given time else: # debug message self.progress("Received local position ned message: %s" % str(m)) # check if velocity values are in range if vx - m.vx <= 0.1 and vy - m.vy <= 0.1 and vz_up - (-m.vz) <= 0.1: # get out of function self.progress("Vehicle successfully reached to target velocity!") return # raise an exception error_message = "Did not receive target velocities vx, vy, vz_up, wanted=(%f, %f, %f) got=(%f, %f, %f)" error_message = error_message % (vx, vy, vz_up, m.vx, m.vy, -m.vz) raise NotAchievedException(error_message) def test_position_target_message_mode(self): " Ensure that POSITION_TARGET_LOCAL_NED messages are sent in Guided Mode only " self.hover() self.change_mode('LOITER') self.progress("Setting POSITION_TARGET_LOCAL_NED message rate to 10Hz") self.set_message_rate_hz(mavutil.mavlink.MAVLINK_MSG_ID_POSITION_TARGET_LOCAL_NED, 10) tstart = self.get_sim_time() while self.get_sim_time_cached() < tstart + 5: m = self.mav.recv_match(type='POSITION_TARGET_LOCAL_NED', blocking=True, timeout=1) if m is None: continue raise NotAchievedException("Received POSITION_TARGET message in LOITER mode: %s" % str(m)) self.progress("Did not receive any POSITION_TARGET_LOCAL_NED message in LOITER mode. Success") def earth_to_body(self, vector): r = mavextra.rotation(self.mav.messages["ATTITUDE"]).invert() # print("r=%s" % str(r)) return r * vector def precision_loiter_to_pos(self, x, y, z, timeout=40): '''send landing_target messages at vehicle until it arrives at location to x, y, z from origin (in metres), z is *up*''' dest_ned = rotmat.Vector3(x, y, -z) tstart = self.get_sim_time() success_start = -1 while True: now = self.get_sim_time_cached() if now - tstart > timeout: raise NotAchievedException("Did not loiter to position!") m_pos = self.mav.recv_match(type='LOCAL_POSITION_NED', blocking=True) pos_ned = rotmat.Vector3(m_pos.x, m_pos.y, m_pos.z) # print("dest_ned=%s" % str(dest_ned)) # print("pos_ned=%s" % str(pos_ned)) delta_ef = dest_ned - pos_ned # print("delta_ef=%s" % str(delta_ef)) # determine if we've successfully navigated to close to # where we should be: dist = math.sqrt(delta_ef.x * delta_ef.x + delta_ef.y * delta_ef.y) dist_max = 1 self.progress("dist=%f want <%f" % (dist, dist_max)) if dist < dist_max: # success! We've gotten within our target distance if success_start == -1: success_start = now elif now - success_start > 10: self.progress("Yay!") break else: success_start = -1 delta_bf = self.earth_to_body(delta_ef) # print("delta_bf=%s" % str(delta_bf)) angle_x = math.atan2(delta_bf.y, delta_bf.z) angle_y = -math.atan2(delta_bf.x, delta_bf.z) distance = math.sqrt(delta_bf.x * delta_bf.x + delta_bf.y * delta_bf.y + delta_bf.z * delta_bf.z) # att = self.mav.messages["ATTITUDE"] # print("r=%f p=%f y=%f" % (math.degrees(att.roll), math.degrees(att.pitch), math.degrees(att.yaw))) # print("angle_x=%s angle_y=%s" % (str(math.degrees(angle_x)), str(math.degrees(angle_y)))) # print("distance=%s" % str(distance)) self.mav.mav.landing_target_send( 0, # time_usec 1, # target_num mavutil.mavlink.MAV_FRAME_GLOBAL, # frame; AP ignores angle_x, # angle x (radians) angle_y, # angle y (radians) distance, # distance to target 0.01, # size of target in radians, X-axis 0.01 # size of target in radians, Y-axis ) def set_servo_gripper_parameters(self): self.set_parameters({ "GRIP_ENABLE": 1, "GRIP_TYPE": 1, "SIM_GRPS_ENABLE": 1, "SIM_GRPS_PIN": 8, "SERVO8_FUNCTION": 28, }) def PayloadPlaceMission(self): """Test payload placing in auto.""" self.context_push() self.set_analog_rangefinder_parameters() self.set_servo_gripper_parameters() self.reboot_sitl() self.load_mission("copter_payload_place.txt") if self.mavproxy is not None: self.mavproxy.send('wp list\n') self.set_parameter("AUTO_OPTIONS", 3) self.change_mode('AUTO') self.wait_ready_to_arm() self.arm_vehicle() self.wait_text("Gripper load releas", timeout=90) dist_limit = 1 # this is a copy of the point in the mission file: target_loc = mavutil.location(-35.363106, 149.165436, 0, 0) dist = self.get_distance(target_loc, self.mav.location()) self.progress("dist=%f" % (dist,)) if dist > dist_limit: raise NotAchievedException("Did not honour target lat/lng (dist=%f want <%f" % (dist, dist_limit)) self.wait_disarmed() self.context_pop() self.reboot_sitl() self.progress("All done") def Weathervane(self): '''Test copter weathervaning''' # We test nose into wind code paths and yaw direction here and test side into wind # yaw direction in QuadPlane tests to reduce repetition. self.set_parameters({ "SIM_WIND_SPD": 10, "SIM_WIND_DIR": 100, "GUID_OPTIONS": 129, # allow weathervaning and arming from tx in guided "AUTO_OPTIONS": 131, # allow arming in auto, take off without raising the stick, and weathervaning "WVANE_ENABLE": 1, "WVANE_GAIN": 3, "WVANE_VELZ_MAX": 1, "WVANE_SPD_MAX": 2 }) self.progress("Test weathervaning in auto") self.load_mission("weathervane_mission.txt", strict=False) self.change_mode("AUTO") self.wait_ready_to_arm() self.arm_vehicle() self.wait_statustext("Weathervane Active", timeout=60) self.do_RTL() self.wait_disarmed() self.change_mode("GUIDED") # After take off command in guided we enter the velaccl sub mode self.progress("Test weathervaning in guided vel-accel") self.set_rc(3, 1000) self.wait_ready_to_arm() self.arm_vehicle() self.user_takeoff(alt_min=15) # Wait for heading to match wind direction. self.wait_heading(100, accuracy=8, timeout=100) self.progress("Test weathervaning in guided pos only") # Travel directly north to align heading north and build some airspeed. self.fly_guided_move_local(x=40, y=0, z_up=15) # Wait for heading to match wind direction. self.wait_heading(100, accuracy=8, timeout=100) self.do_RTL() def _DO_WINCH(self, command): self.context_push() self.load_default_params_file("copter-winch.parm") self.reboot_sitl() self.wait_ready_to_arm() self.start_subtest("starts relaxed") self.wait_servo_channel_value(9, 0) self.start_subtest("rate control") command( mavutil.mavlink.MAV_CMD_DO_WINCH, p1=1, # instance number p2=mavutil.mavlink.WINCH_RATE_CONTROL, # command p3=0, # length to release p4=1, # rate in m/s ) self.wait_servo_channel_value(9, 1900) self.start_subtest("relax") command( mavutil.mavlink.MAV_CMD_DO_WINCH, p1=1, # instance number p2=mavutil.mavlink.WINCH_RELAXED, # command p3=0, # length to release p4=1, # rate in m/s ) self.wait_servo_channel_value(9, 0) self.start_subtest("hold but zero output") command( mavutil.mavlink.MAV_CMD_DO_WINCH, p1=1, # instance number p2=mavutil.mavlink.WINCH_RATE_CONTROL, # command p3=0, # length to release p4=0, # rate in m/s ) self.wait_servo_channel_value(9, 1500) self.start_subtest("relax") command( mavutil.mavlink.MAV_CMD_DO_WINCH, p1=1, # instance number p2=mavutil.mavlink.WINCH_RELAXED, # command p3=0, # length to release p4=1, # rate in m/s ) self.wait_servo_channel_value(9, 0) self.start_subtest("position") command( mavutil.mavlink.MAV_CMD_DO_WINCH, p1=1, # instance number p2=mavutil.mavlink.WINCH_RELATIVE_LENGTH_CONTROL, # command p3=2, # length to release p4=1, # rate in m/s ) self.wait_servo_channel_value(9, 1900) self.wait_servo_channel_value(9, 1500, timeout=60) self.context_pop() self.reboot_sitl() def DO_WINCH(self): '''test mavlink DO_WINCH command''' self._DO_WINCH(self.run_cmd_int) self._DO_WINCH(self.run_cmd) def GuidedSubModeChange(self): """"Ensure we can move around in guided after a takeoff command.""" '''start by disabling GCS failsafe, otherwise we immediately disarm due to (apparently) not receiving traffic from the GCS for too long. This is probably a function of --speedup''' self.set_parameters({ "FS_GCS_ENABLE": 0, "DISARM_DELAY": 0, # until traffic problems are fixed }) self.change_mode("GUIDED") self.wait_ready_to_arm() self.arm_vehicle() self.user_takeoff(alt_min=10) self.start_subtest("yaw through absolute angles using MAV_CMD_CONDITION_YAW") self.guided_achieve_heading(45) self.guided_achieve_heading(135) self.start_subtest("move the vehicle using set_position_target_global_int") # the following numbers are 5-degree-latitude and 5-degrees # longitude - just so that we start to really move a lot. self.fly_guided_move_global_relative_alt(5, 5, 10) self.start_subtest("move the vehicle using MAVLINK_MSG_ID_SET_POSITION_TARGET_LOCAL_NED") self.fly_guided_stop(groundspeed_tolerance=0.1) self.fly_guided_move_local(5, 5, 10) self.start_subtest("Checking that WP_YAW_BEHAVIOUR 0 works") self.set_parameter('WP_YAW_BEHAVIOR', 0) self.delay_sim_time(2) orig_heading = self.get_heading() self.fly_guided_move_local(5, 0, 10) # ensure our heading hasn't changed: self.assert_heading(orig_heading) self.fly_guided_move_local(0, 5, 10) # ensure our heading hasn't changed: self.assert_heading(orig_heading) self.start_subtest("Check target position received by vehicle using SET_MESSAGE_INTERVAL") self.test_guided_local_position_target(5, 5, 10) self.test_guided_local_velocity_target(2, 2, 1) self.test_position_target_message_mode() self.do_RTL() def TestGripperMission(self): '''Test Gripper mission items''' num_wp = self.load_mission("copter-gripper-mission.txt") self.change_mode('LOITER') self.wait_ready_to_arm() self.assert_vehicle_location_is_at_startup_location() self.arm_vehicle() self.change_mode('AUTO') self.set_rc(3, 1500) self.wait_statustext("Gripper Grabbed", timeout=60) self.wait_statustext("Gripper Released", timeout=60) self.wait_waypoint(num_wp-1, num_wp-1) self.wait_disarmed() def SplineLastWaypoint(self): '''Test Spline as last waypoint''' self.load_mission("copter-spline-last-waypoint.txt") self.change_mode('LOITER') self.wait_ready_to_arm() self.arm_vehicle() self.change_mode('AUTO') self.set_rc(3, 1500) self.wait_altitude(10, 3000, relative=True) self.do_RTL() def ManualThrottleModeChange(self): '''Check manual throttle mode changes denied on high throttle''' self.set_parameter("FS_GCS_ENABLE", 0) # avoid GUIDED instant disarm self.change_mode("STABILIZE") self.wait_ready_to_arm() self.arm_vehicle() self.change_mode("ACRO") self.change_mode("STABILIZE") self.change_mode("GUIDED") self.set_rc(3, 1700) self.watch_altitude_maintained(altitude_min=-1, altitude_max=0.2) # should not take off in guided self.run_cmd_do_set_mode( "ACRO", want_result=mavutil.mavlink.MAV_RESULT_FAILED) self.run_cmd_do_set_mode( "STABILIZE", want_result=mavutil.mavlink.MAV_RESULT_FAILED) self.run_cmd_do_set_mode( "DRIFT", want_result=mavutil.mavlink.MAV_RESULT_FAILED) self.progress("Check setting an invalid mode") self.run_cmd( mavutil.mavlink.MAV_CMD_DO_SET_MODE, p1=mavutil.mavlink.MAV_MODE_FLAG_CUSTOM_MODE_ENABLED, p2=126, want_result=mavutil.mavlink.MAV_RESULT_FAILED, timeout=1, ) self.set_rc(3, 1000) self.run_cmd_do_set_mode("ACRO") self.wait_disarmed() def constrained_mount_pitch(self, pitch_angle_deg, mount_instance=1): PITCH_MIN = self.get_parameter("MNT%u_PITCH_MIN" % mount_instance) PITCH_MAX = self.get_parameter("MNT%u_PITCH_MAX" % mount_instance) return min(max(pitch_angle_deg, PITCH_MIN), PITCH_MAX) def test_mount_pitch(self, despitch, despitch_tolerance, mount_mode, timeout=10, hold=0, constrained=True): tstart = self.get_sim_time() success_start = 0 while True: now = self.get_sim_time_cached() if now - tstart > timeout: raise NotAchievedException("Mount pitch not achieved") # We expect to achieve the desired pitch angle unless constrained by mount limits if constrained: despitch = self.constrained_mount_pitch(despitch) '''retrieve latest angles from GIMBAL_DEVICE_ATTITUDE_STATUS''' mount_roll, mount_pitch, mount_yaw, mount_yaw_is_absolute = self.get_mount_roll_pitch_yaw_deg() # self.progress("despitch=%f roll=%f pitch=%f yaw=%f" % (despitch, mount_roll, mount_pitch, mount_yaw)) if abs(despitch - mount_pitch) > despitch_tolerance: self.progress("Mount pitch incorrect: got=%f want=%f (+/- %f)" % (mount_pitch, despitch, despitch_tolerance)) success_start = 0 continue self.progress("Mount pitch correct: %f degrees == %f" % (mount_pitch, despitch)) if success_start == 0: success_start = now if now - success_start >= hold: self.progress("Mount pitch achieved") return def do_pitch(self, pitch): '''pitch aircraft in guided/angle mode''' self.mav.mav.set_attitude_target_send( 0, # time_boot_ms 1, # target sysid 1, # target compid 0, # bitmask of things to ignore mavextra.euler_to_quat([0, math.radians(pitch), 0]), # att 0, # roll rate (rad/s) 0, # pitch rate (rad/s) 0, # yaw rate (rad/s) 0.5) # thrust, 0 to 1, translated to a climb/descent rate def do_yaw_rate(self, yaw_rate): '''yaw aircraft in guided/rate mode''' self.run_cmd( mavutil.mavlink.MAV_CMD_CONDITION_YAW, p1=60, # target angle p2=0, # degrees/second p3=1, # -1 is counter-clockwise, 1 clockwise p4=1, # 1 for relative, 0 for absolute quiet=True, ) def setup_servo_mount(self, roll_servo=5, pitch_servo=6, yaw_servo=7): '''configure a rpy servo mount; caller responsible for required rebooting''' self.progress("Setting up servo mount") self.set_parameters({ "MNT1_TYPE": 1, "MNT1_PITCH_MIN": -45, "MNT1_PITCH_MAX": 45, "RC6_OPTION": 213, # MOUNT1_PITCH "SERVO%u_FUNCTION" % roll_servo: 8, # roll "SERVO%u_FUNCTION" % pitch_servo: 7, # pitch "SERVO%u_FUNCTION" % yaw_servo: 6, # yaw }) def get_mount_roll_pitch_yaw_deg(self): '''return mount (aka gimbal) roll, pitch and yaw angles in degrees''' # wait for gimbal attitude message m = self.assert_receive_message('GIMBAL_DEVICE_ATTITUDE_STATUS', timeout=5) yaw_is_absolute = m.flags & mavutil.mavlink.GIMBAL_DEVICE_FLAGS_YAW_LOCK # convert quaternion to euler angles and return q = quaternion.Quaternion(m.q) euler = q.euler return math.degrees(euler[0]), math.degrees(euler[1]), math.degrees(euler[2]), yaw_is_absolute def set_mount_mode(self, mount_mode): '''set mount mode''' self.run_cmd_int( mavutil.mavlink.MAV_CMD_DO_MOUNT_CONFIGURE, p1=mount_mode, p2=0, # stabilize roll (unsupported) p3=0, # stabilize pitch (unsupported) ) self.run_cmd( mavutil.mavlink.MAV_CMD_DO_MOUNT_CONFIGURE, p1=mount_mode, p2=0, # stabilize roll (unsupported) p3=0, # stabilize pitch (unsupported) ) def test_mount_rc_targetting(self, pitch_rc_neutral=1500, do_rate_tests=True): '''called in multipleplaces to make sure that mount RC targetting works''' if True: self.context_push() self.set_parameters({ 'RC6_OPTION': 0, 'RC11_OPTION': 212, # MOUNT1_ROLL 'RC12_OPTION': 213, # MOUNT1_PITCH 'RC13_OPTION': 214, # MOUNT1_YAW 'RC12_MIN': 1100, 'RC12_MAX': 1900, 'RC12_TRIM': 1500, 'MNT1_PITCH_MIN': -45, 'MNT1_PITCH_MAX': 45, }) self.progress("Testing RC angular control") # default RC min=1100 max=1900 self.set_rc_from_map({ 11: 1500, 12: 1500, 13: 1500, }) self.test_mount_pitch(0, 1, mavutil.mavlink.MAV_MOUNT_MODE_RC_TARGETING) self.progress("Testing RC input down 1/4 of its range in the output, should be down 1/4 range in output") rc12_in = 1400 rc12_min = 1100 # default rc12_max = 1900 # default mpitch_min = -45.0 mpitch_max = 45.0 expected_pitch = (float(rc12_in-rc12_min)/float(rc12_max-rc12_min) * (mpitch_max-mpitch_min)) + mpitch_min self.progress("expected mount pitch: %f" % expected_pitch) if expected_pitch != -11.25: raise NotAchievedException("Calculation wrong - defaults changed?!") self.set_rc(12, rc12_in) self.test_mount_pitch(-11.25, 0.1, mavutil.mavlink.MAV_MOUNT_MODE_RC_TARGETING) self.set_rc(12, 1800) self.test_mount_pitch(33.75, 0.1, mavutil.mavlink.MAV_MOUNT_MODE_RC_TARGETING) self.set_rc_from_map({ 11: 1500, 12: 1500, 13: 1500, }) try: self.context_push() self.set_parameters({ "RC12_MIN": 1000, "RC12_MAX": 2000, "MNT1_PITCH_MIN": -90, "MNT1_PITCH_MAX": 10, }) self.set_rc(12, 1000) self.test_mount_pitch(-90.00, 0.1, mavutil.mavlink.MAV_MOUNT_MODE_RC_TARGETING) self.set_rc(12, 2000) self.test_mount_pitch(10.00, 0.1, mavutil.mavlink.MAV_MOUNT_MODE_RC_TARGETING) self.set_rc(12, 1500) self.test_mount_pitch(-40.00, 0.1, mavutil.mavlink.MAV_MOUNT_MODE_RC_TARGETING) finally: self.context_pop() self.set_rc(12, 1500) if do_rate_tests: self.test_mount_rc_targetting_rate_control() self.context_pop() def test_mount_rc_targetting_rate_control(self, pitch_rc_neutral=1500): if True: self.progress("Testing RC rate control") self.set_parameter('MNT1_RC_RATE', 10) self.test_mount_pitch(0, 1, mavutil.mavlink.MAV_MOUNT_MODE_RC_TARGETING) # Note that we don't constrain the desired angle in the following so that we don't # timeout due to fetching Mount pitch limit params. self.set_rc(12, 1300) self.test_mount_pitch(-5, 1, mavutil.mavlink.MAV_MOUNT_MODE_RC_TARGETING, constrained=False) self.test_mount_pitch(-10, 1, mavutil.mavlink.MAV_MOUNT_MODE_RC_TARGETING, constrained=False) self.test_mount_pitch(-15, 1, mavutil.mavlink.MAV_MOUNT_MODE_RC_TARGETING, constrained=False) self.test_mount_pitch(-20, 1, mavutil.mavlink.MAV_MOUNT_MODE_RC_TARGETING, constrained=False) self.set_rc(12, 1700) self.test_mount_pitch(-15, 1, mavutil.mavlink.MAV_MOUNT_MODE_RC_TARGETING, constrained=False) self.test_mount_pitch(-10, 1, mavutil.mavlink.MAV_MOUNT_MODE_RC_TARGETING, constrained=False) self.test_mount_pitch(-5, 1, mavutil.mavlink.MAV_MOUNT_MODE_RC_TARGETING, constrained=False) self.test_mount_pitch(0, 1, mavutil.mavlink.MAV_MOUNT_MODE_RC_TARGETING, constrained=False) self.test_mount_pitch(5, 1, mavutil.mavlink.MAV_MOUNT_MODE_RC_TARGETING, constrained=False) self.progress("Reverting to angle mode") self.set_parameter('MNT1_RC_RATE', 0) self.set_rc(12, 1500) self.test_mount_pitch(0, 0.1, mavutil.mavlink.MAV_MOUNT_MODE_RC_TARGETING) def mount_test_body(self, pitch_rc_neutral=1500, do_rate_tests=True, constrain_sysid_target=True): '''Test Camera/Antenna Mount - assumes a camera is set up and ready to go''' if True: # make sure we're getting gimbal device attitude status self.assert_receive_message('GIMBAL_DEVICE_ATTITUDE_STATUS', timeout=5, very_verbose=True) # change mount to neutral mode (point forward, not stabilising) self.set_mount_mode(mavutil.mavlink.MAV_MOUNT_MODE_NEUTRAL) # test pitch is not neutral to start with mount_roll_deg, mount_pitch_deg, mount_yaw_deg, mount_yaw_is_absolute = self.get_mount_roll_pitch_yaw_deg() if mount_roll_deg != 0 or mount_pitch_deg != 0 or mount_yaw_deg != 0: raise NotAchievedException("Mount not neutral") self.takeoff(30, mode='GUIDED') # pitch vehicle back and confirm gimbal is still not stabilising despitch = 10 despitch_tolerance = 3 self.progress("Pitching vehicle") self.do_pitch(despitch) # will time out! self.wait_pitch(despitch, despitch_tolerance) # check gimbal is still not stabilising mount_roll_deg, mount_pitch_deg, mount_yaw_deg, mount_yaw_is_absolute = self.get_mount_roll_pitch_yaw_deg() if mount_roll_deg != 0 or mount_pitch_deg != 0 or mount_yaw_deg != 0: raise NotAchievedException("Mount stabilising when not requested") # center RC tilt control and change mount to RC_TARGETING mode self.progress("Gimbal to RC Targetting mode") self.set_rc(6, pitch_rc_neutral) self.set_mount_mode(mavutil.mavlink.MAV_MOUNT_MODE_RC_TARGETING) # pitch vehicle back and confirm gimbal is stabilising self.progress("Pitching vehicle") self.do_pitch(despitch) self.wait_pitch(despitch, despitch_tolerance) self.test_mount_pitch(0, 1, mavutil.mavlink.MAV_MOUNT_MODE_RC_TARGETING) # point gimbal at specified angle self.progress("Point gimbal using GIMBAL_MANAGER_PITCHYAW (ANGLE)") self.do_pitch(0) # level vehicle self.wait_pitch(0, despitch_tolerance) self.set_mount_mode(mavutil.mavlink.MAV_MOUNT_MODE_MAVLINK_TARGETING) for (method, angle) in (self.run_cmd, -20), (self.run_cmd_int, -30): method( mavutil.mavlink.MAV_CMD_DO_GIMBAL_MANAGER_PITCHYAW, p1=angle, # pitch angle in degrees p2=0, # yaw angle in degrees p3=0, # pitch rate in degrees (NaN to ignore) p4=0, # yaw rate in degrees (NaN to ignore) p5=0, # flags (0=Body-frame, 16/GIMBAL_MANAGER_FLAGS_YAW_LOCK=Earth Frame) p6=0, # unused p7=0, # gimbal id ) self.test_mount_pitch(angle, 1, mavutil.mavlink.MAV_MOUNT_MODE_MAVLINK_TARGETING) # this is a one-off; ArduCopter *will* time out this directive! self.progress("Levelling aircraft") self.mav.mav.set_attitude_target_send( 0, # time_boot_ms 1, # target sysid 1, # target compid 0, # bitmask of things to ignore mavextra.euler_to_quat([0, 0, 0]), # att 0, # roll rate (rad/s) 0, # pitch rate (rad/s) 0, # yaw rate (rad/s) 0.5) # thrust, 0 to 1, translated to a climb/descent rate self.wait_groundspeed(0, 1) # now test RC targetting self.progress("Testing mount RC targetting") self.set_mount_mode(mavutil.mavlink.MAV_MOUNT_MODE_RC_TARGETING) self.test_mount_rc_targetting( pitch_rc_neutral=pitch_rc_neutral, do_rate_tests=do_rate_tests, ) self.progress("Testing mount ROI behaviour") self.test_mount_pitch(0, 0.1, mavutil.mavlink.MAV_MOUNT_MODE_RC_TARGETING) start = self.mav.location() self.progress("start=%s" % str(start)) (roi_lat, roi_lon) = mavextra.gps_offset(start.lat, start.lng, 10, 20) roi_alt = 0 self.progress("Using MAV_CMD_DO_SET_ROI_LOCATION") self.run_cmd( mavutil.mavlink.MAV_CMD_DO_SET_ROI_LOCATION, p5=roi_lat, p6=roi_lon, p7=roi_alt, ) self.test_mount_pitch(-52, 5, mavutil.mavlink.MAV_MOUNT_MODE_GPS_POINT) self.progress("Using MAV_CMD_DO_SET_ROI_LOCATION") # start by pointing the gimbal elsewhere with a # known-working command: self.run_cmd( mavutil.mavlink.MAV_CMD_DO_SET_ROI_LOCATION, p5=roi_lat + 1, p6=roi_lon + 1, p7=roi_alt, ) # now point it with command_int: self.run_cmd_int( mavutil.mavlink.MAV_CMD_DO_SET_ROI_LOCATION, p5=int(roi_lat * 1e7), p6=int(roi_lon * 1e7), p7=roi_alt, frame=mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT, ) self.test_mount_pitch(-52, 5, mavutil.mavlink.MAV_MOUNT_MODE_GPS_POINT) self.progress("Using MAV_CMD_DO_SET_ROI_NONE") self.run_cmd(mavutil.mavlink.MAV_CMD_DO_SET_ROI_NONE) self.run_cmd_int(mavutil.mavlink.MAV_CMD_DO_SET_ROI_NONE) self.test_mount_pitch(0, 1, mavutil.mavlink.MAV_MOUNT_MODE_RC_TARGETING) start = self.mav.location() (roi_lat, roi_lon) = mavextra.gps_offset(start.lat, start.lng, -100, -200) roi_alt = 0 self.progress("Using MAV_CMD_DO_SET_ROI") self.run_cmd( mavutil.mavlink.MAV_CMD_DO_SET_ROI, p5=roi_lat, p6=roi_lon, p7=roi_alt, ) self.test_mount_pitch(-7.5, 1, mavutil.mavlink.MAV_MOUNT_MODE_GPS_POINT) start = self.mav.location() (roi_lat, roi_lon) = mavextra.gps_offset(start.lat, start.lng, -100, -200) roi_alt = 0 self.progress("Using MAV_CMD_DO_SET_ROI (COMMAND_INT)") self.run_cmd_int( mavutil.mavlink.MAV_CMD_DO_SET_ROI, 0, 0, 0, 0, int(roi_lat*1e7), int(roi_lon*1e7), roi_alt, frame=mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT_INT, ) self.test_mount_pitch(-7.5, 1, mavutil.mavlink.MAV_MOUNT_MODE_GPS_POINT) self.progress("Using MAV_CMD_DO_SET_ROI (COMMAND_INT), absolute-alt-frame") # this is pointing essentially straight down self.run_cmd_int( mavutil.mavlink.MAV_CMD_DO_SET_ROI, 0, 0, 0, 0, int(roi_lat*1e7), int(roi_lon*1e7), roi_alt, frame=mavutil.mavlink.MAV_FRAME_GLOBAL, ) self.test_mount_pitch(-70, 1, mavutil.mavlink.MAV_MOUNT_MODE_GPS_POINT, hold=2) self.set_mount_mode(mavutil.mavlink.MAV_MOUNT_MODE_NEUTRAL) self.test_mount_pitch(0, 0.1, mavutil.mavlink.MAV_MOUNT_MODE_NEUTRAL) self.progress("Testing mount roi-sysid behaviour") self.test_mount_pitch(0, 0.1, mavutil.mavlink.MAV_MOUNT_MODE_NEUTRAL) start = self.mav.location() self.progress("start=%s" % str(start)) (roi_lat, roi_lon) = mavextra.gps_offset(start.lat, start.lng, 10, 20) roi_alt = 0 self.progress("Using MAV_CMD_DO_SET_ROI_SYSID") self.run_cmd( mavutil.mavlink.MAV_CMD_DO_SET_ROI_SYSID, p1=self.mav.source_system, ) self.mav.mav.global_position_int_send( 0, # time boot ms int(roi_lat * 1e7), int(roi_lon * 1e7), 0 * 1000, # mm alt amsl 0 * 1000, # relalt mm UP! 0, # vx 0, # vy 0, # vz 0 # heading ) self.test_mount_pitch(-89, 5, mavutil.mavlink.MAV_MOUNT_MODE_SYSID_TARGET, hold=2) self.run_cmd(mavutil.mavlink.MAV_CMD_DO_SET_ROI_NONE) self.run_cmd_int( mavutil.mavlink.MAV_CMD_DO_SET_ROI_SYSID, p1=self.mav.source_system, ) self.mav.mav.global_position_int_send( 0, # time boot ms int(roi_lat * 1e7), int(roi_lon * 1e7), 670 * 1000, # mm alt amsl 100 * 1000, # mm UP! 0, # vx 0, # vy 0, # vz 0 # heading ) self.test_mount_pitch( 68, 5, mavutil.mavlink.MAV_MOUNT_MODE_SYSID_TARGET, hold=2, constrained=constrain_sysid_target, ) self.set_mount_mode(mavutil.mavlink.MAV_MOUNT_MODE_NEUTRAL) self.test_mount_pitch(0, 0.1, mavutil.mavlink.MAV_MOUNT_MODE_NEUTRAL) self.disarm_vehicle(force=True) self.test_mount_body_yaw() def test_mount_body_yaw(self): '''check reporting of yaw''' # change mount to neutral mode (point forward, not stabilising) self.takeoff(10, mode='GUIDED') self.set_mount_mode(mavutil.mavlink.MAV_MOUNT_MODE_NEUTRAL) for heading in 30, 45, 150: self.guided_achieve_heading(heading) r, p , y, yaw_is_absolute = self.get_mount_roll_pitch_yaw_deg() if yaw_is_absolute: raise NotAchievedException("Expected a relative yaw") if y > 1: raise NotAchievedException("Bad yaw (y=%f)") self.do_RTL() def Mount(self): '''test servo mount''' self.setup_servo_mount() self.reboot_sitl() # to handle MNT_TYPE changing self.mount_test_body() def MountSolo(self): '''test type=2, a "Solo" mount''' self.set_parameters({ "MNT1_TYPE": 2, "RC6_OPTION": 213, # MOUNT1_PITCH }) self.customise_SITL_commandline([ "--gimbal" # connects on port 5762 ]) self.mount_test_body( pitch_rc_neutral=1818, do_rate_tests=False, # solo can't do rate control (yet?) constrain_sysid_target=False, # not everything constrains all angles ) def assert_mount_rpy(self, r, p, y, tolerance=1): '''assert mount atttiude in degrees''' got_r, got_p, got_y, yaw_is_absolute = self.get_mount_roll_pitch_yaw_deg() for (want, got, name) in (r, got_r, "roll"), (p, got_p, "pitch"), (y, got_y, "yaw"): if abs(want - got) > tolerance: raise NotAchievedException("%s incorrect; want=%f got=%f" % (name, want, got)) def neutralise_gimbal(self): '''put mount into neutralise mode, assert it is at zero angles''' self.run_cmd( mavutil.mavlink.MAV_CMD_DO_MOUNT_CONTROL, p7=mavutil.mavlink.MAV_MOUNT_MODE_NEUTRAL, ) self.test_mount_pitch(0, 0, mavutil.mavlink.MAV_MOUNT_MODE_RETRACT) def MAV_CMD_DO_MOUNT_CONTROL(self): '''test MAV_CMD_DO_MOUNT_CONTROL mavlink command''' # setup mount parameters self.context_push() self.setup_servo_mount() self.reboot_sitl() # to handle MNT_TYPE changing takeoff_loc = self.mav.location() self.takeoff(20, mode='GUIDED') self.guided_achieve_heading(315) self.run_cmd( mavutil.mavlink.MAV_CMD_DO_MOUNT_CONTROL, p7=mavutil.mavlink.MAV_MOUNT_MODE_RETRACT, ) self.run_cmd_int( mavutil.mavlink.MAV_CMD_DO_MOUNT_CONTROL, p7=mavutil.mavlink.MAV_MOUNT_MODE_RETRACT, ) for method in self.run_cmd, self.run_cmd_int: self.start_subtest("MAV_MOUNT_MODE_GPS_POINT") self.progress("start=%s" % str(takeoff_loc)) t = self.offset_location_ne(takeoff_loc, 20, 0) self.progress("targetting=%s" % str(t)) # this command is *weird* as the lat/lng is *always* 1e7, # even when transported via COMMAND_LONG! x = int(t.lat * 1e7) y = int(t.lng * 1e7) method( mavutil.mavlink.MAV_CMD_DO_MOUNT_CONTROL, p4=0, # this is a relative altitude! p5=x, p6=y, p7=mavutil.mavlink.MAV_MOUNT_MODE_GPS_POINT, ) self.test_mount_pitch(-45, 5, mavutil.mavlink.MAV_MOUNT_MODE_GPS_POINT) self.neutralise_gimbal() self.start_subtest("MAV_MOUNT_MODE_HOME_LOCATION") method( mavutil.mavlink.MAV_CMD_DO_MOUNT_CONTROL, p7=mavutil.mavlink.MAV_MOUNT_MODE_HOME_LOCATION, ) self.test_mount_pitch(-90, 5, mavutil.mavlink.MAV_MOUNT_MODE_HOME_LOCATION) self.neutralise_gimbal() # try an invalid mount mode. Note that this is asserting we # are receiving a result code which is actually incorrect; # this should be MAV_RESULT_DENIED self.start_subtest("Invalid mode") method( mavutil.mavlink.MAV_CMD_DO_MOUNT_CONTROL, p7=87, want_result=mavutil.mavlink.MAV_RESULT_FAILED, ) self.start_subtest("MAV_MOUNT_MODE_MAVLINK_TARGETING") r = 15 p = 20 y = 30 method( mavutil.mavlink.MAV_CMD_DO_MOUNT_CONTROL, p1=p, p2=r, p3=y, p7=mavutil.mavlink.MAV_MOUNT_MODE_MAVLINK_TARGETING, ) self.delay_sim_time(2) self.assert_mount_rpy(r, p, y) self.neutralise_gimbal() self.start_subtest("MAV_MOUNT_MODE_RC_TARGETING") method( mavutil.mavlink.MAV_CMD_DO_MOUNT_CONTROL, p7=mavutil.mavlink.MAV_MOUNT_MODE_RC_TARGETING, ) self.test_mount_rc_targetting() self.start_subtest("MAV_MOUNT_MODE_RETRACT") self.context_push() retract_r = 13 retract_p = 23 retract_y = 33 self.set_parameters({ "MNT1_RETRACT_X": retract_r, "MNT1_RETRACT_Y": retract_p, "MNT1_RETRACT_Z": retract_y, }) method( mavutil.mavlink.MAV_CMD_DO_MOUNT_CONTROL, p7=mavutil.mavlink.MAV_MOUNT_MODE_RETRACT, ) self.delay_sim_time(3) self.assert_mount_rpy(retract_r, retract_p, retract_y) self.context_pop() self.do_RTL() self.context_pop() self.reboot_sitl() def MAV_CMD_DO_GIMBAL_MANAGER_CONFIGURE(self): '''test MAV_CMD_DO_GIMBAL_MANAGER_CONFIGURE mavlink command''' # setup mount parameters self.context_push() self.setup_servo_mount() self.reboot_sitl() # to handle MNT_TYPE changing self.context_set_message_rate_hz('GIMBAL_MANAGER_STATUS', 10) self.assert_received_message_field_values('GIMBAL_MANAGER_STATUS', { "gimbal_device_id": 1, "primary_control_sysid": 0, "primary_control_compid": 0, }) for method in self.run_cmd, self.run_cmd_int: self.start_subtest("set_sysid-compid") method( mavutil.mavlink.MAV_CMD_DO_GIMBAL_MANAGER_CONFIGURE, p1=37, p2=38, ) self.assert_received_message_field_values('GIMBAL_MANAGER_STATUS', { "gimbal_device_id": 1, "primary_control_sysid": 37, "primary_control_compid": 38, }) self.start_subtest("leave unchanged") method(mavutil.mavlink.MAV_CMD_DO_GIMBAL_MANAGER_CONFIGURE, p1=-1) self.assert_received_message_field_values('GIMBAL_MANAGER_STATUS', { "gimbal_device_id": 1, "primary_control_sysid": 37, "primary_control_compid": 38, }) # ardupilot currently handles this incorrectly: # self.start_subtest("self-controlled") # method(mavutil.mavlink.MAV_CMD_DO_GIMBAL_MANAGER_CONFIGURE, p1=-2) # self.assert_received_message_field_values('GIMBAL_MANAGER_STATUS', { # "gimbal_device_id": 1, # "primary_control_sysid": 1, # "primary_control_compid": 1, # }) self.start_subtest("release control") method( mavutil.mavlink.MAV_CMD_DO_GIMBAL_MANAGER_CONFIGURE, p1=self.mav.source_system, p2=self.mav.source_component, ) self.assert_received_message_field_values('GIMBAL_MANAGER_STATUS', { "gimbal_device_id": 1, "primary_control_sysid": self.mav.source_system, "primary_control_compid": self.mav.source_component, }) method(mavutil.mavlink.MAV_CMD_DO_GIMBAL_MANAGER_CONFIGURE, p1=-3) self.assert_received_message_field_values('GIMBAL_MANAGER_STATUS', { "gimbal_device_id": 1, "primary_control_sysid": 0, "primary_control_compid": 0, }) self.context_pop() self.reboot_sitl() def MountYawVehicleForMountROI(self): '''Test Camera/Antenna Mount vehicle yawing for ROI''' self.context_push() self.set_parameter("SYSID_MYGCS", self.mav.source_system) yaw_servo = 7 self.setup_servo_mount(yaw_servo=yaw_servo) self.reboot_sitl() # to handle MNT1_TYPE changing self.progress("checking ArduCopter yaw-aircraft-for-roi") ex = None try: self.takeoff(20, mode='GUIDED') m = self.mav.recv_match(type='VFR_HUD', blocking=True) self.progress("current heading %u" % m.heading) self.set_parameter("SERVO%u_FUNCTION" % yaw_servo, 0) # yaw self.progress("Waiting for check_servo_map to do its job") self.delay_sim_time(5) self.progress("Pointing North") self.guided_achieve_heading(0) self.delay_sim_time(5) start = self.mav.location() (roi_lat, roi_lon) = mavextra.gps_offset(start.lat, start.lng, -100, -100) roi_alt = 0 self.progress("Using MAV_CMD_DO_SET_ROI") self.run_cmd( mavutil.mavlink.MAV_CMD_DO_SET_ROI, p5=roi_lat, p6=roi_lon, p7=roi_alt, ) self.progress("Waiting for vehicle to point towards ROI") self.wait_heading(225, timeout=600, minimum_duration=2) # the following numbers are 1-degree-latitude and # 0-degrees longitude - just so that we start to # really move a lot. there = mavutil.location(1, 0, 0, 0) self.progress("Starting to move") self.mav.mav.set_position_target_global_int_send( 0, # timestamp 1, # target system_id 1, # target component id mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT_INT, MAV_POS_TARGET_TYPE_MASK.POS_ONLY | MAV_POS_TARGET_TYPE_MASK.LAST_BYTE, # mask specifying use-only-lat-lon-alt there.lat, # lat there.lng, # lon there.alt, # alt 0, # vx 0, # vy 0, # vz 0, # afx 0, # afy 0, # afz 0, # yaw 0, # yawrate ) self.progress("Starting to move changes the target") bearing = self.bearing_to(there) self.wait_heading(bearing, timeout=600, minimum_duration=2) self.run_cmd( mavutil.mavlink.MAV_CMD_DO_SET_ROI, p5=roi_lat, p6=roi_lon, p7=roi_alt, ) self.progress("Wait for vehicle to point sssse due to moving") self.wait_heading(170, timeout=600, minimum_duration=1) self.do_RTL() except Exception as e: self.print_exception_caught(e) ex = e self.context_pop() if ex is not None: raise ex def ThrowMode(self): '''Fly Throw Mode''' # test boomerang mode: self.progress("Throwing vehicle away") self.set_parameters({ "THROW_NEXTMODE": 6, "SIM_SHOVE_Z": -30, "SIM_SHOVE_X": -20, }) self.change_mode('THROW') self.wait_ready_to_arm() self.arm_vehicle() try: self.set_parameter("SIM_SHOVE_TIME", 500) except ValueError: # the shove resets this to zero pass tstart = self.get_sim_time() self.wait_mode('RTL') max_good_tdelta = 15 tdelta = self.get_sim_time() - tstart self.progress("Vehicle in RTL") self.wait_rtl_complete() self.progress("Vehicle disarmed") if tdelta > max_good_tdelta: raise NotAchievedException("Took too long to enter RTL: %fs > %fs" % (tdelta, max_good_tdelta)) self.progress("Vehicle returned") def hover_and_check_matched_frequency_with_fft_and_psd(self, dblevel=-15, minhz=200, maxhz=300, peakhz=None, reverse=None, takeoff=True, instance=0): # find a motor peak if takeoff: self.takeoff(10, mode="ALT_HOLD") tstart, tend, hover_throttle = self.hover_for_interval(15) self.do_RTL() psd = self.mavfft_fttd(1, instance, tstart * 1.0e6, tend * 1.0e6) # batch sampler defaults give 1024 fft and sample rate of 1kz so roughly 1hz/bin freq = psd["F"][numpy.argmax(psd["X"][minhz:maxhz]) + minhz] * (1000. / 1024.) peakdb = numpy.amax(psd["X"][minhz:maxhz]) if peakdb < dblevel or (peakhz is not None and abs(freq - peakhz) / peakhz > 0.05): if reverse is not None: self.progress("Did not detect a motor peak, found %fHz at %fdB" % (freq, peakdb)) else: raise NotAchievedException("Did not detect a motor peak, found %fHz at %fdB" % (freq, peakdb)) else: if reverse is not None: raise NotAchievedException( "Detected motor peak at %fHz, throttle %f%%, %fdB" % (freq, hover_throttle, peakdb)) else: self.progress("Detected motor peak at %fHz, throttle %f%%, %fdB" % (freq, hover_throttle, peakdb)) return freq, hover_throttle, peakdb, psd def hover_and_check_matched_frequency_with_fft(self, dblevel=-15, minhz=200, maxhz=300, peakhz=None, reverse=None, takeoff=True, instance=0): freq, hover_throttle, peakdb, psd = \ self.hover_and_check_matched_frequency_with_fft_and_psd(dblevel, minhz, maxhz, peakhz, reverse, takeoff, instance) return freq, hover_throttle, peakdb def get_average_esc_frequency(self): mlog = self.dfreader_for_current_onboard_log() rpm_total = 0 rpm_count = 0 tho = 0 while True: m = mlog.recv_match() if m is None: break msg_type = m.get_type() if msg_type == "CTUN": tho = m.ThO elif msg_type == "ESC" and tho > 0.1: rpm_total += m.RPM rpm_count += 1 esc_hz = rpm_total / (rpm_count * 60) return esc_hz def DynamicNotches(self): """Use dynamic harmonic notch to control motor noise.""" self.progress("Flying with dynamic notches") self.context_push() ex = None try: self.set_parameters({ "AHRS_EKF_TYPE": 10, "INS_LOG_BAT_MASK": 3, "INS_LOG_BAT_OPT": 0, "INS_GYRO_FILTER": 100, # set the gyro filter high so we can observe behaviour "LOG_BITMASK": 958, "LOG_DISARMED": 0, "SIM_VIB_MOT_MAX": 350, "SIM_GYR1_RND": 20, }) self.reboot_sitl() self.takeoff(10, mode="ALT_HOLD") # find a motor peak freq, hover_throttle, peakdb = self.hover_and_check_matched_frequency_with_fft(-15, 200, 300) # now add a dynamic notch and check that the peak is squashed self.set_parameters({ "INS_LOG_BAT_OPT": 2, "INS_HNTCH_ENABLE": 1, "INS_HNTCH_FREQ": freq, "INS_HNTCH_REF": hover_throttle/100., "INS_HNTCH_HMNCS": 5, # first and third harmonic "INS_HNTCH_ATT": 50, "INS_HNTCH_BW": freq/2, }) self.reboot_sitl() freq, hover_throttle, peakdb1 = \ self.hover_and_check_matched_frequency_with_fft(-10, 20, 350, reverse=True) # now add double dynamic notches and check that the peak is squashed self.set_parameter("INS_HNTCH_OPTS", 1) self.reboot_sitl() freq, hover_throttle, peakdb2 = \ self.hover_and_check_matched_frequency_with_fft(-15, 20, 350, reverse=True) # double-notch should do better, but check for within 5% if peakdb2 * 1.05 > peakdb1: raise NotAchievedException( "Double-notch peak was higher than single-notch peak %fdB > %fdB" % (peakdb2, peakdb1)) # now add triple dynamic notches and check that the peak is squashed self.set_parameter("INS_HNTCH_OPTS", 16) self.reboot_sitl() freq, hover_throttle, peakdb2 = \ self.hover_and_check_matched_frequency_with_fft(-15, 20, 350, reverse=True) # triple-notch should do better, but check for within 5% if peakdb2 * 1.05 > peakdb1: raise NotAchievedException( "Triple-notch peak was higher than single-notch peak %fdB > %fdB" % (peakdb2, peakdb1)) except Exception as e: self.print_exception_caught(e) ex = e self.context_pop() if ex is not None: raise ex def DynamicRpmNotches(self): """Use dynamic harmonic notch to control motor noise via ESC telemetry.""" self.progress("Flying with ESC telemetry driven dynamic notches") self.set_rc_default() self.set_parameters({ "AHRS_EKF_TYPE": 10, "INS_LOG_BAT_MASK": 3, "INS_LOG_BAT_OPT": 0, "INS_GYRO_FILTER": 300, # set gyro filter high so we can observe behaviour "LOG_BITMASK": 958, "LOG_DISARMED": 0, "SIM_VIB_MOT_MAX": 350, "SIM_GYR1_RND": 20, "SIM_ESC_TELEM": 1 }) self.reboot_sitl() self.takeoff(10, mode="ALT_HOLD") # find a motor peak, the peak is at about 190Hz, so checking between 50 and 320Hz should be safe. # there is a second harmonic at 380Hz which should be avoided to make the test reliable # detect at -5dB so we don't pick some random noise as the peak. The actual peak is about +15dB freq, hover_throttle, peakdb = self.hover_and_check_matched_frequency_with_fft(-5, 50, 320) # now add a dynamic notch and check that the peak is squashed self.set_parameters({ "INS_LOG_BAT_OPT": 4, "INS_HNTCH_ENABLE": 1, "INS_HNTCH_FREQ": 80, "INS_HNTCH_REF": 1.0, "INS_HNTCH_HMNCS": 5, # first and third harmonic "INS_HNTCH_ATT": 50, "INS_HNTCH_BW": 40, "INS_HNTCH_MODE": 3, }) self.reboot_sitl() # -10dB is pretty conservative - actual is about -25dB freq, hover_throttle, peakdb1, psd = \ self.hover_and_check_matched_frequency_with_fft_and_psd(-10, 50, 320, reverse=True, instance=2) # find the noise at the motor frequency esc_hz = self.get_average_esc_frequency() esc_peakdb1 = psd["X"][int(esc_hz)] # now add notch-per motor and check that the peak is squashed self.set_parameter("INS_HNTCH_OPTS", 2) self.reboot_sitl() freq, hover_throttle, peakdb2, psd = \ self.hover_and_check_matched_frequency_with_fft_and_psd(-10, 50, 320, reverse=True, instance=2) # find the noise at the motor frequency esc_hz = self.get_average_esc_frequency() esc_peakdb2 = psd["X"][int(esc_hz)] # notch-per-motor will be better at the average ESC frequency if esc_peakdb2 > esc_peakdb1: raise NotAchievedException( "Notch-per-motor peak was higher than single-notch peak %fdB > %fdB" % (esc_peakdb2, esc_peakdb1)) # check that the noise is being squashed at all. this needs to be an aggresive check so that failure happens easily # testing shows this to be -58dB on average if esc_peakdb2 > -25: raise NotAchievedException( "Notch-per-motor had a peak of %fdB there should be none" % esc_peakdb2) # Now do it again for an octacopter self.context_push() ex = None try: self.progress("Flying Octacopter with ESC telemetry driven dynamic notches") self.set_parameter("INS_HNTCH_OPTS", 0) self.customise_SITL_commandline( [], defaults_filepath=','.join(self.model_defaults_filepath("octa")), model="octa" ) freq, hover_throttle, peakdb1, psd = \ self.hover_and_check_matched_frequency_with_fft_and_psd(-10, 50, 320, reverse=True, instance=2) # find the noise at the motor frequency esc_hz = self.get_average_esc_frequency() esc_peakdb1 = psd["X"][int(esc_hz)] # now add notch-per motor and check that the peak is squashed self.set_parameter("INS_HNTCH_HMNCS", 1) self.set_parameter("INS_HNTCH_OPTS", 2) self.reboot_sitl() freq, hover_throttle, peakdb2, psd = \ self.hover_and_check_matched_frequency_with_fft_and_psd(-15, 50, 320, reverse=True, instance=2) # find the noise at the motor frequency esc_hz = self.get_average_esc_frequency() esc_peakdb2 = psd["X"][int(esc_hz)] # notch-per-motor will be better at the average ESC frequency if esc_peakdb2 > esc_peakdb1: raise NotAchievedException( "Notch-per-motor peak was higher than single-notch peak %fdB > %fdB" % (esc_peakdb2, esc_peakdb1)) except Exception as e: self.print_exception_caught(e) ex = e self.context_pop() self.reboot_sitl() if ex is not None: raise ex def hover_and_check_matched_frequency(self, dblevel=-15, minhz=200, maxhz=300, fftLength=32, peakhz=None): '''do a simple up-and-down test flight with current vehicle state. Check that the onboard filter comes up with the same peak-frequency that post-processing does.''' self.takeoff(10, mode="ALT_HOLD") tstart, tend, hover_throttle = self.hover_for_interval(15) self.do_RTL() psd = self.mavfft_fttd(1, 0, tstart * 1.0e6, tend * 1.0e6) # batch sampler defaults give 1024 fft and sample rate of 1kz so roughly 1hz/bin scale = 1000. / 1024. sminhz = int(minhz * scale) smaxhz = int(maxhz * scale) freq = psd["F"][numpy.argmax(psd["X"][sminhz:smaxhz]) + sminhz] peakdb = numpy.amax(psd["X"][sminhz:smaxhz]) self.progress("Post-processing FFT detected motor peak at %fHz/%fdB, throttle %f%%" % (freq, peakdb, hover_throttle)) if peakdb < dblevel: raise NotAchievedException( "Detected motor peak not strong enough; want=%fdB got=%fdB" % (peakdb, dblevel)) # caller can supply an expected frequency: if peakhz is not None and abs(freq - peakhz) / peakhz > 0.05: raise NotAchievedException( "Post-processing detected motor peak at wrong frequency; want=%fHz got=%fHz" % (peakhz, freq)) # we have a peak make sure that the onboard filter detected # something close logging is at 10Hz # peak within resolution of FFT length pkAvg, nmessages = self.extract_median_FTN1_PkAvg_from_current_onboard_log(tstart, tend) self.progress("Onboard-FFT detected motor peak at %fHz (processed %d FTN1 messages)" % (pkAvg, nmessages)) # accuracy is determined by sample rate and fft length, given # our use of quinn we could probably use half of this freqDelta = 1000. / fftLength if abs(pkAvg - freq) > freqDelta: raise NotAchievedException( "post-processed FFT does not agree with onboard filter on peak frequency; onboard=%fHz post-processed=%fHz/%fdB" % # noqa (pkAvg, freq, dblevel) ) return freq def extract_median_FTN1_PkAvg_from_current_onboard_log(self, tstart, tend): '''extracts FTN1 messages from log, returns median of pkAvg values and the number of samples''' mlog = self.dfreader_for_current_onboard_log() freqs = [] while True: m = mlog.recv_match( type='FTN1', blocking=False, condition="FTN1.TimeUS>%u and FTN1.TimeUS<%u" % (tstart * 1.0e6, tend * 1.0e6)) if m is None: break freqs.append(m.PkAvg) return numpy.median(numpy.asarray(freqs)), len(freqs) def PIDNotches(self): """Use dynamic harmonic notch to control motor noise.""" self.progress("Flying with PID notches") self.set_parameters({ "FILT1_TYPE": 1, "AHRS_EKF_TYPE": 10, "INS_LOG_BAT_MASK": 3, "INS_LOG_BAT_OPT": 0, "INS_GYRO_FILTER": 100, # set the gyro filter high so we can observe behaviour "LOG_BITMASK": 65535, "LOG_DISARMED": 0, "SIM_VIB_FREQ_X": 120, # roll "SIM_VIB_FREQ_Y": 120, # pitch "SIM_VIB_FREQ_Z": 180, # yaw "FILT1_NOTCH_FREQ": 120, "ATC_RAT_RLL_NEF": 1, "ATC_RAT_PIT_NEF": 1, "ATC_RAT_YAW_NEF": 1, "SIM_GYR1_RND": 5, }) self.reboot_sitl() self.hover_and_check_matched_frequency_with_fft(dblevel=5, minhz=20, maxhz=350, reverse=True) def ThrottleGainBoost(self): """Use PD and Angle P boost for anti-gravity.""" # basic gyro sample rate test self.progress("Flying with Throttle-Gain Boost") # magic tridge EKF type that dramatically speeds up the test self.set_parameters({ "AHRS_EKF_TYPE": 10, "EK2_ENABLE": 0, "EK3_ENABLE": 0, "INS_FAST_SAMPLE": 0, "LOG_BITMASK": 959, "LOG_DISARMED": 0, "ATC_THR_G_BOOST": 5.0, }) self.reboot_sitl() self.takeoff(10, mode="ALT_HOLD") hover_time = 15 self.progress("Hovering for %u seconds" % hover_time) tstart = self.get_sim_time() while self.get_sim_time_cached() < tstart + hover_time: self.assert_receive_message('ATTITUDE') # fly fast forrest! self.set_rc(3, 1900) self.set_rc(2, 1200) self.wait_groundspeed(5, 1000) self.set_rc(3, 1500) self.set_rc(2, 1500) self.do_RTL() def test_gyro_fft_harmonic(self, averaging): """Use dynamic harmonic notch to control motor noise with harmonic matching of the first harmonic.""" # basic gyro sample rate test self.progress("Flying with gyro FFT harmonic - Gyro sample rate") self.context_push() ex = None # we are dealing with probabalistic scenarios involving threads try: self.start_subtest("Hover to calculate approximate hover frequency") # magic tridge EKF type that dramatically speeds up the test self.set_parameters({ "AHRS_EKF_TYPE": 10, "EK2_ENABLE": 0, "EK3_ENABLE": 0, "INS_LOG_BAT_MASK": 3, "INS_LOG_BAT_OPT": 0, "INS_GYRO_FILTER": 100, "INS_FAST_SAMPLE": 0, "LOG_BITMASK": 958, "LOG_DISARMED": 0, "SIM_DRIFT_SPEED": 0, "SIM_DRIFT_TIME": 0, "FFT_THR_REF": self.get_parameter("MOT_THST_HOVER"), "SIM_GYR1_RND": 20, # enable a noisy gyro }) # motor peak enabling FFT will also enable the arming # check, self-testing the functionality self.set_parameters({ "FFT_ENABLE": 1, "FFT_MINHZ": 50, "FFT_MAXHZ": 450, "FFT_SNR_REF": 10, }) if averaging: self.set_parameter("FFT_NUM_FRAMES", 8) # Step 1: inject actual motor noise and use the FFT to track it self.set_parameters({ "SIM_VIB_MOT_MAX": 250, # gives a motor peak at about 175Hz "FFT_WINDOW_SIZE": 64, "FFT_WINDOW_OLAP": 0.75, }) self.reboot_sitl() freq = self.hover_and_check_matched_frequency(-15, 100, 250, 64) # Step 2: add a second harmonic and check the first is still tracked self.start_subtest("Add a fixed frequency harmonic at twice the hover frequency " "and check the right harmonic is found") self.set_parameters({ "SIM_VIB_FREQ_X": freq * 2, "SIM_VIB_FREQ_Y": freq * 2, "SIM_VIB_FREQ_Z": freq * 2, "SIM_VIB_MOT_MULT": 0.25, # halve the motor noise so that the higher harmonic dominates }) self.reboot_sitl() self.hover_and_check_matched_frequency(-15, 100, 250, 64, None) # Step 3: switch harmonics mid flight and check for tracking self.start_subtest("Switch harmonics mid flight and check the right harmonic is found") self.set_parameter("FFT_HMNC_PEAK", 0) self.reboot_sitl() self.takeoff(10, mode="ALT_HOLD") hover_time = 10 tstart, tend_unused, hover_throttle = self.hover_for_interval(hover_time) self.progress("Switching motor vibration multiplier") self.set_parameter("SIM_VIB_MOT_MULT", 5.0) tstart_unused, tend, hover_throttle = self.hover_for_interval(hover_time) self.do_RTL() # peak within resolution of FFT length, the highest energy peak switched but our detection should not pkAvg, nmessages = self.extract_median_FTN1_PkAvg_from_current_onboard_log(tstart, tend) freqDelta = 1000. / self.get_parameter("FFT_WINDOW_SIZE") if abs(pkAvg - freq) > freqDelta: raise NotAchievedException("FFT did not detect a harmonic motor peak, found %f, wanted %f" % (pkAvg, freq)) # Step 4: dynamic harmonic self.start_subtest("Enable dynamic harmonics and make sure both frequency peaks are attenuated") # find a motor peak freq, hover_throttle, peakdb = self.hover_and_check_matched_frequency_with_fft(-15, 100, 350) # now add a dynamic notch and check that the peak is squashed self.set_parameters({ "INS_LOG_BAT_OPT": 2, "INS_HNTCH_ENABLE": 1, "INS_HNTCH_HMNCS": 1, "INS_HNTCH_MODE": 4, "INS_HNTCH_FREQ": freq, "INS_HNTCH_REF": hover_throttle/100.0, "INS_HNTCH_ATT": 100, "INS_HNTCH_BW": freq/2, "INS_HNTCH_OPTS": 3, }) self.reboot_sitl() # 5db is far in excess of the attenuation that the double dynamic-harmonic notch is able # to provide (-7dB on average), but without the notch the peak is around 20dB so still a safe test self.hover_and_check_matched_frequency_with_fft(5, 100, 350, reverse=True) self.set_parameters({ "SIM_VIB_FREQ_X": 0, "SIM_VIB_FREQ_Y": 0, "SIM_VIB_FREQ_Z": 0, "SIM_VIB_MOT_MULT": 1.0, }) # prevent update parameters from messing with the settings when we pop the context self.set_parameter("FFT_ENABLE", 0) self.reboot_sitl() except Exception as e: self.print_exception_caught(e) ex = e self.context_pop() # need a final reboot because weird things happen to your # vehicle state when switching back from EKF type 10! self.reboot_sitl() if ex is not None: raise ex def GyroFFTHarmonic(self): """Use dynamic harmonic notch to control motor noise with harmonic matching of the first harmonic.""" self.test_gyro_fft_harmonic(False) def GyroFFTContinuousAveraging(self): """Use dynamic harmonic notch with FFT averaging to control motor noise with harmonic matching of the first harmonic.""" self.test_gyro_fft_harmonic(True) def GyroFFT(self): """Use dynamic harmonic notch to control motor noise.""" # basic gyro sample rate test self.progress("Flying with gyro FFT - Gyro sample rate") self.context_push() ex = None try: # magic tridge EKF type that dramatically speeds up the test self.set_parameters({ "AHRS_EKF_TYPE": 10, "EK2_ENABLE": 0, "EK3_ENABLE": 0, "INS_LOG_BAT_MASK": 3, "INS_LOG_BAT_OPT": 4, "INS_GYRO_FILTER": 100, "INS_FAST_SAMPLE": 0, "LOG_BITMASK": 958, "LOG_DISARMED": 0, "SIM_DRIFT_SPEED": 0, "SIM_DRIFT_TIME": 0, "SIM_GYR1_RND": 20, # enable a noisy motor peak }) # enabling FFT will also enable the arming check, # self-testing the functionality self.set_parameters({ "FFT_ENABLE": 1, "FFT_MINHZ": 50, "FFT_MAXHZ": 450, "FFT_SNR_REF": 10, "FFT_WINDOW_SIZE": 128, "FFT_WINDOW_OLAP": 0.75, "FFT_SAMPLE_MODE": 0, }) # Step 1: inject a very precise noise peak at 250hz and make sure the in-flight fft # can detect it really accurately. For a 128 FFT the frequency resolution is 8Hz so # a 250Hz peak should be detectable within 5% self.start_subtest("Inject noise at 250Hz and check the FFT can find the noise") self.set_parameters({ "SIM_VIB_FREQ_X": 250, "SIM_VIB_FREQ_Y": 250, "SIM_VIB_FREQ_Z": 250, }) self.reboot_sitl() # find a motor peak self.hover_and_check_matched_frequency(-15, 100, 350, 128, 250) # Step 1b: run the same test with an FFT length of 256 which is needed to flush out a # whole host of bugs related to uint8_t. This also tests very accurately the frequency resolution self.set_parameter("FFT_WINDOW_SIZE", 256) self.start_subtest("Inject noise at 250Hz and check the FFT can find the noise") self.reboot_sitl() # find a motor peak self.hover_and_check_matched_frequency(-15, 100, 350, 256, 250) self.set_parameter("FFT_WINDOW_SIZE", 128) # Step 2: inject actual motor noise and use the standard length FFT to track it self.start_subtest("Hover and check that the FFT can find the motor noise") self.set_parameters({ "SIM_VIB_FREQ_X": 0, "SIM_VIB_FREQ_Y": 0, "SIM_VIB_FREQ_Z": 0, "SIM_VIB_MOT_MAX": 250, # gives a motor peak at about 175Hz "FFT_WINDOW_SIZE": 32, "FFT_WINDOW_OLAP": 0.5, }) self.reboot_sitl() freq = self.hover_and_check_matched_frequency(-15, 100, 250, 32) self.set_parameter("SIM_VIB_MOT_MULT", 1.) # Step 3: add a FFT dynamic notch and check that the peak is squashed self.start_subtest("Add a dynamic notch, hover and check that the noise peak is now gone") self.set_parameters({ "INS_LOG_BAT_OPT": 2, "INS_HNTCH_ENABLE": 1, "INS_HNTCH_FREQ": freq, "INS_HNTCH_REF": 1.0, "INS_HNTCH_ATT": 50, "INS_HNTCH_BW": freq/2, "INS_HNTCH_MODE": 4, }) self.reboot_sitl() # do test flight: self.takeoff(10, mode="ALT_HOLD") tstart, tend, hover_throttle = self.hover_for_interval(15) # fly fast forrest! self.set_rc(3, 1900) self.set_rc(2, 1200) self.wait_groundspeed(5, 1000) self.set_rc(3, 1500) self.set_rc(2, 1500) self.do_RTL() psd = self.mavfft_fttd(1, 0, tstart * 1.0e6, tend * 1.0e6) # batch sampler defaults give 1024 fft and sample rate of 1kz so roughly 1hz/bin scale = 1000. / 1024. sminhz = int(100 * scale) smaxhz = int(350 * scale) freq = psd["F"][numpy.argmax(psd["X"][sminhz:smaxhz]) + sminhz] peakdb = numpy.amax(psd["X"][sminhz:smaxhz]) if peakdb < 0: self.progress("Did not detect a motor peak, found %fHz at %fdB" % (freq, peakdb)) else: raise NotAchievedException("Detected %fHz motor peak at %fdB" % (freq, peakdb)) # Step 4: loop sample rate test with larger window self.start_subtest("Hover and check that the FFT can find the motor noise when running at fast loop rate") # we are limited to half the loop rate for frequency detection self.set_parameters({ "FFT_MAXHZ": 185, "INS_LOG_BAT_OPT": 4, "SIM_VIB_MOT_MAX": 220, "FFT_WINDOW_SIZE": 64, "FFT_WINDOW_OLAP": 0.75, "FFT_SAMPLE_MODE": 1, }) self.reboot_sitl() # do test flight: self.takeoff(10, mode="ALT_HOLD") tstart, tend, hover_throttle = self.hover_for_interval(15) self.do_RTL() # why are we not checking the results from that flight? -pb20220613 # prevent update parameters from messing with the settings # when we pop the context self.set_parameter("FFT_ENABLE", 0) self.reboot_sitl() except Exception as e: self.print_exception_caught(e) ex = e self.context_pop() # must reboot after we move away from EKF type 10 to EKF2 or EKF3 self.reboot_sitl() if ex is not None: raise ex def GyroFFTAverage(self): """Use dynamic harmonic notch to control motor noise setup via FFT averaging.""" # basic gyro sample rate test self.progress("Flying with gyro FFT harmonic - Gyro sample rate") self.context_push() ex = None try: # Step 1 self.start_subtest("Hover to calculate approximate hover frequency and see that it is tracked") # magic tridge EKF type that dramatically speeds up the test self.set_parameters({ "INS_HNTCH_ATT": 100, "AHRS_EKF_TYPE": 10, "EK2_ENABLE": 0, "EK3_ENABLE": 0, "INS_LOG_BAT_MASK": 3, "INS_LOG_BAT_OPT": 2, "INS_GYRO_FILTER": 100, "INS_FAST_SAMPLE": 0, "LOG_BITMASK": 958, "LOG_DISARMED": 0, "SIM_DRIFT_SPEED": 0, "SIM_DRIFT_TIME": 0, "SIM_GYR1_RND": 20, # enable a noisy gyro }) # motor peak enabling FFT will also enable the arming # check, self-testing the functionality self.set_parameters({ "FFT_ENABLE": 1, "FFT_WINDOW_SIZE": 64, # not the default, but makes the test more reliable "FFT_SNR_REF": 10, "FFT_MINHZ": 80, "FFT_MAXHZ": 450, }) # Step 1: inject actual motor noise and use the FFT to track it self.set_parameters({ "SIM_VIB_MOT_MAX": 250, # gives a motor peak at about 175Hz "RC7_OPTION" : 162, # FFT tune }) self.reboot_sitl() # hover and engage FFT tracker self.takeoff(10, mode="ALT_HOLD") hover_time = 60 # start the tune self.set_rc(7, 2000) tstart, tend, hover_throttle = self.hover_for_interval(hover_time) # finish the tune self.set_rc(7, 1000) psd = self.mavfft_fttd(1, 0, tstart * 1.0e6, tend * 1.0e6) # batch sampler defaults give 1024 fft and sample rate of 1kz so roughly 1hz/bin freq = psd["F"][numpy.argmax(psd["X"][50:450]) + 50] * (1000. / 1024.) detected_ref = self.get_parameter("INS_HNTCH_REF") detected_freq = self.get_parameter("INS_HNTCH_FREQ") self.progress("FFT detected parameters were %fHz, ref %f" % (detected_freq, detected_ref)) # approximate the scaled frequency scaled_freq_at_hover = math.sqrt((hover_throttle / 100.) / detected_ref) * detected_freq # Check we matched if abs(scaled_freq_at_hover - freq) / scaled_freq_at_hover > 0.05: raise NotAchievedException("Detected frequency %fHz did not match required %fHz" % (scaled_freq_at_hover, freq)) if self.get_parameter("INS_HNTCH_ENABLE") != 1: raise NotAchievedException("Harmonic notch was not enabled") # Step 2: now rerun the test and check that the peak is squashed self.start_subtest("Verify that noise is suppressed by the harmonic notch") self.hover_and_check_matched_frequency_with_fft(0, 100, 350, reverse=True, takeoff=False) # reset notch to defaults self.set_parameters({ "INS_HNTCH_HMNCS": 3.0, "INS_HNTCH_ENABLE": 0.0, "INS_HNTCH_REF": 0.0, "INS_HNTCH_FREQ": 80, "INS_HNTCH_BW": 40, "INS_HNTCH_FM_RAT": 1.0 }) # Step 3: add a second harmonic and check the first is still tracked self.start_subtest("Add a fixed frequency harmonic at twice the hover frequency " "and check the right harmonic is found") self.set_parameters({ "SIM_VIB_FREQ_X": detected_freq * 2, "SIM_VIB_FREQ_Y": detected_freq * 2, "SIM_VIB_FREQ_Z": detected_freq * 2, "SIM_VIB_MOT_MULT": 0.25, # halve the motor noise so that the higher harmonic dominates }) self.reboot_sitl() # hover and engage FFT tracker self.takeoff(10, mode="ALT_HOLD") hover_time = 60 # start the tune self.set_rc(7, 2000) tstart, tend, hover_throttle = self.hover_for_interval(hover_time) # finish the tune self.set_rc(7, 1000) self.do_RTL() detected_ref = self.get_parameter("INS_HNTCH_REF") detected_freq = self.get_parameter("INS_HNTCH_FREQ") self.progress("FFT detected parameters were %fHz, ref %f" % (detected_freq, detected_ref)) # approximate the scaled frequency scaled_freq_at_hover = math.sqrt((hover_throttle / 100.) / detected_ref) * detected_freq # Check we matched if abs(scaled_freq_at_hover - freq) / scaled_freq_at_hover > 0.05: raise NotAchievedException("Detected frequency %fHz did not match required %fHz" % (scaled_freq_at_hover, freq)) if self.get_parameter("INS_HNTCH_ENABLE") != 1: raise NotAchievedException("Harmonic notch was not enabled") self.set_parameters({ "SIM_VIB_FREQ_X": 0, "SIM_VIB_FREQ_Y": 0, "SIM_VIB_FREQ_Z": 0, "SIM_VIB_MOT_MULT": 1.0, "INS_HNTCH_HMNCS": 3.0, "INS_HNTCH_ENABLE": 0.0, "INS_HNTCH_REF": 0.0, "INS_HNTCH_FREQ": 80, "INS_HNTCH_BW": 40, "INS_HNTCH_FM_RAT": 1.0 }) # prevent update parameters from messing with the settings when we pop the context self.set_parameter("FFT_ENABLE", 0) self.reboot_sitl() except Exception as e: self.print_exception_caught(e) ex = e self.context_pop() # need a final reboot because weird things happen to your # vehicle state when switching back from EKF type 10! self.reboot_sitl() if ex is not None: raise ex def GyroFFTPostFilter(self): """Use FFT-driven dynamic harmonic notch to control post-RPM filter motor noise.""" # basic gyro sample rate test self.progress("Flying with gyro FFT post-filter supression - Gyro sample rate") self.context_push() ex = None try: # This set of parameters creates two noise peaks one at the motor frequency and one at 250Hz # we then use ESC telemetry to drive the notch to clean up the motor noise and a post-filter # FFT notch to clean up the remaining 250Hz. If either notch fails then the test will be failed # due to too much noise being present self.set_parameters({ "AHRS_EKF_TYPE": 10, # magic tridge EKF type that dramatically speeds up the test "EK2_ENABLE": 0, "EK3_ENABLE": 0, "INS_LOG_BAT_MASK": 3, "INS_LOG_BAT_OPT": 4, "INS_GYRO_FILTER": 100, "INS_FAST_SAMPLE": 3, "LOG_BITMASK": 958, "LOG_DISARMED": 0, "SIM_DRIFT_SPEED": 0, "SIM_DRIFT_TIME": 0, "SIM_GYR1_RND": 20, # enable a noisy gyro "INS_HNTCH_ENABLE": 1, "INS_HNTCH_FREQ": 80, "INS_HNTCH_REF": 1.0, "INS_HNTCH_HMNCS": 1, # first harmonic "INS_HNTCH_ATT": 50, "INS_HNTCH_BW": 30, "INS_HNTCH_MODE": 3, # ESC telemetry "INS_HNTCH_OPTS": 2, # notch-per-motor "INS_HNTC2_ENABLE": 1, "INS_HNTC2_FREQ": 80, "INS_HNTC2_REF": 1.0, "INS_HNTC2_HMNCS": 1, "INS_HNTC2_ATT": 50, "INS_HNTC2_BW": 40, "INS_HNTC2_MODE": 4, # in-flight FFT "INS_HNTC2_OPTS": 18, # triple-notch, notch-per-FFT peak "FFT_ENABLE": 1, "FFT_WINDOW_SIZE": 64, # not the default, but makes the test more reliable "FFT_OPTIONS": 1, "FFT_MINHZ": 50, "FFT_MAXHZ": 450, "SIM_VIB_MOT_MAX": 250, # gives a motor peak at about 145Hz "SIM_VIB_FREQ_X": 250, # create another peak at 250hz "SIM_VIB_FREQ_Y": 250, "SIM_VIB_FREQ_Z": 250, "SIM_GYR_FILE_RW": 2, # write data to a file }) self.reboot_sitl() # do test flight: self.takeoff(10, mode="ALT_HOLD") tstart, tend, hover_throttle = self.hover_for_interval(60) # fly fast forrest! self.set_rc(3, 1900) self.set_rc(2, 1200) self.wait_groundspeed(5, 1000) self.set_rc(3, 1500) self.set_rc(2, 1500) self.do_RTL() psd = self.mavfft_fttd(1, 2, tstart * 1.0e6, tend * 1.0e6) # batch sampler defaults give 1024 fft and sample rate of 1kz so roughly 1hz/bin scale = 1000. / 1024. sminhz = int(100 * scale) smaxhz = int(350 * scale) freq = psd["F"][numpy.argmax(psd["X"][sminhz:smaxhz]) + sminhz] peakdb = numpy.amax(psd["X"][sminhz:smaxhz]) if peakdb < -5: self.progress("Did not detect a motor peak, found %fHz at %fdB" % (freq, peakdb)) else: raise NotAchievedException("Detected %fHz motor peak at %fdB" % (freq, peakdb)) # prevent update parameters from messing with the settings when we pop the context self.set_parameters({ "SIM_VIB_FREQ_X": 0, "SIM_VIB_FREQ_Y": 0, "SIM_VIB_FREQ_Z": 0, "SIM_VIB_MOT_MULT": 1.0, "SIM_GYR_FILE_RW": 0, # stop writing data "FFT_ENABLE": 0, }) self.reboot_sitl() except Exception as e: self.print_exception_caught(e) ex = e self.context_pop() # need a final reboot because weird things happen to your # vehicle state when switching back from EKF type 10! self.reboot_sitl() if ex is not None: raise ex def GyroFFTMotorNoiseCheck(self): """Use FFT to detect post-filter motor noise.""" # basic gyro sample rate test self.progress("Flying with FFT motor-noise detection - Gyro sample rate") self.context_push() ex = None try: # This set of parameters creates two noise peaks one at the motor frequency and one at 250Hz # we then use ESC telemetry to drive the notch to clean up the motor noise and a post-filter # FFT notch to clean up the remaining 250Hz. If either notch fails then the test will be failed # due to too much noise being present self.set_parameters({ "AHRS_EKF_TYPE": 10, # magic tridge EKF type that dramatically speeds up the test "EK2_ENABLE": 0, "EK3_ENABLE": 0, "INS_LOG_BAT_MASK": 3, "INS_LOG_BAT_OPT": 4, "INS_GYRO_FILTER": 100, "INS_FAST_SAMPLE": 3, "LOG_BITMASK": 958, "LOG_DISARMED": 0, "SIM_DRIFT_SPEED": 0, "SIM_DRIFT_TIME": 0, "SIM_GYR1_RND": 200, # enable a noisy gyro "INS_HNTCH_ENABLE": 1, "INS_HNTCH_FREQ": 80, "INS_HNTCH_REF": 1.0, "INS_HNTCH_HMNCS": 1, # first harmonic "INS_HNTCH_ATT": 50, "INS_HNTCH_BW": 30, "INS_HNTCH_MODE": 3, # ESC telemetry "INS_HNTCH_OPTS": 2, # notch-per-motor "INS_HNTC2_ENABLE": 1, "INS_HNTC2_FREQ": 80, "INS_HNTC2_REF": 1.0, "INS_HNTC2_HMNCS": 1, "INS_HNTC2_ATT": 50, "INS_HNTC2_BW": 40, "INS_HNTC2_MODE": 0, # istatic notch "INS_HNTC2_OPTS": 16, # triple-notch "FFT_ENABLE": 1, "FFT_WINDOW_SIZE": 64, # not the default, but makes the test more reliable "FFT_OPTIONS": 3, "FFT_MINHZ": 50, "FFT_MAXHZ": 450, "SIM_VIB_MOT_MAX": 250, # gives a motor peak at about 145Hz "SIM_VIB_FREQ_X": 250, # create another peak at 250hz "SIM_VIB_FREQ_Y": 250, "SIM_VIB_FREQ_Z": 250, "SIM_GYR_FILE_RW": 2, # write data to a file }) self.reboot_sitl() # do test flight: self.takeoff(10, mode="ALT_HOLD") tstart, tend, hover_throttle = self.hover_for_interval(10) self.wait_statustext("Noise ", timeout=20) self.set_parameter("SIM_GYR1_RND", 0) # stop noise so that we can get home self.do_RTL() # prevent update parameters from messing with the settings when we pop the context self.set_parameters({ "SIM_VIB_FREQ_X": 0, "SIM_VIB_FREQ_Y": 0, "SIM_VIB_FREQ_Z": 0, "SIM_VIB_MOT_MULT": 1.0, "SIM_GYR_FILE_RW": 0, # stop writing data "FFT_ENABLE": 0, }) self.reboot_sitl() except Exception as e: self.print_exception_caught(e) ex = e self.context_pop() # need a final reboot because weird things happen to your # vehicle state when switching back from EKF type 10! self.reboot_sitl() if ex is not None: raise ex def BrakeMode(self): '''Fly Brake Mode''' # test brake mode self.progress("Testing brake mode") self.takeoff(10, mode="LOITER") self.progress("Ensuring RC inputs have no effect in brake mode") self.change_mode("STABILIZE") self.set_rc(3, 1500) self.set_rc(2, 1200) self.wait_groundspeed(5, 1000) self.change_mode("BRAKE") self.wait_groundspeed(0, 1) self.set_rc(2, 1500) self.do_RTL() self.progress("Ran brake mode") def fly_guided_move_to(self, destination, timeout=30): '''move to mavutil.location location; absolute altitude''' tstart = self.get_sim_time() self.mav.mav.set_position_target_global_int_send( 0, # timestamp 1, # target system_id 1, # target component id mavutil.mavlink.MAV_FRAME_GLOBAL_INT, MAV_POS_TARGET_TYPE_MASK.POS_ONLY | MAV_POS_TARGET_TYPE_MASK.LAST_BYTE, # mask specifying use-only-lat-lon-alt int(destination.lat * 1e7), # lat int(destination.lng * 1e7), # lon destination.alt, # alt 0, # vx 0, # vy 0, # vz 0, # afx 0, # afy 0, # afz 0, # yaw 0, # yawrate ) while True: if self.get_sim_time() - tstart > timeout: raise NotAchievedException() delta = self.get_distance(self.mav.location(), destination) self.progress("delta=%f (want <1)" % delta) if delta < 1: break def AltTypes(self): '''Test Different Altitude Types''' '''start by disabling GCS failsafe, otherwise we immediately disarm due to (apparently) not receiving traffic from the GCS for too long. This is probably a function of --speedup''' '''this test flies the vehicle somewhere lower than were it started. It then disarms. It then arms, which should reset home to the new, lower altitude. This delta should be outside 1m but within a few metres of the old one. ''' self.install_terrain_handlers_context() self.set_parameter("FS_GCS_ENABLE", 0) self.change_mode('GUIDED') self.wait_ready_to_arm() self.arm_vehicle() m = self.mav.recv_match(type='GLOBAL_POSITION_INT', blocking=True) max_initial_home_alt_m = 500 if m.relative_alt > max_initial_home_alt_m: raise NotAchievedException("Initial home alt too high (%fm > %fm)" % (m.relative_alt*1000, max_initial_home_alt_m*1000)) orig_home_offset_mm = m.alt - m.relative_alt self.user_takeoff(5) self.progress("Flying to low position") current_alt = self.mav.location().alt # 10m delta low_position = mavutil.location(-35.358273, 149.169165, current_alt, 0) low_position = mavutil.location(-35.36200016, 149.16415599, current_alt, 0) self.fly_guided_move_to(low_position, timeout=240) self.change_mode('LAND') # expecting home to change when disarmed self.wait_landed_and_disarmed() # wait a while for home to move (it shouldn't): self.delay_sim_time(10) m = self.mav.recv_match(type='GLOBAL_POSITION_INT', blocking=True) new_home_offset_mm = m.alt - m.relative_alt home_offset_delta_mm = orig_home_offset_mm - new_home_offset_mm self.progress("new home offset: %f delta=%f" % (new_home_offset_mm, home_offset_delta_mm)) self.progress("gpi=%s" % str(m)) max_home_offset_delta_mm = 10 if home_offset_delta_mm > max_home_offset_delta_mm: raise NotAchievedException("Large home offset delta: want<%f got=%f" % (max_home_offset_delta_mm, home_offset_delta_mm)) self.progress("Ensuring home moves when we arm") self.change_mode('GUIDED') self.wait_ready_to_arm() self.arm_vehicle() m = self.mav.recv_match(type='GLOBAL_POSITION_INT', blocking=True) post_arming_home_offset_mm = m.alt - m.relative_alt self.progress("post-arming home offset: %f" % (post_arming_home_offset_mm)) self.progress("gpi=%s" % str(m)) min_post_arming_home_offset_delta_mm = -2500 max_post_arming_home_offset_delta_mm = -4000 delta_between_original_home_alt_offset_and_new_home_alt_offset_mm = post_arming_home_offset_mm - orig_home_offset_mm self.progress("delta=%f-%f=%f" % ( post_arming_home_offset_mm, orig_home_offset_mm, delta_between_original_home_alt_offset_and_new_home_alt_offset_mm)) self.progress("Home moved %fm vertically" % (delta_between_original_home_alt_offset_and_new_home_alt_offset_mm/1000.0)) if delta_between_original_home_alt_offset_and_new_home_alt_offset_mm > min_post_arming_home_offset_delta_mm: raise NotAchievedException( "Home did not move vertically on arming: want<=%f got=%f" % (min_post_arming_home_offset_delta_mm, delta_between_original_home_alt_offset_and_new_home_alt_offset_mm)) if delta_between_original_home_alt_offset_and_new_home_alt_offset_mm < max_post_arming_home_offset_delta_mm: raise NotAchievedException( "Home moved too far vertically on arming: want>=%f got=%f" % (max_post_arming_home_offset_delta_mm, delta_between_original_home_alt_offset_and_new_home_alt_offset_mm)) self.wait_disarmed() def PrecisionLoiterCompanion(self): """Use Companion PrecLand backend precision messages to loiter.""" self.set_parameters({ "PLND_ENABLED": 1, "PLND_TYPE": 1, # enable companion backend: "RC7_OPTION": 39, # set up a channel switch to enable precision loiter: }) self.set_analog_rangefinder_parameters() self.reboot_sitl() self.progress("Waiting for location") self.change_mode('LOITER') self.wait_ready_to_arm() # we should be doing precision loiter at this point start = self.assert_receive_message('LOCAL_POSITION_NED') self.takeoff(20, mode='ALT_HOLD') # move away a little self.set_rc(2, 1550) self.wait_distance(5, accuracy=1) self.set_rc(2, 1500) self.change_mode('LOITER') # turn precision loiter on: self.context_collect('STATUSTEXT') self.set_rc(7, 2000) # try to drag aircraft to a position 5 metres north-east-east: self.precision_loiter_to_pos(start.x + 5, start.y + 10, start.z + 10) self.wait_statustext("PrecLand: Target Found", check_context=True, timeout=10) self.wait_statustext("PrecLand: Init Complete", check_context=True, timeout=10) # .... then northwest self.precision_loiter_to_pos(start.x + 5, start.y - 10, start.z + 10) self.disarm_vehicle(force=True) def loiter_requires_position(self): # ensure we can't switch to LOITER without position self.progress("Ensure we can't enter LOITER without position") self.context_push() self.set_parameters({ "GPS1_TYPE": 2, "SIM_GPS_DISABLE": 1, }) # if there is no GPS at all then we must direct EK3 to not use # it at all. Otherwise it will never initialise, as it wants # to calculate the lag and size its delay buffers accordingly. self.set_parameters({ "EK3_SRC1_POSXY": 0, "EK3_SRC1_VELZ": 0, "EK3_SRC1_VELXY": 0, }) self.reboot_sitl() self.delay_sim_time(30) # wait for accels/gyros to settle # check for expected EKF flags ahrs_ekf_type = self.get_parameter("AHRS_EKF_TYPE") expected_ekf_flags = (mavutil.mavlink.ESTIMATOR_ATTITUDE | mavutil.mavlink.ESTIMATOR_VELOCITY_VERT | mavutil.mavlink.ESTIMATOR_POS_VERT_ABS | mavutil.mavlink.ESTIMATOR_CONST_POS_MODE) if ahrs_ekf_type == 2: expected_ekf_flags = expected_ekf_flags | mavutil.mavlink.ESTIMATOR_PRED_POS_HORIZ_REL self.wait_ekf_flags(expected_ekf_flags, 0, timeout=120) # arm in Stabilize and attempt to switch to Loiter self.change_mode('STABILIZE') self.arm_vehicle() self.context_collect('STATUSTEXT') self.run_cmd_do_set_mode( "LOITER", want_result=mavutil.mavlink.MAV_RESULT_FAILED) self.wait_statustext("requires position", check_context=True) self.disarm_vehicle() self.context_pop() self.reboot_sitl() def ArmFeatures(self): '''Arm features''' self.loiter_requires_position() super(AutoTestCopter, self).ArmFeatures() def ParameterChecks(self): '''Test Arming Parameter Checks''' self.test_parameter_checks_poscontrol("PSC") def PosHoldTakeOff(self): """ensure vehicle stays put until it is ready to fly""" self.context_push() self.set_parameter("PILOT_TKOFF_ALT", 700) self.change_mode('POSHOLD') self.set_rc(3, 1000) self.wait_ready_to_arm() self.arm_vehicle() self.delay_sim_time(2) # check we are still on the ground... relative_alt = self.get_altitude(relative=True) if relative_alt > 0.1: raise NotAchievedException("Took off prematurely") self.progress("Pushing throttle up") self.set_rc(3, 1710) self.delay_sim_time(0.5) self.progress("Bringing back to hover throttle") self.set_rc(3, 1500) # make sure we haven't already reached alt: relative_alt = self.get_altitude(relative=True) max_initial_alt = 2.0 if abs(relative_alt) > max_initial_alt: raise NotAchievedException("Took off too fast (%f > %f" % (relative_alt, max_initial_alt)) self.progress("Monitoring takeoff-to-alt") self.wait_altitude(6.9, 8, relative=True, minimum_duration=10) self.progress("takeoff OK") self.land_and_disarm() self.set_rc(8, 1000) self.context_pop() def initial_mode(self): return "STABILIZE" def initial_mode_switch_mode(self): return "STABILIZE" def default_mode(self): return "STABILIZE" def rc_defaults(self): ret = super(AutoTestCopter, self).rc_defaults() ret[3] = 1000 ret[5] = 1800 # mode switch return ret def MANUAL_CONTROL(self): '''test MANUAL_CONTROL mavlink message''' self.set_parameter("SYSID_MYGCS", self.mav.source_system) self.change_mode('STABILIZE') self.takeoff(10) tstart = self.get_sim_time_cached() want_pitch_degrees = -12 while True: if self.get_sim_time_cached() - tstart > 10: raise AutoTestTimeoutException("Did not reach pitch") self.progress("Sending pitch-forward") self.mav.mav.manual_control_send( 1, # target system 500, # x (pitch) 32767, # y (roll) 32767, # z (thrust) 32767, # r (yaw) 0) # button mask m = self.mav.recv_match(type='ATTITUDE', blocking=True, timeout=1) print("m=%s" % str(m)) if m is None: continue p = math.degrees(m.pitch) self.progress("pitch=%f want<=%f" % (p, want_pitch_degrees)) if p <= want_pitch_degrees: break self.mav.mav.manual_control_send( 1, # target system 32767, # x (pitch) 32767, # y (roll) 32767, # z (thrust) 32767, # r (yaw) 0) # button mask self.do_RTL() def check_avoidance_corners(self): self.takeoff(10, mode="LOITER") here = self.mav.location() self.set_rc(2, 1400) west_loc = mavutil.location(-35.363007, 149.164911, here.alt, 0) self.wait_location(west_loc, accuracy=6) north_loc = mavutil.location(-35.362908, 149.165051, here.alt, 0) self.reach_heading_manual(0) self.wait_location(north_loc, accuracy=6, timeout=200) self.reach_heading_manual(90) east_loc = mavutil.location(-35.363013, 149.165194, here.alt, 0) self.wait_location(east_loc, accuracy=6) self.reach_heading_manual(225) self.wait_location(west_loc, accuracy=6, timeout=200) self.set_rc(2, 1500) self.do_RTL() def OBSTACLE_DISTANCE_3D_test_angle(self, angle): now = self.get_sim_time_cached() distance = 15 right = distance * math.sin(math.radians(angle)) front = distance * math.cos(math.radians(angle)) down = 0 expected_distance_cm = distance * 100 # expected orientation expected_orientation = int((angle+22.5)/45) % 8 self.progress("Angle %f expected orient %u" % (angle, expected_orientation)) tstart = self.get_sim_time() last_send = 0 m = None while True: now = self.get_sim_time_cached() if now - tstart > 100: raise NotAchievedException("Did not get correct angle back (last-message=%s)" % str(m)) if now - last_send > 0.1: self.progress("ang=%f sending front=%f right=%f" % (angle, front, right)) self.mav.mav.obstacle_distance_3d_send( int(now*1000), # time_boot_ms mavutil.mavlink.MAV_DISTANCE_SENSOR_LASER, mavutil.mavlink.MAV_FRAME_BODY_FRD, 65535, front, # x (m) right, # y (m) down, # z (m) 0, # min_distance (m) 20 # max_distance (m) ) last_send = now m = self.mav.recv_match(type="DISTANCE_SENSOR", blocking=True, timeout=1) if m is None: continue # self.progress("Got (%s)" % str(m)) if m.orientation != expected_orientation: # self.progress("Wrong orientation (want=%u got=%u)" % # (expected_orientation, m.orientation)) continue if abs(m.current_distance - expected_distance_cm) > 1: # self.progress("Wrong distance (want=%f got=%f)" % # (expected_distance_cm, m.current_distance)) continue self.progress("distance-at-angle good") break def OBSTACLE_DISTANCE_3D(self): '''Check round-trip behaviour of distance sensors''' self.context_push() self.set_parameters({ "SERIAL5_PROTOCOL": 1, "PRX1_TYPE": 2, "SIM_SPEEDUP": 8, # much GCS interaction }) self.reboot_sitl() # need yaw estimate to stabilise: self.wait_ekf_happy(require_absolute=True) for angle in range(0, 360): self.OBSTACLE_DISTANCE_3D_test_angle(angle) self.context_pop() self.reboot_sitl() def AC_Avoidance_Proximity(self): '''Test proximity avoidance slide behaviour''' self.context_push() self.load_fence("copter-avoidance-fence.txt") self.set_parameters({ "FENCE_ENABLE": 1, "PRX1_TYPE": 10, "PRX_LOG_RAW": 1, "RC10_OPTION": 40, # proximity-enable }) self.reboot_sitl() self.progress("Enabling proximity") self.set_rc(10, 2000) self.check_avoidance_corners() self.assert_current_onboard_log_contains_message("PRX") self.assert_current_onboard_log_contains_message("PRXR") self.disarm_vehicle(force=True) self.context_pop() self.reboot_sitl() def ProximitySensors(self): '''ensure proximity sensors return appropriate data''' self.set_parameters({ "SERIAL5_PROTOCOL": 11, "OA_DB_OUTPUT": 3, "OA_TYPE": 2, }) sensors = [ # tuples of name, prx_type ('sf45b', 8, { mavutil.mavlink.MAV_SENSOR_ROTATION_NONE: 270, mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_45: 258, mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_90: 1146, mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_135: 632, mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_180: 629, mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_225: 972, mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_270: 774, mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_315: 774, }), ('rplidara2', 5, { mavutil.mavlink.MAV_SENSOR_ROTATION_NONE: 277, mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_45: 256, mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_90: 1130, mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_135: 1288, mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_180: 626, mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_225: 970, mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_270: 762, mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_315: 790, }), ('terarangertower', 3, { mavutil.mavlink.MAV_SENSOR_ROTATION_NONE: 450, mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_45: 282, mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_90: 450, mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_135: 450, mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_180: 450, mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_225: 450, mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_270: 450, mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_315: 450, }), ] # the following is a "magic" location SITL understands which # has some posts near it: home_string = "%s,%s,%s,%s" % (51.8752066, 14.6487840, 54.15, 0) for (name, prx_type, expected_distances) in sensors: self.start_subtest("Testing %s" % name) self.set_parameter("PRX1_TYPE", prx_type) self.customise_SITL_commandline([ "--serial5=sim:%s:" % name, "--home", home_string, ]) self.wait_ready_to_arm() expected_distances_copy = copy.copy(expected_distances) tstart = self.get_sim_time() failed = False wants = [] gots = [] epsilon = 20 while True: if self.get_sim_time_cached() - tstart > 30: raise AutoTestTimeoutException("Failed to get distances") if len(expected_distances_copy.keys()) == 0: break m = self.assert_receive_message("DISTANCE_SENSOR") if m.orientation not in expected_distances_copy: continue got = m.current_distance want = expected_distances_copy[m.orientation] wants.append(want) gots.append(got) if abs(want - got) > epsilon: failed = True del expected_distances_copy[m.orientation] if failed: raise NotAchievedException( "Distance too great (%s) (want=%s != got=%s)" % (name, wants, gots)) def AC_Avoidance_Proximity_AVOID_ALT_MIN(self): '''Test proximity avoidance with AVOID_ALT_MIN''' self.context_push() ex = None try: self.set_parameters({ "PRX1_TYPE": 2, "AVOID_ALT_MIN": 10, }) self.set_analog_rangefinder_parameters() self.reboot_sitl() self.change_mode('LOITER') self.wait_ekf_happy() tstart = self.get_sim_time() while True: if self.armed(): break if self.get_sim_time_cached() - tstart > 60: raise AutoTestTimeoutException("Did not arm") self.mav.mav.distance_sensor_send( 0, # time_boot_ms 10, # min_distance cm 500, # max_distance cm 400, # current_distance cm mavutil.mavlink.MAV_DISTANCE_SENSOR_LASER, # type 26, # id mavutil.mavlink.MAV_SENSOR_ROTATION_NONE, # orientation 255 # covariance ) self.send_mavlink_arm_command() self.takeoff(15, mode='LOITER') self.progress("Poking vehicle; should avoid") def shove(a, b): self.mav.mav.distance_sensor_send( 0, # time_boot_ms 10, # min_distance cm 500, # max_distance cm 20, # current_distance cm mavutil.mavlink.MAV_DISTANCE_SENSOR_LASER, # type 21, # id mavutil.mavlink.MAV_SENSOR_ROTATION_NONE, # orientation 255 # covariance ) self.wait_speed_vector_bf( Vector3(-0.4, 0.0, 0.0), timeout=10, called_function=shove, ) self.change_alt(5) tstart = self.get_sim_time() while True: if self.get_sim_time_cached() - tstart > 10: break vel = self.get_body_frame_velocity() if vel.length() > 0.5: raise NotAchievedException("Moved too much (%s)" % (str(vel),)) shove(None, None) except Exception as e: self.progress("Caught exception: %s" % self.get_exception_stacktrace(e)) ex = e self.disarm_vehicle(force=True) self.context_pop() self.reboot_sitl() if ex is not None: raise ex def AC_Avoidance_Fence(self): '''Test fence avoidance slide behaviour''' self.load_fence("copter-avoidance-fence.txt") self.set_parameter("FENCE_ENABLE", 1) self.check_avoidance_corners() def AvoidanceAltFence(self): '''Test fence avoidance at minimum and maximum altitude''' ex = None try: self.set_parameters({ "FENCE_ENABLE": 1, "FENCE_TYPE": 9, # min and max alt fence "FENCE_ALT_MIN": 10, "FENCE_ALT_MAX": 30, }) self.change_mode('LOITER') self.wait_ekf_happy() tstart = self.get_sim_time() self.takeoff(15, mode='LOITER') self.progress("Increasing throttle, vehicle should stay below 30m") self.set_rc(3, 1920) tstart = self.get_sim_time() while True: if self.get_sim_time_cached() - tstart > 20: break alt = self.get_altitude(relative=True) self.progress("Altitude %s" % alt) if alt > 30: raise NotAchievedException("Breached maximum altitude (%s)" % (str(alt),)) self.progress("Decreasing, vehicle should stay above 10m") self.set_rc(3, 1080) tstart = self.get_sim_time() while True: if self.get_sim_time_cached() - tstart > 20: break alt = self.get_altitude(relative=True) self.progress("Altitude %s" % alt) if alt < 10: raise NotAchievedException("Breached minimum altitude (%s)" % (str(alt),)) except Exception as e: self.progress("Caught exception: %s" % self.get_exception_stacktrace(e)) ex = e self.land_and_disarm() self.disarm_vehicle(force=True) if ex is not None: raise ex def ModeFollow(self): '''Fly follow mode''' foll_ofs_x = 30 # metres self.set_parameters({ "FOLL_ENABLE": 1, "FOLL_SYSID": self.mav.source_system, "FOLL_OFS_X": -foll_ofs_x, "FOLL_OFS_TYPE": 1, # relative to other vehicle heading }) self.takeoff(10, mode="LOITER") self.context_push() self.set_parameter("SIM_SPEEDUP", 1) self.change_mode("FOLLOW") new_loc = self.mav.location() new_loc_offset_n = 20 new_loc_offset_e = 30 self.location_offset_ne(new_loc, new_loc_offset_n, new_loc_offset_e) self.progress("new_loc: %s" % str(new_loc)) heading = 0 if self.mavproxy is not None: self.mavproxy.send("map icon %f %f greenplane %f\n" % (new_loc.lat, new_loc.lng, heading)) expected_loc = copy.copy(new_loc) self.location_offset_ne(expected_loc, -foll_ofs_x, 0) if self.mavproxy is not None: self.mavproxy.send("map icon %f %f hoop\n" % (expected_loc.lat, expected_loc.lng)) self.progress("expected_loc: %s" % str(expected_loc)) origin = self.poll_message('GPS_GLOBAL_ORIGIN') last_sent = 0 tstart = self.get_sim_time() while True: now = self.get_sim_time_cached() if now - tstart > 60: raise NotAchievedException("Did not FOLLOW") if now - last_sent > 0.5: gpi = self.mav.mav.global_position_int_encode( int(now * 1000), # time_boot_ms int(new_loc.lat * 1e7), int(new_loc.lng * 1e7), int(new_loc.alt * 1000), # alt in mm int(new_loc.alt * 1000 - origin.altitude), # relative alt - urp. vx=0, vy=0, vz=0, hdg=heading ) gpi.pack(self.mav.mav) self.mav.mav.send(gpi) self.mav.recv_match(type='GLOBAL_POSITION_INT', blocking=True) pos = self.mav.location() delta = self.get_distance(expected_loc, pos) max_delta = 3 self.progress("position delta=%f (want <%f)" % (delta, max_delta)) if delta < max_delta: break self.context_pop() self.do_RTL() def get_global_position_int(self, timeout=30): tstart = self.get_sim_time() while True: if self.get_sim_time_cached() - tstart > timeout: raise NotAchievedException("Did not get good global_position_int") m = self.mav.recv_match(type='GLOBAL_POSITION_INT', blocking=True, timeout=1) self.progress("GPI: %s" % str(m)) if m is None: continue if m.lat != 0 or m.lon != 0: return m def BeaconPosition(self): '''Fly Beacon Position''' self.reboot_sitl() self.wait_ready_to_arm(require_absolute=True) old_pos = self.get_global_position_int() print("old_pos=%s" % str(old_pos)) self.set_parameters({ "BCN_TYPE": 10, "BCN_LATITUDE": SITL_START_LOCATION.lat, "BCN_LONGITUDE": SITL_START_LOCATION.lng, "BCN_ALT": SITL_START_LOCATION.alt, "BCN_ORIENT_YAW": 0, "AVOID_ENABLE": 4, "GPS1_TYPE": 0, "EK3_ENABLE": 1, "EK3_SRC1_POSXY": 4, # Beacon "EK3_SRC1_POSZ": 1, # Baro "EK3_SRC1_VELXY": 0, # None "EK3_SRC1_VELZ": 0, # None "EK2_ENABLE": 0, "AHRS_EKF_TYPE": 3, }) self.reboot_sitl() # turn off GPS arming checks. This may be considered a # bug that we need to do this. old_arming_check = int(self.get_parameter("ARMING_CHECK")) if old_arming_check == 1: old_arming_check = 1 ^ 25 - 1 new_arming_check = int(old_arming_check) & ~(1 << 3) self.set_parameter("ARMING_CHECK", new_arming_check) self.reboot_sitl() # require_absolute=True infers a GPS is present self.wait_ready_to_arm(require_absolute=False) tstart = self.get_sim_time() timeout = 20 while True: if self.get_sim_time_cached() - tstart > timeout: raise NotAchievedException("Did not get new position like old position") self.progress("Fetching location") new_pos = self.get_global_position_int() pos_delta = self.get_distance_int(old_pos, new_pos) max_delta = 1 self.progress("delta=%u want <= %u" % (pos_delta, max_delta)) if pos_delta <= max_delta: break self.progress("Moving to ensure location is tracked") self.takeoff(10, mode="STABILIZE") self.change_mode("CIRCLE") self.context_push() validator = vehicle_test_suite.TestSuite.ValidateGlobalPositionIntAgainstSimState(self, max_allowed_divergence=10) self.install_message_hook_context(validator) self.delay_sim_time(20) self.progress("Tracked location just fine") self.context_pop() self.change_mode("LOITER") self.wait_groundspeed(0, 0.3, timeout=120) self.land_and_disarm() self.assert_current_onboard_log_contains_message("BCN") self.disarm_vehicle(force=True) def AC_Avoidance_Beacon(self): '''Test beacon avoidance slide behaviour''' self.context_push() ex = None try: self.set_parameters({ "BCN_TYPE": 10, "BCN_LATITUDE": int(SITL_START_LOCATION.lat), "BCN_LONGITUDE": int(SITL_START_LOCATION.lng), "BCN_ORIENT_YAW": 45, "AVOID_ENABLE": 4, }) self.reboot_sitl() self.takeoff(10, mode="LOITER") self.set_rc(2, 1400) here = self.mav.location() west_loc = mavutil.location(-35.362919, 149.165055, here.alt, 0) self.wait_location(west_loc, accuracy=1) self.reach_heading_manual(0) north_loc = mavutil.location(-35.362881, 149.165103, here.alt, 0) self.wait_location(north_loc, accuracy=1) self.set_rc(2, 1500) self.set_rc(1, 1600) east_loc = mavutil.location(-35.362986, 149.165227, here.alt, 0) self.wait_location(east_loc, accuracy=1) self.set_rc(1, 1500) self.set_rc(2, 1600) south_loc = mavutil.location(-35.363025, 149.165182, here.alt, 0) self.wait_location(south_loc, accuracy=1) self.set_rc(2, 1500) self.do_RTL() except Exception as e: self.print_exception_caught(e) ex = e self.context_pop() self.clear_fence() self.disarm_vehicle(force=True) self.reboot_sitl() if ex is not None: raise ex def BaroWindCorrection(self): '''Test wind estimation and baro position error compensation''' self.context_push() ex = None try: self.customise_SITL_commandline( [], defaults_filepath=self.model_defaults_filepath('Callisto'), model="octa-quad:@ROMFS/models/Callisto.json", wipe=True, ) wind_spd_truth = 8.0 wind_dir_truth = 90.0 self.set_parameters({ "EK3_ENABLE": 1, "EK2_ENABLE": 0, "AHRS_EKF_TYPE": 3, "BARO1_WCF_ENABLE": 1.000000, }) self.reboot_sitl() self.set_parameters({ "BARO1_WCF_FWD": -0.300000, "BARO1_WCF_BCK": -0.300000, "BARO1_WCF_RGT": 0.300000, "BARO1_WCF_LFT": 0.300000, "BARO1_WCF_UP": 0.300000, "BARO1_WCF_DN": 0.300000, "SIM_BARO_WCF_FWD": -0.300000, "SIM_BARO_WCF_BAK": -0.300000, "SIM_BARO_WCF_RGT": 0.300000, "SIM_BARO_WCF_LFT": 0.300000, "SIM_BARO_WCF_UP": 0.300000, "SIM_BARO_WCF_DN": 0.300000, "SIM_WIND_DIR": wind_dir_truth, "SIM_WIND_SPD": wind_spd_truth, "SIM_WIND_T": 1.000000, }) self.reboot_sitl() # require_absolute=True infers a GPS is present self.wait_ready_to_arm(require_absolute=False) self.progress("Climb to 20m in LOITER and yaw spin for 30 seconds") self.takeoff(10, mode="LOITER") self.set_rc(4, 1400) self.delay_sim_time(30) # check wind esitmates m = self.mav.recv_match(type='WIND', blocking=True) speed_error = abs(m.speed - wind_spd_truth) angle_error = abs(m.direction - wind_dir_truth) if (speed_error > 1.0): raise NotAchievedException("Wind speed incorrect - want %f +-1 got %f m/s" % (wind_spd_truth, m.speed)) if (angle_error > 15.0): raise NotAchievedException( "Wind direction incorrect - want %f +-15 got %f deg" % (wind_dir_truth, m.direction)) self.progress("Wind estimate is good, now check height variation for 30 seconds") # check height stability over another 30 seconds z_min = 1E6 z_max = -1E6 tstart = self.get_sim_time() while (self.get_sim_time() < tstart + 30): m = self.mav.recv_match(type='LOCAL_POSITION_NED', blocking=True) if (m.z > z_max): z_max = m.z if (m.z < z_min): z_min = m.z if (z_max-z_min > 0.5): raise NotAchievedException("Height variation is excessive") self.progress("Height variation is good") self.set_rc(4, 1500) self.land_and_disarm() except Exception as e: self.print_exception_caught(e) ex = e self.disarm_vehicle(force=True) self.reboot_sitl() self.context_pop() self.reboot_sitl() if ex is not None: raise ex def wait_generator_speed_and_state(self, rpm_min, rpm_max, want_state, timeout=240): tstart = self.get_sim_time() while True: if self.get_sim_time_cached() - tstart > timeout: raise NotAchievedException("Did not move to state/speed") m = self.assert_receive_message("GENERATOR_STATUS", timeout=10) if m.generator_speed < rpm_min: self.progress("Too slow (%u<%u)" % (m.generator_speed, rpm_min)) continue if m.generator_speed > rpm_max: self.progress("Too fast (%u>%u)" % (m.generator_speed, rpm_max)) continue if m.status != want_state: self.progress("Wrong state (got=%u want=%u)" % (m.status, want_state)) break self.progress("Got generator speed and state") def RichenPower(self): '''Test RichenPower generator''' self.set_parameters({ "SERIAL5_PROTOCOL": 30, "SIM_RICH_ENABLE": 1, "SERVO8_FUNCTION": 42, "SIM_RICH_CTRL": 8, "RC9_OPTION": 85, "LOG_DISARMED": 1, "BATT2_MONITOR": 17, "GEN_TYPE": 3, }) self.reboot_sitl() self.set_rc(9, 1000) # remember this is a switch position - stop self.customise_SITL_commandline(["--serial5=sim:richenpower"]) self.wait_statustext("requested state is not RUN", timeout=60) self.set_message_rate_hz("GENERATOR_STATUS", 10) self.wait_generator_speed_and_state(0, 0, mavutil.mavlink.MAV_GENERATOR_STATUS_FLAG_OFF) self.context_collect('STATUSTEXT') self.set_rc(9, 2000) # remember this is a switch position - run self.wait_statustext("Generator HIGH", check_context=True) self.set_rc(9, 1000) # remember this is a switch position - stop self.wait_statustext("requested state is not RUN", timeout=200) self.set_rc(9, 1500) # remember this is a switch position - idle self.wait_generator_speed_and_state(3000, 8000, mavutil.mavlink.MAV_GENERATOR_STATUS_FLAG_IDLE) self.set_rc(9, 2000) # remember this is a switch position - run # self.wait_generator_speed_and_state(3000, 30000, mavutil.mavlink.MAV_GENERATOR_STATUS_FLAG_WARMING_UP) self.wait_generator_speed_and_state(8000, 30000, mavutil.mavlink.MAV_GENERATOR_STATUS_FLAG_GENERATING) bs = self.mav.recv_match( type="BATTERY_STATUS", condition="BATTERY_STATUS.id==1", # id is zero-indexed timeout=1, blocking=True ) if bs is None: raise NotAchievedException("Did not receive BATTERY_STATUS") self.progress("Received battery status: %s" % str(bs)) want_bs_volt = 50000 if bs.voltages[0] != want_bs_volt: raise NotAchievedException("Battery voltage not as expected (want=%f) got=(%f)" % (want_bs_volt, bs.voltages[0],)) self.progress("Moving *back* to idle") self.set_rc(9, 1500) # remember this is a switch position - idle self.wait_generator_speed_and_state(3000, 10000, mavutil.mavlink.MAV_GENERATOR_STATUS_FLAG_IDLE) self.progress("Moving *back* to run") self.set_rc(9, 2000) # remember this is a switch position - run self.wait_generator_speed_and_state(8000, 30000, mavutil.mavlink.MAV_GENERATOR_STATUS_FLAG_GENERATING) self.set_message_rate_hz("GENERATOR_STATUS", -1) self.set_parameter("LOG_DISARMED", 0) if not self.current_onboard_log_contains_message("GEN"): raise NotAchievedException("Did not find expected GEN message") def IE24(self): '''Test IntelligentEnergy 2.4kWh generator with V1 and V2 telemetry protocols''' protocol_ver = (1, 2) for ver in protocol_ver: self.run_IE24(ver) def run_IE24(self, proto_ver): '''Test IntelligentEnergy 2.4kWh generator''' elec_battery_instance = 2 fuel_battery_instance = 1 self.set_parameters({ "SERIAL5_PROTOCOL": 30, "SERIAL5_BAUD": 115200, "GEN_TYPE": 2, "BATT%u_MONITOR" % (fuel_battery_instance + 1): 18, # fuel-based generator "BATT%u_MONITOR" % (elec_battery_instance + 1): 17, "SIM_IE24_ENABLE": proto_ver, "LOG_DISARMED": 1, }) self.customise_SITL_commandline(["--serial5=sim:ie24"]) self.start_subtest("Protocol %i: ensure that BATTERY_STATUS for electrical generator message looks right" % proto_ver) self.start_subsubtest("Protocol %i: Checking original voltage (electrical)" % proto_ver) # ArduPilot spits out essentially uninitialised battery # messages until we read things fromthe battery: self.delay_sim_time(30) original_elec_m = self.wait_message_field_values('BATTERY_STATUS', { "charge_state": mavutil.mavlink.MAV_BATTERY_CHARGE_STATE_OK }, instance=elec_battery_instance) original_fuel_m = self.wait_message_field_values('BATTERY_STATUS', { "charge_state": mavutil.mavlink.MAV_BATTERY_CHARGE_STATE_OK }, instance=fuel_battery_instance) if original_elec_m.battery_remaining < 90: raise NotAchievedException("Bad original percentage") self.start_subsubtest("Ensure percentage is counting down") self.wait_message_field_values('BATTERY_STATUS', { "battery_remaining": original_elec_m.battery_remaining - 1, }, instance=elec_battery_instance) self.start_subtest("Protocol %i: ensure that BATTERY_STATUS for fuel generator message looks right" % proto_ver) self.start_subsubtest("Protocol %i: Checking original voltage (fuel)" % proto_ver) # ArduPilot spits out essentially uninitialised battery # messages until we read things fromthe battery: if original_fuel_m.battery_remaining <= 90: raise NotAchievedException("Bad original percentage (want=>%f got %f" % (90, original_fuel_m.battery_remaining)) self.start_subsubtest("Protocol %i: Ensure percentage is counting down" % proto_ver) self.wait_message_field_values('BATTERY_STATUS', { "battery_remaining": original_fuel_m.battery_remaining - 1, }, instance=fuel_battery_instance) self.wait_ready_to_arm() self.arm_vehicle() self.disarm_vehicle() # Test for pre-arm check fail when state is not running self.start_subtest("Protocol %i: Without takeoff generator error should cause failsafe and disarm" % proto_ver) self.set_parameter("SIM_IE24_STATE", 8) self.wait_statustext("Status not running", timeout=40) self.try_arm(result=False, expect_msg="Status not running") self.set_parameter("SIM_IE24_STATE", 2) # Explicitly set state to running # Test that error code does result in failsafe self.start_subtest("Protocol %i: Without taken off generator error should cause failsafe and disarm" % proto_ver) self.change_mode("STABILIZE") self.set_parameter("DISARM_DELAY", 0) self.arm_vehicle() self.set_parameter("SIM_IE24_ERROR", 30) self.disarm_wait(timeout=1) self.set_parameter("SIM_IE24_ERROR", 0) self.set_parameter("DISARM_DELAY", 10) def AuxSwitchOptions(self): '''Test random aux mode options''' self.set_parameter("RC7_OPTION", 58) # clear waypoints self.load_mission("copter_loiter_to_alt.txt") self.set_rc(7, 1000) self.assert_mission_count(5) self.progress("Clear mission") self.set_rc(7, 2000) self.delay_sim_time(1) # allow switch to debounce self.assert_mission_count(0) self.set_rc(7, 1000) self.set_parameter("RC7_OPTION", 24) # reset mission self.delay_sim_time(2) self.load_mission("copter_loiter_to_alt.txt") set_wp = 4 self.set_current_waypoint(set_wp) self.wait_current_waypoint(set_wp, timeout=10) self.progress("Reset mission") self.set_rc(7, 2000) self.delay_sim_time(1) self.wait_current_waypoint(0, timeout=10) self.set_rc(7, 1000) def AuxFunctionsInMission(self): '''Test use of auxilliary functions in missions''' self.load_mission("aux_functions.txt") self.change_mode('LOITER') self.wait_ready_to_arm() self.arm_vehicle() self.change_mode('AUTO') self.set_rc(3, 1500) self.wait_mode('ALT_HOLD') self.change_mode('AUTO') self.wait_rtl_complete() def MAV_CMD_AIRFRAME_CONFIGURATION(self): '''deploy/retract landing gear using mavlink command''' self.context_push() self.set_parameters({ "LGR_ENABLE": 1, "SERVO10_FUNCTION": 29, "SERVO10_MIN": 1001, "SERVO10_MAX": 1999, }) self.reboot_sitl() # starts loose: self.wait_servo_channel_value(10, 0) # 0 is down: self.start_subtest("Put gear down") self.run_cmd(mavutil.mavlink.MAV_CMD_AIRFRAME_CONFIGURATION, p2=0) self.wait_servo_channel_value(10, 1999) # 1 is up: self.start_subtest("Put gear up") self.run_cmd_int(mavutil.mavlink.MAV_CMD_AIRFRAME_CONFIGURATION, p2=1) self.wait_servo_channel_value(10, 1001) # 0 is down: self.start_subtest("Put gear down") self.run_cmd(mavutil.mavlink.MAV_CMD_AIRFRAME_CONFIGURATION, p2=0) self.wait_servo_channel_value(10, 1999) self.context_pop() self.reboot_sitl() def WatchAlts(self): '''Ensure we can monitor different altitudes''' self.takeoff(30, mode='GUIDED') self.delay_sim_time(5, reason='let altitude settle') self.progress("Testing absolute altitudes") absolute_alt = self.get_altitude(altitude_source='SIM_STATE.alt') self.progress("absolute_alt=%f" % absolute_alt) epsilon = 4 # SIM_STATE and vehicle state can be off by a bit... for source in ['GLOBAL_POSITION_INT.alt', 'SIM_STATE.alt', 'GPS_RAW_INT.alt']: self.watch_altitude_maintained( absolute_alt-epsilon, absolute_alt+epsilon, altitude_source=source ) self.progress("Testing absolute altitudes") relative_alt = self.get_altitude(relative=True) for source in ['GLOBAL_POSITION_INT.relative_alt']: self.watch_altitude_maintained( relative_alt-epsilon, relative_alt+epsilon, altitude_source=source ) self.do_RTL() def fly_rangefinder_drivers_fly(self, rangefinders): '''ensure rangefinder gives height-above-ground''' self.change_mode('GUIDED') self.wait_ready_to_arm() self.arm_vehicle() expected_alt = 5 self.user_takeoff(alt_min=expected_alt) rf = self.mav.recv_match(type="RANGEFINDER", timeout=1, blocking=True) if rf is None: raise NotAchievedException("Did not receive rangefinder message") gpi = self.mav.recv_match(type='GLOBAL_POSITION_INT', blocking=True, timeout=1) if gpi is None: raise NotAchievedException("Did not receive GLOBAL_POSITION_INT message") if abs(rf.distance - gpi.relative_alt/1000.0) > 1: raise NotAchievedException( "rangefinder alt (%s) disagrees with global-position-int.relative_alt (%s)" % (rf.distance, gpi.relative_alt/1000.0) ) for i in range(0, len(rangefinders)): name = rangefinders[i] self.progress("i=%u (%s)" % (i, name)) ds = self.mav.recv_match( type="DISTANCE_SENSOR", timeout=2, blocking=True, condition="DISTANCE_SENSOR.id==%u" % i ) if ds is None: raise NotAchievedException("Did not receive DISTANCE_SENSOR message for id==%u (%s)" % (i, name)) self.progress("Got: %s" % str(ds)) if abs(ds.current_distance/100.0 - gpi.relative_alt/1000.0) > 1: raise NotAchievedException( "distance sensor.current_distance (%f) (%s) disagrees with global-position-int.relative_alt (%s)" % (ds.current_distance/100.0, name, gpi.relative_alt/1000.0)) self.land_and_disarm() self.progress("Ensure RFND messages in log") if not self.current_onboard_log_contains_message("RFND"): raise NotAchievedException("No RFND messages in log") def MAVProximity(self): '''Test MAVLink proximity driver''' self.start_subtest("Test mavlink proximity sensor using DISTANCE_SENSOR messages") # noqa self.context_push() ex = None try: self.set_parameter("SERIAL5_PROTOCOL", 1) self.set_parameter("PRX1_TYPE", 2) # mavlink self.reboot_sitl() self.progress("Should be unhealthy while we don't send messages") self.assert_sensor_state(mavutil.mavlink.MAV_SYS_STATUS_SENSOR_PROXIMITY, True, True, False) self.progress("Should be healthy while we're sending good messages") tstart = self.get_sim_time() while True: if self.get_sim_time() - tstart > 5: raise NotAchievedException("Sensor did not come good") self.mav.mav.distance_sensor_send( 0, # time_boot_ms 10, # min_distance cm 50, # max_distance cm 20, # current_distance cm mavutil.mavlink.MAV_DISTANCE_SENSOR_LASER, # type 21, # id mavutil.mavlink.MAV_SENSOR_ROTATION_NONE, # orientation 255 # covariance ) if self.sensor_has_state(mavutil.mavlink.MAV_SYS_STATUS_SENSOR_PROXIMITY, True, True, True): self.progress("Sensor has good state") break self.delay_sim_time(0.1) self.progress("Should be unhealthy again if we stop sending messages") self.delay_sim_time(1) self.assert_sensor_state(mavutil.mavlink.MAV_SYS_STATUS_SENSOR_PROXIMITY, True, True, False) # now make sure we get echoed back the same sorts of things we send: # distances are in cm distance_map = { mavutil.mavlink.MAV_SENSOR_ROTATION_NONE: 30, mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_45: 35, mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_90: 20, mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_135: 15, mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_180: 70, mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_225: 80, mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_270: 10, mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_315: 90, } wanted_distances = copy.copy(distance_map) sensor_enum = mavutil.mavlink.enums["MAV_SENSOR_ORIENTATION"] def my_message_hook(mav, m): if m.get_type() != 'DISTANCE_SENSOR': return self.progress("Got (%s)" % str(m)) want = distance_map[m.orientation] got = m.current_distance # ArduPilot's floating point conversions make it imprecise: delta = abs(want-got) if delta > 1: self.progress( "Wrong distance (%s): want=%f got=%f" % (sensor_enum[m.orientation].name, want, got)) return if m.orientation not in wanted_distances: return self.progress( "Correct distance (%s): want=%f got=%f" % (sensor_enum[m.orientation].name, want, got)) del wanted_distances[m.orientation] self.install_message_hook_context(my_message_hook) tstart = self.get_sim_time() while True: if self.get_sim_time() - tstart > 5: raise NotAchievedException("Sensor did not give right distances") # noqa for (orient, dist) in distance_map.items(): self.mav.mav.distance_sensor_send( 0, # time_boot_ms 10, # min_distance cm 90, # max_distance cm dist, # current_distance cm mavutil.mavlink.MAV_DISTANCE_SENSOR_LASER, # type 21, # id orient, # orientation 255 # covariance ) self.wait_heartbeat() if len(wanted_distances.keys()) == 0: break except Exception as e: self.print_exception_caught(e) ex = e self.context_pop() self.reboot_sitl() if ex is not None: raise ex def fly_rangefinder_mavlink_distance_sensor(self): self.start_subtest("Test mavlink rangefinder using DISTANCE_SENSOR messages") self.context_push() self.set_parameters({ "RTL_ALT_TYPE": 0, "LGR_ENABLE": 1, "LGR_DEPLOY_ALT": 1, "LGR_RETRACT_ALT": 10, # metres "SERVO10_FUNCTION": 29 }) ex = None try: self.set_parameter("SERIAL5_PROTOCOL", 1) self.set_parameter("RNGFND1_TYPE", 10) self.reboot_sitl() self.set_parameter("RNGFND1_MAX_CM", 32767) self.progress("Should be unhealthy while we don't send messages") self.assert_sensor_state(mavutil.mavlink.MAV_SYS_STATUS_SENSOR_LASER_POSITION, True, True, False) self.progress("Should be healthy while we're sending good messages") tstart = self.get_sim_time() while True: if self.get_sim_time() - tstart > 5: raise NotAchievedException("Sensor did not come good") self.mav.mav.distance_sensor_send( 0, # time_boot_ms 10, # min_distance 50, # max_distance 20, # current_distance mavutil.mavlink.MAV_DISTANCE_SENSOR_LASER, # type 21, # id mavutil.mavlink.MAV_SENSOR_ROTATION_PITCH_270, # orientation 255 # covariance ) if self.sensor_has_state(mavutil.mavlink.MAV_SYS_STATUS_SENSOR_LASER_POSITION, True, True, True): self.progress("Sensor has good state") break self.delay_sim_time(0.1) self.progress("Should be unhealthy again if we stop sending messages") self.delay_sim_time(1) self.assert_sensor_state(mavutil.mavlink.MAV_SYS_STATUS_SENSOR_LASER_POSITION, True, True, False) self.progress("Landing gear should deploy with current_distance below min_distance") self.change_mode('STABILIZE') timeout = 60 tstart = self.get_sim_time() while not self.sensor_has_state(mavutil.mavlink.MAV_SYS_STATUS_PREARM_CHECK, True, True, True): if self.get_sim_time() - tstart > timeout: raise NotAchievedException("Failed to become armable after %f seconds" % timeout) self.mav.mav.distance_sensor_send( 0, # time_boot_ms 100, # min_distance (cm) 2500, # max_distance (cm) 200, # current_distance (cm) mavutil.mavlink.MAV_DISTANCE_SENSOR_LASER, # type 21, # id mavutil.mavlink.MAV_SENSOR_ROTATION_PITCH_270, # orientation 255 # covariance ) self.arm_vehicle() self.delay_sim_time(1) # servo function maps only periodically updated # self.send_debug_trap() self.run_cmd( mavutil.mavlink.MAV_CMD_AIRFRAME_CONFIGURATION, p2=0, # deploy ) self.context_collect("STATUSTEXT") tstart = self.get_sim_time() while True: if self.get_sim_time_cached() - tstart > 5: raise NotAchievedException("Retraction did not happen") self.mav.mav.distance_sensor_send( 0, # time_boot_ms 100, # min_distance (cm) 6000, # max_distance (cm) 1500, # current_distance (cm) mavutil.mavlink.MAV_DISTANCE_SENSOR_LASER, # type 21, # id mavutil.mavlink.MAV_SENSOR_ROTATION_PITCH_270, # orientation 255 # covariance ) self.delay_sim_time(0.1) try: self.wait_text("LandingGear: RETRACT", check_context=True, timeout=0.1) except Exception: continue self.progress("Retracted") break # self.send_debug_trap() while True: if self.get_sim_time_cached() - tstart > 5: raise NotAchievedException("Deployment did not happen") self.progress("Sending distance-sensor message") self.mav.mav.distance_sensor_send( 0, # time_boot_ms 300, # min_distance 500, # max_distance 250, # current_distance mavutil.mavlink.MAV_DISTANCE_SENSOR_LASER, # type 21, # id mavutil.mavlink.MAV_SENSOR_ROTATION_PITCH_270, # orientation 255 # covariance ) try: self.wait_text("LandingGear: DEPLOY", check_context=True, timeout=0.1) except Exception: continue self.progress("Deployed") break self.disarm_vehicle() except Exception as e: self.print_exception_caught(e) ex = e self.context_pop() self.reboot_sitl() if ex is not None: raise ex def GSF(self): '''test the Gaussian Sum filter''' self.context_push() self.set_parameter("EK2_ENABLE", 1) self.reboot_sitl() self.takeoff(20, mode='LOITER') self.set_rc(2, 1400) self.delay_sim_time(5) self.set_rc(2, 1500) self.progress("Path: %s" % self.current_onboard_log_filepath()) dfreader = self.dfreader_for_current_onboard_log() self.do_RTL() self.context_pop() self.reboot_sitl() # ensure log messages present want = set(["XKY0", "XKY1", "NKY0", "NKY1"]) still_want = want while len(still_want): m = dfreader.recv_match(type=want) if m is None: raise NotAchievedException("Did not get %s" % want) still_want.remove(m.get_type()) def GSF_reset(self): '''test the Gaussian Sum filter based Emergency reset''' self.context_push() self.set_parameters({ "COMPASS_ORIENT": 4, # yaw 180 "COMPASS_USE2": 0, # disable backup compasses to avoid pre-arm failures "COMPASS_USE3": 0, }) self.reboot_sitl() self.change_mode('GUIDED') self.wait_ready_to_arm() # record starting position startpos = self.mav.recv_match(type='LOCAL_POSITION_NED', blocking=True) self.progress("startpos=%s" % str(startpos)) # arm vehicle and takeoff to at least 5m self.arm_vehicle() expected_alt = 5 self.user_takeoff(alt_min=expected_alt) # watch for emergency yaw reset self.wait_text("EKF3 IMU. emergency yaw reset", timeout=5, regex=True) # record how far vehicle flew off endpos = self.mav.recv_match(type='LOCAL_POSITION_NED', blocking=True) delta_x = endpos.x - startpos.x delta_y = endpos.y - startpos.y dist_m = math.sqrt(delta_x*delta_x + delta_y*delta_y) self.progress("GSF yaw reset triggered at %f meters" % dist_m) self.do_RTL() self.context_pop() self.reboot_sitl() # ensure vehicle did not fly too far dist_m_max = 8 if dist_m > dist_m_max: raise NotAchievedException("GSF reset failed, vehicle flew too far (%f > %f)" % (dist_m, dist_m_max)) def fly_rangefinder_mavlink(self): self.fly_rangefinder_mavlink_distance_sensor() # explicit test for the mavlink driver as it doesn't play so nice: self.set_parameters({ "SERIAL5_PROTOCOL": 1, "RNGFND1_TYPE": 10, }) self.customise_SITL_commandline(['--serial5=sim:rf_mavlink']) self.change_mode('GUIDED') self.wait_ready_to_arm() self.arm_vehicle() expected_alt = 5 self.user_takeoff(alt_min=expected_alt) tstart = self.get_sim_time() while True: if self.get_sim_time() - tstart > 5: raise NotAchievedException("Mavlink rangefinder not working") rf = self.mav.recv_match(type="RANGEFINDER", timeout=1, blocking=True) if rf is None: raise NotAchievedException("Did not receive rangefinder message") gpi = self.mav.recv_match(type='GLOBAL_POSITION_INT', blocking=True, timeout=1) if gpi is None: raise NotAchievedException("Did not receive GLOBAL_POSITION_INT message") if abs(rf.distance - gpi.relative_alt/1000.0) > 1: print("rangefinder alt (%s) disagrees with global-position-int.relative_alt (%s)" % (rf.distance, gpi.relative_alt/1000.0)) continue ds = self.mav.recv_match( type="DISTANCE_SENSOR", timeout=2, blocking=True, ) if ds is None: raise NotAchievedException("Did not receive DISTANCE_SENSOR message") self.progress("Got: %s" % str(ds)) if abs(ds.current_distance/100.0 - gpi.relative_alt/1000.0) > 1: print( "distance sensor.current_distance (%f) disagrees with global-position-int.relative_alt (%s)" % (ds.current_distance/100.0, gpi.relative_alt/1000.0)) continue break self.progress("mavlink rangefinder OK") self.land_and_disarm() def MaxBotixI2CXL(self): '''Test maxbotix rangefinder drivers''' ex = None try: self.context_push() self.start_subtest("No messages") rf = self.mav.recv_match(type="DISTANCE_SENSOR", timeout=5, blocking=True) if rf is not None: raise NotAchievedException("Receiving DISTANCE_SENSOR when I shouldn't be") self.start_subtest("Default address") self.set_parameter("RNGFND1_TYPE", 2) # maxbotix self.reboot_sitl() self.do_timesync_roundtrip() rf = self.mav.recv_match(type="DISTANCE_SENSOR", timeout=5, blocking=True) self.progress("Got (%s)" % str(rf)) if rf is None: raise NotAchievedException("Didn't receive DISTANCE_SENSOR when I should've") self.start_subtest("Explicitly set to default address") self.set_parameters({ "RNGFND1_TYPE": 2, # maxbotix "RNGFND1_ADDR": 0x70, }) self.reboot_sitl() self.do_timesync_roundtrip() rf = self.mav.recv_match(type="DISTANCE_SENSOR", timeout=5, blocking=True) self.progress("Got (%s)" % str(rf)) if rf is None: raise NotAchievedException("Didn't receive DISTANCE_SENSOR when I should've") self.start_subtest("Explicitly set to non-default address") self.set_parameter("RNGFND1_ADDR", 0x71) self.reboot_sitl() self.do_timesync_roundtrip() rf = self.mav.recv_match(type="DISTANCE_SENSOR", timeout=5, blocking=True) self.progress("Got (%s)" % str(rf)) if rf is None: raise NotAchievedException("Didn't receive DISTANCE_SENSOR when I should've") self.start_subtest("Two MaxBotix RangeFinders") self.set_parameters({ "RNGFND1_TYPE": 2, # maxbotix "RNGFND1_ADDR": 0x70, "RNGFND1_MIN_CM": 150, "RNGFND2_TYPE": 2, # maxbotix "RNGFND2_ADDR": 0x71, "RNGFND2_MIN_CM": 250, }) self.reboot_sitl() self.do_timesync_roundtrip() for i in [0, 1]: rf = self.mav.recv_match( type="DISTANCE_SENSOR", timeout=5, blocking=True, condition="DISTANCE_SENSOR.id==%u" % i ) self.progress("Got id==%u (%s)" % (i, str(rf))) if rf is None: raise NotAchievedException("Didn't receive DISTANCE_SENSOR when I should've") expected_dist = 150 if i == 1: expected_dist = 250 if rf.min_distance != expected_dist: raise NotAchievedException("Unexpected min_cm (want=%u got=%u)" % (expected_dist, rf.min_distance)) self.context_pop() except Exception as e: self.print_exception_caught(e) ex = e self.reboot_sitl() if ex is not None: raise ex def RangeFinderDrivers(self): '''Test rangefinder drivers''' self.set_parameters({ "RTL_ALT": 500, "RTL_ALT_TYPE": 1, }) drivers = [ ("lightwareserial", 8), # autodetected between this and -binary ("lightwareserial-binary", 8), ("USD1_v0", 11), ("USD1_v1", 11), ("leddarone", 12), ("maxsonarseriallv", 13), ("nmea", 17, {"baud": 9600}), ("wasp", 18), ("benewake_tf02", 19), ("blping", 23), ("benewake_tfmini", 20), ("lanbao", 26), ("benewake_tf03", 27), ("gyus42v2", 31), ("teraranger_serial", 35), ("nooploop_tofsense", 37), ("ainsteinlrd1", 42), ("rds02uf", 43), ] while len(drivers): do_drivers = drivers[0:3] drivers = drivers[3:] command_line_args = [] self.context_push() for offs in range(3): serial_num = offs + 4 if len(do_drivers) > offs: if len(do_drivers[offs]) > 2: (sim_name, rngfnd_param_value, kwargs) = do_drivers[offs] else: (sim_name, rngfnd_param_value) = do_drivers[offs] kwargs = {} command_line_args.append("--serial%s=sim:%s" % (serial_num, sim_name)) sets = { "SERIAL%u_PROTOCOL" % serial_num: 9, # rangefinder "RNGFND%u_TYPE" % (offs+1): rngfnd_param_value, } if "baud" in kwargs: sets["SERIAL%u_BAUD" % serial_num] = kwargs["baud"] self.set_parameters(sets) self.customise_SITL_commandline(command_line_args) self.fly_rangefinder_drivers_fly([x[0] for x in do_drivers]) self.context_pop() self.fly_rangefinder_mavlink() i2c_drivers = [ ("maxbotixi2cxl", 2), ] while len(i2c_drivers): do_drivers = i2c_drivers[0:9] i2c_drivers = i2c_drivers[9:] count = 1 p = {} for d in do_drivers: (sim_name, rngfnd_param_value) = d p["RNGFND%u_TYPE" % count] = rngfnd_param_value count += 1 self.set_parameters(p) self.reboot_sitl() self.fly_rangefinder_drivers_fly([x[0] for x in do_drivers]) def RangeFinderDriversMaxAlt(self): '''test max-height behaviour''' # lightwareserial goes to 130m when out of range self.set_parameters({ "SERIAL4_PROTOCOL": 9, "RNGFND1_TYPE": 8, "WPNAV_SPEED_UP": 1000, # cm/s }) self.customise_SITL_commandline([ "--serial4=sim:lightwareserial", ]) self.takeoff(95, mode='GUIDED', timeout=240, max_err=0.5) self.assert_rangefinder_distance_between(90, 100) self.wait_rangefinder_distance(90, 100) rf_bit = mavutil.mavlink.MAV_SYS_STATUS_SENSOR_LASER_POSITION self.assert_sensor_state(rf_bit, present=True, enabled=True, healthy=True) self.assert_distance_sensor_quality(100) self.progress("Moving higher to be out of max rangefinder range") self.fly_guided_move_local(0, 0, 150) # sensor remains healthy even out-of-range self.assert_sensor_state(rf_bit, present=True, enabled=True, healthy=True) self.assert_distance_sensor_quality(1) self.do_RTL() def ShipTakeoff(self): '''Fly Simulated Ship Takeoff''' # test ship takeoff self.wait_groundspeed(0, 2) self.set_parameters({ "SIM_SHIP_ENABLE": 1, "SIM_SHIP_SPEED": 10, "SIM_SHIP_DSIZE": 2, }) self.wait_ready_to_arm() # we should be moving with the ship self.wait_groundspeed(9, 11) self.takeoff(10) # above ship our speed drops to 0 self.wait_groundspeed(0, 2) self.land_and_disarm() # ship will have moved on, so we land on the water which isn't moving self.wait_groundspeed(0, 2) def ParameterValidation(self): '''Test parameters are checked for validity''' # wait 10 seconds for initialisation self.delay_sim_time(10) self.progress("invalid; min must be less than max:") self.set_parameters({ "MOT_PWM_MIN": 100, "MOT_PWM_MAX": 50, }) self.drain_mav() self.assert_prearm_failure("Motors: Check MOT_PWM_MIN and MOT_PWM_MAX") self.progress("invalid; min must be less than max (equal case):") self.set_parameters({ "MOT_PWM_MIN": 100, "MOT_PWM_MAX": 100, }) self.drain_mav() self.assert_prearm_failure("Motors: Check MOT_PWM_MIN and MOT_PWM_MAX") self.progress("Spin min more than 0.3") self.set_parameters({ "MOT_PWM_MIN": 1000, "MOT_PWM_MAX": 2000, "MOT_SPIN_MIN": 0.5, }) self.drain_mav() self.assert_prearm_failure("PreArm: Motors: MOT_SPIN_MIN too high 0.50 > 0.3") self.progress("Spin arm more than spin min") self.set_parameters({ "MOT_SPIN_MIN": 0.1, "MOT_SPIN_ARM": 0.2, }) self.drain_mav() self.assert_prearm_failure("PreArm: Motors: MOT_SPIN_ARM > MOT_SPIN_MIN") def SensorErrorFlags(self): '''Test we get ERR messages when sensors have issues''' self.reboot_sitl() for (param_names, param_value, expected_subsys, expected_ecode, desc) in [ (['SIM_BARO_DISABLE', 'SIM_BAR2_DISABLE'], 1, 18, 4, 'unhealthy'), (['SIM_BARO_DISABLE', 'SIM_BAR2_DISABLE'], 0, 18, 0, 'healthy'), (['SIM_MAG1_FAIL', 'SIM_MAG2_FAIL', 'SIM_MAG3_FAIL'], 1, 3, 4, 'unhealthy'), (['SIM_MAG1_FAIL', 'SIM_MAG2_FAIL', 'SIM_MAG3_FAIL'], 0, 3, 0, 'healthy'), ]: sp = dict() for name in param_names: sp[name] = param_value self.set_parameters(sp) self.delay_sim_time(1) mlog = self.dfreader_for_current_onboard_log() success = False while True: m = mlog.recv_match(type='ERR') print("Got (%s)" % str(m)) if m is None: break if m.Subsys == expected_subsys and m.ECode == expected_ecode: # baro / ecode success = True break if not success: raise NotAchievedException("Did not find %s log message" % desc) def AltEstimation(self): '''Test that Alt Estimation is mandatory for ALT_HOLD''' self.context_push() ex = None try: # disable barometer so there is no altitude source self.set_parameters({ "SIM_BARO_DISABLE": 1, "SIM_BARO2_DISABL": 1, }) self.wait_gps_disable(position_vertical=True) # turn off arming checks (mandatory arming checks will still be run) self.set_parameter("ARMING_CHECK", 0) # delay 12 sec to allow EKF to lose altitude estimate self.delay_sim_time(12) self.change_mode("ALT_HOLD") self.assert_prearm_failure("Need Alt Estimate") # force arm vehicle in stabilize to bypass barometer pre-arm checks self.change_mode("STABILIZE") self.arm_vehicle() self.set_rc(3, 1700) try: self.change_mode("ALT_HOLD", timeout=10) except AutoTestTimeoutException: self.progress("PASS not able to set mode without Position : %s" % "ALT_HOLD") # check that mode change to ALT_HOLD has failed (it should) if self.mode_is("ALT_HOLD"): raise NotAchievedException("Changed to ALT_HOLD with no altitude estimate") except Exception as e: self.print_exception_caught(e) ex = e self.context_pop() self.disarm_vehicle(force=True) if ex is not None: raise ex def EKFSource(self): '''Check EKF Source Prearms work''' self.context_push() ex = None try: self.set_parameters({ "EK3_ENABLE": 1, "AHRS_EKF_TYPE": 3, }) self.wait_ready_to_arm() self.start_subtest("bad yaw source") self.set_parameter("EK3_SRC3_YAW", 17) self.assert_prearm_failure("Check EK3_SRC3_YAW") self.context_push() self.start_subtest("missing required yaw source") self.set_parameters({ "EK3_SRC3_YAW": 3, # External Yaw with Compass Fallback "COMPASS_USE": 0, "COMPASS_USE2": 0, "COMPASS_USE3": 0, }) self.assert_prearm_failure("EK3 sources require Compass") self.context_pop() except Exception as e: self.disarm_vehicle(force=True) self.print_exception_caught(e) ex = e self.context_pop() if ex is not None: raise ex def test_replay_gps_bit(self): self.set_parameters({ "LOG_REPLAY": 1, "LOG_DISARMED": 1, "EK3_ENABLE": 1, "EK2_ENABLE": 1, "AHRS_TRIM_X": 0.01, "AHRS_TRIM_Y": -0.03, "GPS2_TYPE": 1, "GPS1_POS_X": 0.1, "GPS1_POS_Y": 0.2, "GPS1_POS_Z": 0.3, "GPS2_POS_X": -0.1, "GPS2_POS_Y": -0.02, "GPS2_POS_Z": -0.31, "INS_POS1_X": 0.12, "INS_POS1_Y": 0.14, "INS_POS1_Z": -0.02, "INS_POS2_X": 0.07, "INS_POS2_Y": 0.012, "INS_POS2_Z": -0.06, "RNGFND1_TYPE": 1, "RNGFND1_PIN": 0, "RNGFND1_SCALING": 30, "RNGFND1_POS_X": 0.17, "RNGFND1_POS_Y": -0.07, "RNGFND1_POS_Z": -0.005, "SIM_SONAR_SCALE": 30, "SIM_GPS2_DISABLE": 0, }) self.reboot_sitl() self.wait_sensor_state(mavutil.mavlink.MAV_SYS_STATUS_LOGGING, True, True, True) current_log_filepath = self.current_onboard_log_filepath() self.progress("Current log path: %s" % str(current_log_filepath)) self.change_mode("LOITER") self.wait_ready_to_arm(require_absolute=True) self.arm_vehicle() self.takeoffAndMoveAway() self.do_RTL() self.reboot_sitl() return current_log_filepath def test_replay_beacon_bit(self): self.set_parameters({ "LOG_REPLAY": 1, "LOG_DISARMED": 1, }) old_onboard_logs = sorted(self.log_list()) self.BeaconPosition() new_onboard_logs = sorted(self.log_list()) log_difference = [x for x in new_onboard_logs if x not in old_onboard_logs] return log_difference[2] def test_replay_optical_flow_bit(self): self.set_parameters({ "LOG_REPLAY": 1, "LOG_DISARMED": 1, }) old_onboard_logs = sorted(self.log_list()) self.OpticalFlowLimits() new_onboard_logs = sorted(self.log_list()) log_difference = [x for x in new_onboard_logs if x not in old_onboard_logs] print("log difference: %s" % str(log_difference)) return log_difference[0] def GPSBlendingLog(self): '''Test GPS Blending''' '''ensure we get dataflash log messages for blended instance''' self.context_push() ex = None try: # configure: self.set_parameters({ "GPS2_TYPE": 1, "SIM_GPS2_TYPE": 1, "SIM_GPS2_DISABLE": 0, "GPS_AUTO_SWITCH": 2, }) self.reboot_sitl() # ensure we're seeing the second GPS: tstart = self.get_sim_time() while True: if self.get_sim_time_cached() - tstart > 60: raise NotAchievedException("Did not get good GPS2_RAW message") m = self.mav.recv_match(type='GPS2_RAW', blocking=True, timeout=1) self.progress("%s" % str(m)) if m is None: continue if m.lat == 0: continue break # create a log we can expect blended data to appear in: self.change_mode('LOITER') self.wait_ready_to_arm() self.arm_vehicle() self.delay_sim_time(5) self.disarm_vehicle() # inspect generated log for messages: dfreader = self.dfreader_for_current_onboard_log() wanted = set([0, 1, 2]) seen_primary_change = False while True: m = dfreader.recv_match(type=["GPS", "EV"]) # disarmed if m is None: break mtype = m.get_type() if mtype == 'GPS': try: wanted.remove(m.I) except KeyError: continue elif mtype == 'EV': if m.Id == 67: # GPS_PRIMARY_CHANGED seen_primary_change = True if len(wanted) == 0 and seen_primary_change: break if len(wanted): raise NotAchievedException("Did not get all three GPS types") if not seen_primary_change: raise NotAchievedException("Did not see primary change") except Exception as e: self.progress("Caught exception: %s" % self.get_exception_stacktrace(e)) ex = e self.context_pop() self.reboot_sitl() if ex is not None: raise ex def GPSBlending(self): '''Test GPS Blending''' '''ensure we get dataflash log messages for blended instance''' self.context_push() # configure: self.set_parameters({ "WP_YAW_BEHAVIOR": 0, # do not yaw "GPS2_TYPE": 1, "SIM_GPS2_TYPE": 1, "SIM_GPS2_DISABLE": 0, "SIM_GPS_POS_X": 1.0, "SIM_GPS_POS_Y": -1.0, "SIM_GPS2_POS_X": -1.0, "SIM_GPS2_POS_Y": 1.0, "GPS_AUTO_SWITCH": 2, }) self.reboot_sitl() alt = 10 self.takeoff(alt, mode='GUIDED') self.fly_guided_move_local(30, 0, alt) self.fly_guided_move_local(30, 30, alt) self.fly_guided_move_local(0, 30, alt) self.fly_guided_move_local(0, 0, alt) self.change_mode('LAND') current_log_file = self.dfreader_for_current_onboard_log() self.wait_disarmed() # ensure that the blended solution is always about half-way # between the two GPSs: current_ts = None while True: m = current_log_file.recv_match(type='GPS') if m is None: break if current_ts is None: if m.I != 0: # noqa continue current_ts = m.TimeUS measurements = {} if m.TimeUS != current_ts: current_ts = None continue measurements[m.I] = (m.Lat, m.Lng) if len(measurements) == 3: # check lat: for n in 0, 1: expected_blended = (measurements[0][n] + measurements[1][n])/2 epsilon = 0.0000002 error = abs(measurements[2][n] - expected_blended) if error > epsilon: raise NotAchievedException("Blended diverged") current_ts = None self.context_pop() self.reboot_sitl() def GPSWeightedBlending(self): '''Test GPS Weighted Blending''' self.context_push() # configure: self.set_parameters({ "WP_YAW_BEHAVIOR": 0, # do not yaw "GPS2_TYPE": 1, "SIM_GPS2_TYPE": 1, "SIM_GPS2_DISABLE": 0, "SIM_GPS_POS_X": 1.0, "SIM_GPS_POS_Y": -1.0, "SIM_GPS2_POS_X": -1.0, "SIM_GPS2_POS_Y": 1.0, "GPS_AUTO_SWITCH": 2, }) # configure velocity errors such that the 1st GPS should be # 4/5, second GPS 1/5 of result (0.5**2)/((0.5**2)+(1.0**2)) self.set_parameters({ "SIM_GPS_VERR_X": 0.3, # m/s "SIM_GPS_VERR_Y": 0.4, "SIM_GPS2_VERR_X": 0.6, # m/s "SIM_GPS2_VERR_Y": 0.8, "GPS_BLEND_MASK": 4, # use only speed for blend calculations }) self.reboot_sitl() alt = 10 self.takeoff(alt, mode='GUIDED') self.fly_guided_move_local(30, 0, alt) self.fly_guided_move_local(30, 30, alt) self.fly_guided_move_local(0, 30, alt) self.fly_guided_move_local(0, 0, alt) self.change_mode('LAND') current_log_file = self.dfreader_for_current_onboard_log() self.wait_disarmed() # ensure that the blended solution is always about half-way # between the two GPSs: current_ts = None while True: m = current_log_file.recv_match(type='GPS') if m is None: break if current_ts is None: if m.I != 0: # noqa continue current_ts = m.TimeUS measurements = {} if m.TimeUS != current_ts: current_ts = None continue measurements[m.I] = (m.Lat, m.Lng, m.Alt) if len(measurements) == 3: # check lat: for n in 0, 1, 2: expected_blended = 0.8*measurements[0][n] + 0.2*measurements[1][n] axis_epsilons = [0.0000002, 0.0000002, 0.2] epsilon = axis_epsilons[n] error = abs(measurements[2][n] - expected_blended) if error > epsilon: raise NotAchievedException(f"Blended diverged {n=} {measurements[0][n]=} {measurements[1][n]=}") current_ts = None self.context_pop() self.reboot_sitl() def GPSBlendingAffinity(self): '''test blending when affinity in use''' # configure: self.set_parameters({ "WP_YAW_BEHAVIOR": 0, # do not yaw "GPS2_TYPE": 1, "SIM_GPS2_TYPE": 1, "SIM_GPS2_DISABLE": 0, "SIM_GPS_POS_X": 1.0, "SIM_GPS_POS_Y": -1.0, "SIM_GPS2_POS_X": -1.0, "SIM_GPS2_POS_Y": 1.0, "GPS_AUTO_SWITCH": 2, "EK3_AFFINITY" : 1, "EK3_IMU_MASK": 7, "SIM_IMU_COUNT": 3, "INS_ACC3OFFS_X": 0.001, "INS_ACC3OFFS_Y": 0.001, "INS_ACC3OFFS_Z": 0.001, }) # force-calibration of accel: self.run_cmd(mavutil.mavlink.MAV_CMD_PREFLIGHT_CALIBRATION, p5=76) self.reboot_sitl() alt = 10 self.takeoff(alt, mode='GUIDED') self.fly_guided_move_local(30, 0, alt) self.fly_guided_move_local(30, 30, alt) self.fly_guided_move_local(0, 30, alt) self.fly_guided_move_local(0, 0, alt) self.change_mode('LAND') current_log_file = self.dfreader_for_current_onboard_log() self.wait_disarmed() # ensure that the blended solution is always about half-way # between the two GPSs: current_ts = None max_errors = [0, 0, 0] while True: m = current_log_file.recv_match(type='XKF1') if m is None: break if current_ts is None: if m.C != 0: # noqa continue current_ts = m.TimeUS measurements = {} if m.TimeUS != current_ts: current_ts = None continue measurements[m.C] = (m.PN, m.PE, m.PD) if len(measurements) == 3: # check lat: for n in 0, 1, 2: expected_blended = 0.5*measurements[0][n] + 0.5*measurements[1][n] axis_epsilons = [0.02, 0.02, 0.03] epsilon = axis_epsilons[n] error = abs(measurements[2][n] - expected_blended) # self.progress(f"{n=} {error=}") if error > max_errors[n]: max_errors[n] = error if error > epsilon: raise NotAchievedException(f"Blended diverged {n=} {measurements[0][n]=} {measurements[1][n]=} {measurements[2][n]=} {error=}") # noqa:E501 current_ts = None self.progress(f"{max_errors=}") def Callisto(self): '''Test Callisto''' self.customise_SITL_commandline( [], defaults_filepath=self.model_defaults_filepath('Callisto'), model="octa-quad:@ROMFS/models/Callisto.json", wipe=True, ) self.takeoff(10) self.do_RTL() def FlyEachFrame(self): '''Fly each supported internal frame''' vinfo = vehicleinfo.VehicleInfo() copter_vinfo_options = vinfo.options[self.vehicleinfo_key()] known_broken_frames = { 'heli-compound': "wrong binary, different takeoff regime", 'heli-dual': "wrong binary, different takeoff regime", 'heli': "wrong binary, different takeoff regime", 'heli-gas': "wrong binary, different takeoff regime", 'heli-blade360': "wrong binary, different takeoff regime", "quad-can" : "needs CAN periph", } for frame in sorted(copter_vinfo_options["frames"].keys()): self.start_subtest("Testing frame (%s)" % str(frame)) if frame in known_broken_frames: self.progress("Actually, no I'm not - it is known-broken (%s)" % (known_broken_frames[frame])) continue frame_bits = copter_vinfo_options["frames"][frame] print("frame_bits: %s" % str(frame_bits)) if frame_bits.get("external", False): self.progress("Actually, no I'm not - it is an external simulation") continue model = frame_bits.get("model", frame) # the model string for Callisto has crap in it.... we # should really have another entry in the vehicleinfo data # to carry the path to the JSON. defaults = self.model_defaults_filepath(frame) if not isinstance(defaults, list): defaults = [defaults] self.customise_SITL_commandline( [], defaults_filepath=defaults, model=model, wipe=True, ) # add a listener that verifies yaw looks good: def verify_yaw(mav, m): if m.get_type() != 'ATTITUDE': return yawspeed_thresh_rads = math.radians(20) if m.yawspeed > yawspeed_thresh_rads: raise NotAchievedException("Excessive yaw on takeoff: %f deg/s > %f deg/s (frame=%s)" % (math.degrees(m.yawspeed), math.degrees(yawspeed_thresh_rads), frame)) self.context_push() self.install_message_hook_context(verify_yaw) self.takeoff(10) self.context_pop() self.hover() self.change_mode('ALT_HOLD') self.delay_sim_time(1) def verify_rollpitch(mav, m): if m.get_type() != 'ATTITUDE': return pitch_thresh_rad = math.radians(2) if m.pitch > pitch_thresh_rad: raise NotAchievedException("Excessive pitch %f deg > %f deg" % (math.degrees(m.pitch), math.degrees(pitch_thresh_rad))) roll_thresh_rad = math.radians(2) if m.roll > roll_thresh_rad: raise NotAchievedException("Excessive roll %f deg > %f deg" % (math.degrees(m.roll), math.degrees(roll_thresh_rad))) self.context_push() self.install_message_hook_context(verify_rollpitch) for i in range(5): self.set_rc(4, 2000) self.delay_sim_time(0.5) self.set_rc(4, 1500) self.delay_sim_time(5) self.context_pop() self.do_RTL() def Replay(self): '''test replay correctness''' self.progress("Building Replay") util.build_SITL('tool/Replay', clean=False, configure=False) bits = [ ('GPS', self.test_replay_gps_bit), ('Beacon', self.test_replay_beacon_bit), ('OpticalFlow', self.test_replay_optical_flow_bit), ] for (name, func) in bits: self.start_subtest("%s" % name) self.test_replay_bit(func) def test_replay_bit(self, bit): self.context_push() current_log_filepath = bit() self.progress("Running replay on (%s) (%u bytes)" % ( (current_log_filepath, os.path.getsize(current_log_filepath)) )) self.run_replay(current_log_filepath) replay_log_filepath = self.current_onboard_log_filepath() self.context_pop() self.progress("Replay log path: %s" % str(replay_log_filepath)) check_replay = util.load_local_module("Tools/Replay/check_replay.py") ok = check_replay.check_log(replay_log_filepath, self.progress, verbose=True) if not ok: raise NotAchievedException("check_replay (%s) failed" % current_log_filepath) def DefaultIntervalsFromFiles(self): '''Test setting default mavlink message intervals from files''' ex = None intervals_filepath = util.reltopdir("message-intervals-chan0.txt") self.progress("Using filepath (%s)" % intervals_filepath) try: with open(intervals_filepath, "w") as f: f.write("""30 50 28 100 29 200 """) f.close() # other tests may have explicitly set rates, so wipe parameters: def custom_stream_rate_setter(): for stream in mavutil.mavlink.MAV_DATA_STREAM_EXTRA3, mavutil.mavlink.MAV_DATA_STREAM_RC_CHANNELS: self.set_streamrate(5, stream=stream) self.customise_SITL_commandline( [], wipe=True, set_streamrate_callback=custom_stream_rate_setter, ) self.assert_message_rate_hz("ATTITUDE", 20) self.assert_message_rate_hz("SCALED_PRESSURE", 5) except Exception as e: self.print_exception_caught(e) ex = e os.unlink(intervals_filepath) self.reboot_sitl() if ex is not None: raise ex def BaroDrivers(self): '''Test Baro Drivers''' sensors = [ ("MS5611", 2), ] for (name, bus) in sensors: self.context_push() if bus is not None: self.set_parameter("BARO_EXT_BUS", bus) self.set_parameter("BARO_PROBE_EXT", 1 << 2) self.reboot_sitl() self.wait_ready_to_arm() self.arm_vehicle() # insert listener to compare airspeeds: messages = [None, None, None] global count count = 0 def check_pressure(mav, m): global count m_type = m.get_type() count += 1 # if count > 500: # if press_abs[0] is None or press_abs[1] is None: # raise NotAchievedException("Not receiving messages") if m_type == 'SCALED_PRESSURE3': off = 2 elif m_type == 'SCALED_PRESSURE2': off = 1 elif m_type == 'SCALED_PRESSURE': off = 0 else: return messages[off] = m if None in messages: return first = messages[0] for msg in messages[1:]: delta_press_abs = abs(first.press_abs - msg.press_abs) if delta_press_abs > 0.5: # 50 Pa leeway raise NotAchievedException("Press_Abs mismatch (press1=%s press2=%s)" % (first, msg)) delta_temperature = abs(first.temperature - msg.temperature) if delta_temperature > 300: # that's 3-degrees leeway raise NotAchievedException("Temperature mismatch (t1=%s t2=%s)" % (first, msg)) self.install_message_hook_context(check_pressure) self.fly_mission("copter_mission.txt", strict=False) if None in messages: raise NotAchievedException("Missing a message") self.context_pop() self.reboot_sitl() def PositionWhenGPSIsZero(self): '''Ensure position doesn't zero when GPS lost''' # https://github.com/ArduPilot/ardupilot/issues/14236 self.progress("arm the vehicle and takeoff in Guided") self.takeoff(20, mode='GUIDED') self.progress("fly 50m North (or whatever)") old_pos = self.mav.recv_match(type='GLOBAL_POSITION_INT', blocking=True) self.fly_guided_move_global_relative_alt(50, 0, 20) self.set_parameter('GPS1_TYPE', 0) self.drain_mav() tstart = self.get_sim_time() while True: if self.get_sim_time_cached() - tstart > 30 and self.mode_is('LAND'): self.progress("Bug not reproduced") break m = self.assert_receive_message('GLOBAL_POSITION_INT', timeout=1, verbose=True) pos_delta = self.get_distance_int(old_pos, m) self.progress("Distance: %f" % pos_delta) if pos_delta < 5: raise NotAchievedException("Bug reproduced - returned to near origin") self.wait_disarmed() self.reboot_sitl() def SMART_RTL(self): '''Check SMART_RTL''' self.progress("arm the vehicle and takeoff in Guided") self.takeoff(20, mode='GUIDED') self.progress("fly around a bit (or whatever)") locs = [ (50, 0, 20), (-50, 50, 20), (-50, 0, 20), ] for (lat, lng, alt) in locs: self.fly_guided_move_local(lat, lng, alt) self.change_mode('SMART_RTL') for (lat, lng, alt) in reversed(locs): self.wait_distance_to_local_position( (lat, lng, -alt), 0, 10, timeout=60 ) self.wait_disarmed() def get_ground_effect_duration_from_current_onboard_log(self, bit, ignore_multi=False): '''returns a duration in seconds we were expecting to interact with the ground. Will die if there's more than one such block of time and ignore_multi is not set (will return first duration otherwise) ''' ret = [] dfreader = self.dfreader_for_current_onboard_log() seen_expected_start_TimeUS = None first = None last = None while True: m = dfreader.recv_match(type="XKF4") if m is None: break last = m if first is None: first = m # self.progress("%s" % str(m)) expected = m.SS & (1 << bit) if expected: if seen_expected_start_TimeUS is None: seen_expected_start_TimeUS = m.TimeUS continue else: if seen_expected_start_TimeUS is not None: duration = (m.TimeUS - seen_expected_start_TimeUS)/1000000.0 ret.append(duration) seen_expected_start_TimeUS = None if seen_expected_start_TimeUS is not None: duration = (last.TimeUS - seen_expected_start_TimeUS)/1000000.0 ret.append(duration) return ret def get_takeoffexpected_durations_from_current_onboard_log(self, ignore_multi=False): return self.get_ground_effect_duration_from_current_onboard_log(11, ignore_multi=ignore_multi) def get_touchdownexpected_durations_from_current_onboard_log(self, ignore_multi=False): return self.get_ground_effect_duration_from_current_onboard_log(12, ignore_multi=ignore_multi) def ThrowDoubleDrop(self): '''Test a more complicated drop-mode scenario''' self.progress("Getting a lift to altitude") self.set_parameters({ "SIM_SHOVE_Z": -11, "THROW_TYPE": 1, # drop "MOT_SPOOL_TIME": 2, }) self.change_mode('THROW') self.wait_ready_to_arm() self.arm_vehicle() try: self.set_parameter("SIM_SHOVE_TIME", 30000) except ValueError: # the shove resets this to zero pass self.wait_altitude(100, 1000, timeout=100, relative=True) self.context_collect('STATUSTEXT') self.wait_statustext("throw detected - spooling motors", check_context=True, timeout=10) self.wait_statustext("throttle is unlimited - uprighting", check_context=True) self.wait_statustext("uprighted - controlling height", check_context=True) self.wait_statustext("height achieved - controlling position", check_context=True) self.progress("Waiting for still") self.wait_speed_vector(Vector3(0, 0, 0)) self.change_mode('ALT_HOLD') self.set_rc(3, 1000) self.wait_disarmed(timeout=90) self.zero_throttle() self.progress("second flight") self.upload_square_mission_items_around_location(self.poll_home_position()) self.set_parameters({ "THROW_NEXTMODE": 3, # auto }) self.change_mode('THROW') self.wait_ready_to_arm() self.arm_vehicle() try: self.set_parameter("SIM_SHOVE_TIME", 30000) except ValueError: # the shove resets this to zero pass self.wait_altitude(100, 1000, timeout=100, relative=True) self.wait_statustext("throw detected - spooling motors", check_context=True, timeout=10) self.wait_statustext("throttle is unlimited - uprighting", check_context=True) self.wait_statustext("uprighted - controlling height", check_context=True) self.wait_statustext("height achieved - controlling position", check_context=True) self.wait_mode('AUTO') self.wait_disarmed(timeout=240) def GroundEffectCompensation_takeOffExpected(self): '''Test EKF's handling of takeoff-expected''' self.change_mode('ALT_HOLD') self.set_parameter("LOG_FILE_DSRMROT", 1) self.progress("Making sure we'll have a short log to look at") self.wait_ready_to_arm() self.arm_vehicle() self.disarm_vehicle() # arm the vehicle and let it disarm normally. This should # yield a log where the EKF considers a takeoff imminent until # disarm self.start_subtest("Check ground effect compensation remains set in EKF while we're at idle on the ground") self.arm_vehicle() self.wait_disarmed() durations = self.get_takeoffexpected_durations_from_current_onboard_log() duration = durations[0] want = 9 self.progress("takeoff-expected duration: %fs" % (duration,)) if duration < want: # assumes default 10-second DISARM_DELAY raise NotAchievedException("Should have been expecting takeoff for longer than %fs (want>%f)" % (duration, want)) self.start_subtest("takeoffExpected should be false very soon after we launch into the air") self.takeoff(mode='ALT_HOLD', alt_min=5) self.change_mode('LAND') self.wait_disarmed() durations = self.get_takeoffexpected_durations_from_current_onboard_log(ignore_multi=True) self.progress("touchdown-durations: %s" % str(durations)) duration = durations[0] self.progress("takeoff-expected-duration %f" % (duration,)) want_lt = 5 if duration >= want_lt: raise NotAchievedException("Was expecting takeoff for longer than expected; got=%f want<=%f" % (duration, want_lt)) def _MAV_CMD_CONDITION_YAW(self, command): self.start_subtest("absolute") self.takeoff(20, mode='GUIDED') m = self.mav.recv_match(type='VFR_HUD', blocking=True) initial_heading = m.heading self.progress("Ensuring initial heading is steady") target = initial_heading command( mavutil.mavlink.MAV_CMD_CONDITION_YAW, p1=target, # target angle p2=10, # degrees/second p3=1, # -1 is counter-clockwise, 1 clockwise p4=0, # 1 for relative, 0 for absolute ) self.wait_heading(target, minimum_duration=2, timeout=50) self.wait_yaw_speed(0) degsecond = 2 def rate_watcher(mav, m): if m.get_type() != 'ATTITUDE': return if abs(math.degrees(m.yawspeed)) > 5*degsecond: raise NotAchievedException("Moved too fast (%f>%f)" % (math.degrees(m.yawspeed), 5*degsecond)) self.install_message_hook_context(rate_watcher) self.progress("Yaw CW 60 degrees") target = initial_heading + 60 part_way_target = initial_heading + 10 command( mavutil.mavlink.MAV_CMD_CONDITION_YAW, p1=target, # target angle p2=degsecond, # degrees/second p3=1, # -1 is counter-clockwise, 1 clockwise p4=0, # 1 for relative, 0 for absolute ) self.wait_heading(part_way_target) self.wait_heading(target, minimum_duration=2) self.progress("Yaw CCW 60 degrees") target = initial_heading part_way_target = initial_heading + 30 command( mavutil.mavlink.MAV_CMD_CONDITION_YAW, p1=target, # target angle p2=degsecond, # degrees/second p3=-1, # -1 is counter-clockwise, 1 clockwise p4=0, # 1 for relative, 0 for absolute ) self.wait_heading(part_way_target) self.wait_heading(target, minimum_duration=2) self.disarm_vehicle(force=True) self.reboot_sitl() def MAV_CMD_CONDITION_YAW(self): '''Test response to MAV_CMD_CONDITION_YAW via mavlink''' self.context_push() self._MAV_CMD_CONDITION_YAW(self.run_cmd_int) self.context_pop() self.context_push() self._MAV_CMD_CONDITION_YAW(self.run_cmd) self.context_pop() def GroundEffectCompensation_touchDownExpected(self): '''Test EKF's handling of touchdown-expected''' self.zero_throttle() self.change_mode('ALT_HOLD') self.set_parameter("LOG_FILE_DSRMROT", 1) self.progress("Making sure we'll have a short log to look at") self.wait_ready_to_arm() self.arm_vehicle() self.disarm_vehicle() self.start_subtest("Make sure touchdown-expected duration is about right") self.takeoff(20, mode='ALT_HOLD') self.change_mode('LAND') self.wait_disarmed() durations = self.get_touchdownexpected_durations_from_current_onboard_log(ignore_multi=True) self.progress("touchdown-durations: %s" % str(durations)) duration = durations[-1] expected = 23 # this is the time in the final descent phase of LAND if abs(duration - expected) > 5: raise NotAchievedException("Was expecting roughly %fs of touchdown expected, got %f" % (expected, duration)) def upload_square_mission_items_around_location(self, loc): alt = 20 loc.alt = alt items = [ (mavutil.mavlink.MAV_CMD_NAV_TAKEOFF, 0, 0, alt) ] for (ofs_n, ofs_e) in (20, 20), (20, -20), (-20, -20), (-20, 20), (20, 20): items.append((mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, ofs_n, ofs_e, alt)) items.append((mavutil.mavlink.MAV_CMD_NAV_RETURN_TO_LAUNCH, 0, 0, 0)) self.upload_simple_relhome_mission(items) def RefindGPS(self): '''Refind the GPS and attempt to RTL rather than continue to land''' # https://github.com/ArduPilot/ardupilot/issues/14236 self.progress("arm the vehicle and takeoff in Guided") self.takeoff(50, mode='GUIDED') self.progress("fly 50m North (or whatever)") old_pos = self.mav.recv_match(type='GLOBAL_POSITION_INT', blocking=True) self.fly_guided_move_global_relative_alt(50, 0, 50) self.set_parameter('GPS1_TYPE', 0) self.drain_mav() tstart = self.get_sim_time() while True: if self.get_sim_time_cached() - tstart > 30 and self.mode_is('LAND'): self.progress("Bug not reproduced") break m = self.assert_receive_message('GLOBAL_POSITION_INT', timeout=1, verbose=True) pos_delta = self.get_distance_int(old_pos, m) self.progress("Distance: %f" % pos_delta) if pos_delta < 5: raise NotAchievedException("Bug reproduced - returned to near origin") self.set_parameter('GPS1_TYPE', 1) self.do_RTL() def GPSForYaw(self): '''Moving baseline GPS yaw''' self.context_push() self.load_default_params_file("copter-gps-for-yaw.parm") self.reboot_sitl() ex = None try: self.wait_gps_fix_type_gte(6, message_type="GPS2_RAW", verbose=True) m = self.assert_receive_message("GPS2_RAW") self.progress(self.dump_message_verbose(m)) want = 27000 if abs(m.yaw - want) > 500: raise NotAchievedException("Expected to get GPS-from-yaw (want %f got %f)" % (want, m.yaw)) self.wait_ready_to_arm() except Exception as e: self.print_exception_caught(e) ex = e self.context_pop() self.reboot_sitl() if ex is not None: raise ex def SMART_RTL_EnterLeave(self): '''check SmartRTL behaviour when entering/leaving''' # we had a bug where we would consume points when re-entering smartrtl self.upload_simple_relhome_mission([ # N E U (mavutil.mavlink.MAV_CMD_NAV_TAKEOFF, 0, 0, 10), (mavutil.mavlink.MAV_CMD_NAV_RETURN_TO_LAUNCH, 0, 0, 0), ]) self.set_parameter('AUTO_OPTIONS', 3) self.change_mode('AUTO') self.wait_ready_to_arm() self.change_mode('ALT_HOLD') self.change_mode('SMART_RTL') self.change_mode('ALT_HOLD') self.change_mode('SMART_RTL') def GPSForYawCompassLearn(self): '''Moving baseline GPS yaw - with compass learning''' self.context_push() self.load_default_params_file("copter-gps-for-yaw.parm") self.set_parameter("EK3_SRC1_YAW", 3) # GPS with compass fallback self.reboot_sitl() self.wait_gps_fix_type_gte(6, message_type="GPS2_RAW", verbose=True) self.wait_ready_to_arm() self.takeoff(10, mode='GUIDED') tstart = self.get_sim_time() compass_learn_set = False while True: delta_t = self.get_sim_time_cached() - tstart if delta_t > 30: break if not compass_learn_set and delta_t > 10: self.set_parameter("COMPASS_LEARN", 3) compass_learn_set = True self.check_attitudes_match() self.delay_sim_time(1) self.context_pop() self.reboot_sitl() def AP_Avoidance(self): '''ADSB-based avoidance''' self.set_parameters({ "AVD_ENABLE": 1, "ADSB_TYPE": 1, # mavlink "AVD_F_ACTION": 2, # climb or descend }) self.reboot_sitl() self.wait_ready_to_arm() here = self.mav.location() self.context_push() self.start_subtest("F_ALT_MIN zero - disabled, can't arm in face of threat") self.set_parameters({ "AVD_F_ALT_MIN": 0, }) self.wait_ready_to_arm() self.test_adsb_send_threatening_adsb_message(here) self.delay_sim_time(1) self.try_arm(result=False, expect_msg="ADSB threat detected") self.wait_ready_to_arm(timeout=60) self.context_pop() self.start_subtest("F_ALT_MIN 16m relative - arm in face of threat") self.context_push() self.set_parameters({ "AVD_F_ALT_MIN": int(16 + here.alt), }) self.wait_ready_to_arm() self.test_adsb_send_threatening_adsb_message(here) # self.delay_sim_time(1) self.arm_vehicle() self.disarm_vehicle() self.context_pop() def PAUSE_CONTINUE(self): '''Test MAV_CMD_DO_PAUSE_CONTINUE in AUTO mode''' self.load_mission(filename="copter_mission.txt", strict=False) self.set_parameter(name="AUTO_OPTIONS", value=3) self.change_mode(mode="AUTO") self.wait_ready_to_arm() self.arm_vehicle() self.wait_current_waypoint(wpnum=3, timeout=500) self.send_pause_command() self.wait_groundspeed(speed_min=0, speed_max=1, minimum_duration=5) self.send_resume_command() self.wait_current_waypoint(wpnum=4, timeout=500) self.send_pause_command() self.wait_groundspeed(speed_min=0, speed_max=1, minimum_duration=5) self.send_resume_command() # sending a pause, or resume, to the aircraft twice, doesn't result in reporting a failure self.wait_current_waypoint(wpnum=5, timeout=500) self.send_pause_command() self.send_pause_command() self.wait_groundspeed(speed_min=0, speed_max=1, minimum_duration=5) self.send_resume_command() self.send_resume_command() self.wait_disarmed(timeout=500) def PAUSE_CONTINUE_GUIDED(self): '''Test MAV_CMD_DO_PAUSE_CONTINUE in GUIDED mode''' self.start_subtest("Started test for Pause/Continue in GUIDED mode with LOCATION!") self.change_mode(mode="GUIDED") self.wait_ready_to_arm() self.arm_vehicle() self.set_parameter(name="GUID_TIMEOUT", value=120) self.user_takeoff(alt_min=30) # send vehicle to global position target location = self.home_relative_loc_ne(n=300, e=0) target_typemask = MAV_POS_TARGET_TYPE_MASK.POS_ONLY self.mav.mav.set_position_target_global_int_send( 0, # timestamp 1, # target system_id 1, # target component id mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT_INT, # relative altitude frame target_typemask | MAV_POS_TARGET_TYPE_MASK.LAST_BYTE, # target typemask as pos only int(location.lat * 1e7), # lat int(location.lng * 1e7), # lon 30, # alt 0, # vx 0, # vy 0, # vz 0, # afx 0, # afy 0, # afz 0, # yaw 0) # yawrate self.wait_distance_to_home(distance_min=100, distance_max=150, timeout=120) self.send_pause_command() self.wait_groundspeed(speed_min=0, speed_max=1, minimum_duration=5) self.send_resume_command() self.wait_location(loc=location, timeout=120) self.end_subtest("Ended test for Pause/Continue in GUIDED mode with LOCATION!") self.start_subtest("Started test for Pause/Continue in GUIDED mode with DESTINATION!") self.guided_achieve_heading(heading=270) # move vehicle on x direction location = self.offset_location_ne(location=self.mav.location(), metres_north=0, metres_east=-300) self.mav.mav.set_position_target_global_int_send( 0, # system time in milliseconds 1, # target system 1, # target component mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT_INT, # coordinate frame MAV_FRAME_BODY_NED MAV_POS_TARGET_TYPE_MASK.POS_ONLY, # type mask (pos only) int(location.lat*1e7), # position x int(location.lng*1e7), # position y 30, # position z 0, # velocity x 0, # velocity y 0, # velocity z 0, # accel x 0, # accel y 0, # accel z 0, # yaw 0) # yaw rate self.wait_location(loc=location, accuracy=200, timeout=120) self.send_pause_command() self.wait_groundspeed(speed_min=0, speed_max=1, minimum_duration=5) self.send_resume_command() self.wait_location(loc=location, timeout=120) self.end_subtest("Ended test for Pause/Continue in GUIDED mode with DESTINATION!") self.start_subtest("Started test for Pause/Continue in GUIDED mode with VELOCITY!") # give velocity command vx, vy, vz_up = (5, 5, 0) self.test_guided_local_velocity_target(vx=vx, vy=vy, vz_up=vz_up, timeout=10) self.wait_for_local_velocity(vx=vx, vy=vy, vz_up=vz_up, timeout=10) self.send_pause_command() self.wait_for_local_velocity(vx=0, vy=0, vz_up=0, timeout=10) self.send_resume_command() self.wait_for_local_velocity(vx=vx, vy=vy, vz_up=vz_up, timeout=10) self.test_guided_local_velocity_target(vx=0, vy=0, vz_up=0, timeout=10) self.wait_for_local_velocity(vx=0, vy=0, vz_up=0, timeout=10) self.end_subtest("Ended test for Pause/Continue in GUIDED mode with VELOCITY!") self.start_subtest("Started test for Pause/Continue in GUIDED mode with ACCELERATION!") # give acceleration command ax, ay, az_up = (1, 1, 0) target_typemask = (MAV_POS_TARGET_TYPE_MASK.POS_IGNORE | MAV_POS_TARGET_TYPE_MASK.VEL_IGNORE | MAV_POS_TARGET_TYPE_MASK.YAW_IGNORE | MAV_POS_TARGET_TYPE_MASK.YAW_RATE_IGNORE) self.mav.mav.set_position_target_local_ned_send( 0, # timestamp 1, # target system_id 1, # target component id mavutil.mavlink.MAV_FRAME_LOCAL_NED, target_typemask | MAV_POS_TARGET_TYPE_MASK.LAST_BYTE, 0, # x 0, # y 0, # z 0, # vx 0, # vy 0, # vz ax, # afx ay, # afy -az_up, # afz 0, # yaw 0, # yawrate ) self.wait_for_local_velocity(vx=5, vy=5, vz_up=0, timeout=10) self.send_pause_command() self.wait_for_local_velocity(vx=0, vy=0, vz_up=0, timeout=10) self.send_resume_command() self.wait_for_local_velocity(vx=5, vy=5, vz_up=0, timeout=10) self.test_guided_local_velocity_target(vx=0, vy=0, vz_up=0, timeout=10) self.wait_for_local_velocity(vx=0, vy=0, vz_up=0, timeout=10) self.end_subtest("Ended test for Pause/Continue in GUIDED mode with ACCELERATION!") # start pause/continue subtest with posvelaccel self.start_subtest("Started test for Pause/Continue in GUIDED mode with POSITION and VELOCITY and ACCELERATION!") self.guided_achieve_heading(heading=0) # give posvelaccel command x, y, z_up = (-300, 0, 30) target_typemask = (MAV_POS_TARGET_TYPE_MASK.YAW_IGNORE | MAV_POS_TARGET_TYPE_MASK.YAW_RATE_IGNORE) self.mav.mav.set_position_target_local_ned_send( 0, # timestamp 1, # target system_id 1, # target component id mavutil.mavlink.MAV_FRAME_LOCAL_NED, target_typemask | MAV_POS_TARGET_TYPE_MASK.LAST_BYTE, x, # x y, # y -z_up, # z 0, # vx 0, # vy 0, # vz 0, # afx 0, # afy 0, # afz 0, # yaw 0, # yawrate ) self.wait_distance_to_local_position(local_position=(x, y, -z_up), distance_min=400, distance_max=450, timeout=120) self.send_pause_command() self.wait_for_local_velocity(0, 0, 0, timeout=10) self.send_resume_command() self.wait_distance_to_local_position(local_position=(x, y, -z_up), distance_min=0, distance_max=10, timeout=120) self.end_subtest("Ended test for Pause/Continue in GUIDED mode with POSITION and VELOCITY and ACCELERATION!") self.do_RTL(timeout=120) def DO_CHANGE_SPEED(self): '''Change speed during misison using waypoint items''' self.load_mission("mission.txt", strict=False) self.set_parameters({ "AUTO_OPTIONS": 3, "ANGLE_MAX": 4500, }) self.change_mode('AUTO') self.wait_ready_to_arm() self.arm_vehicle() self.wait_current_waypoint(1) self.wait_groundspeed( 3.5, 4.5, minimum_duration=5, timeout=60, ) self.wait_current_waypoint(3) self.wait_groundspeed( 14.5, 15.5, minimum_duration=10, timeout=60, ) self.wait_current_waypoint(5) self.wait_groundspeed( 9.5, 11.5, minimum_duration=10, timeout=60, ) self.set_parameter("ANGLE_MAX", 6000) self.wait_current_waypoint(7) self.wait_groundspeed( 15.5, 16.5, minimum_duration=10, timeout=60, ) self.wait_disarmed() def AUTO_LAND_TO_BRAKE(self): '''ensure terrain altitude is taken into account when braking''' self.set_parameters({ "PLND_ACC_P_NSE": 2.500000, "PLND_ALT_MAX": 8.000000, "PLND_ALT_MIN": 0.750000, "PLND_BUS": -1, "PLND_CAM_POS_X": 0.000000, "PLND_CAM_POS_Y": 0.000000, "PLND_CAM_POS_Z": 0.000000, "PLND_ENABLED": 1, "PLND_EST_TYPE": 1, "PLND_LAG": 0.020000, "PLND_LAND_OFS_X": 0.000000, "PLND_LAND_OFS_Y": 0.000000, "PLND_OPTIONS": 0, "PLND_RET_BEHAVE": 0, "PLND_RET_MAX": 4, "PLND_STRICT": 1, "PLND_TIMEOUT": 4.000000, "PLND_TYPE": 4, "PLND_XY_DIST_MAX": 2.500000, "PLND_YAW_ALIGN": 0.000000, "SIM_PLD_ALT_LMT": 15.000000, "SIM_PLD_DIST_LMT": 10.000000, "SIM_PLD_ENABLE": 1, "SIM_PLD_HEIGHT": 0, "SIM_PLD_LAT": -20.558929, "SIM_PLD_LON": -47.415035, "SIM_PLD_RATE": 100, "SIM_PLD_TYPE": 1, "SIM_PLD_YAW": 87, "SIM_SONAR_SCALE": 12, }) self.set_analog_rangefinder_parameters() self.load_mission('mission.txt') self.customise_SITL_commandline([ "--home", self.sitl_home_string_from_mission("mission.txt"), ]) self.set_parameter('AUTO_OPTIONS', 3) self.change_mode('AUTO') self.wait_ready_to_arm() self.arm_vehicle() self.wait_current_waypoint(7) self.wait_altitude(10, 15, relative=True, timeout=60) self.change_mode('BRAKE') # monitor altitude here self.wait_altitude(10, 15, relative=True, minimum_duration=20) self.change_mode('AUTO') self.wait_disarmed() def MAVLandedStateTakeoff(self): '''check EXTENDED_SYS_STATE message''' ex = None try: self.set_message_rate_hz(id=mavutil.mavlink.MAVLINK_MSG_ID_EXTENDED_SYS_STATE, rate_hz=1) self.wait_extended_sys_state(vtol_state=mavutil.mavlink.MAV_VTOL_STATE_MC, landed_state=mavutil.mavlink.MAV_LANDED_STATE_ON_GROUND, timeout=10) self.load_mission(filename="copter_mission.txt") self.set_parameter(name="AUTO_OPTIONS", value=3) self.change_mode(mode="AUTO") self.wait_ready_to_arm() self.arm_vehicle() self.wait_extended_sys_state(vtol_state=mavutil.mavlink.MAV_VTOL_STATE_MC, landed_state=mavutil.mavlink.MAV_LANDED_STATE_TAKEOFF, timeout=30) self.wait_extended_sys_state(vtol_state=mavutil.mavlink.MAV_VTOL_STATE_MC, landed_state=mavutil.mavlink.MAV_LANDED_STATE_IN_AIR, timeout=60) self.land_and_disarm() except Exception as e: self.print_exception_caught(e) ex = e self.set_message_rate_hz(mavutil.mavlink.MAVLINK_MSG_ID_EXTENDED_SYS_STATE, -1) if ex is not None: raise ex def ATTITUDE_FAST(self): '''ensure that when ATTITDE_FAST is set we get many messages''' self.context_push() ex = None try: old = self.get_parameter('LOG_BITMASK') new = int(old) | (1 << 0) # see defines.h self.set_parameters({ "LOG_BITMASK": new, "LOG_DISARMED": 1, }) path = self.generate_rate_sample_log() except Exception as e: self.print_exception_caught(e) ex = e self.context_pop() self.reboot_sitl() if ex is not None: raise ex self.delay_sim_time(10) # NFI why this is required self.check_dflog_message_rates(path, { 'ATT': 400, }) def BaseLoggingRates(self): '''ensure messages come out at specific rates''' path = self.generate_rate_sample_log() self.delay_sim_time(10) # NFI why this is required self.check_dflog_message_rates(path, { "ATT": 10, "IMU": 25, }) def FETtecESC_flight(self): '''fly with servo outputs from FETtec ESC''' self.start_subtest("FETtec ESC flight") num_wp = self.load_mission("copter_mission.txt", strict=False) self.fly_loaded_mission(num_wp) def FETtecESC_esc_power_checks(self): '''Make sure state machine copes with ESCs rebooting''' self.start_subtest("FETtec ESC reboot") self.wait_ready_to_arm() self.context_collect('STATUSTEXT') self.progress("Turning off an ESC off ") mask = int(self.get_parameter("SIM_FTOWESC_POW")) for mot_id_to_kill in 1, 2: self.progress("Turning ESC=%u off" % mot_id_to_kill) self.set_parameter("SIM_FTOWESC_POW", mask & ~(1 << mot_id_to_kill)) self.delay_sim_time(1) self.assert_prearm_failure("are not running") self.progress("Turning it back on") self.set_parameter("SIM_FTOWESC_POW", mask) self.wait_ready_to_arm() self.progress("Turning ESC=%u off (again)" % mot_id_to_kill) self.set_parameter("SIM_FTOWESC_POW", mask & ~(1 << mot_id_to_kill)) self.delay_sim_time(1) self.assert_prearm_failure("are not running") self.progress("Turning it back on") self.set_parameter("SIM_FTOWESC_POW", mask) self.wait_ready_to_arm() self.progress("Turning all ESCs off") self.set_parameter("SIM_FTOWESC_POW", 0) self.delay_sim_time(1) self.assert_prearm_failure("are not running") self.progress("Turning them back on") self.set_parameter("SIM_FTOWESC_POW", mask) self.wait_ready_to_arm() def fettec_assert_bad_mask(self, mask): '''assert the mask is bad for fettec driver''' self.start_subsubtest("Checking mask (%s) is bad" % (mask,)) self.context_push() self.set_parameter("SERVO_FTW_MASK", mask) self.reboot_sitl() self.delay_sim_time(12) # allow accels/gyros to be happy tstart = self.get_sim_time() while True: if self.get_sim_time_cached() - tstart > 20: raise NotAchievedException("Expected mask to be only problem within 20 seconds") try: self.assert_prearm_failure("Invalid motor mask") break except NotAchievedException: self.delay_sim_time(1) self.context_pop() self.reboot_sitl() def fettec_assert_good_mask(self, mask): '''assert the mask is bad for fettec driver''' self.start_subsubtest("Checking mask (%s) is good" % (mask,)) self.context_push() self.set_parameter("SERVO_FTW_MASK", mask) self.reboot_sitl() self.wait_ready_to_arm() self.context_pop() self.reboot_sitl() def FETtecESC_safety_switch(self): mot = self.find_first_set_bit(int(self.get_parameter("SERVO_FTW_MASK"))) + 1 self.wait_esc_telem_rpm(mot, 0, 0) self.wait_ready_to_arm() self.context_push() self.set_parameter("DISARM_DELAY", 0) self.arm_vehicle() # we have to wait for a while for the arming tone to go out # before the motors will spin: self.wait_esc_telem_rpm( esc=mot, rpm_min=17640, rpm_max=17640, minimum_duration=2, timeout=5, ) self.set_safetyswitch_on() self.wait_esc_telem_rpm(mot, 0, 0) self.set_safetyswitch_off() self.wait_esc_telem_rpm( esc=mot, rpm_min=17640, rpm_max=17640, minimum_duration=2, timeout=5, ) self.context_pop() self.wait_disarmed() def FETtecESC_btw_mask_checks(self): '''ensure prearm checks work as expected''' for bad_mask in [0b1000000000000000, 0b10100000000000000]: self.fettec_assert_bad_mask(bad_mask) for good_mask in [0b00001, 0b00101, 0b110000000000]: self.fettec_assert_good_mask(good_mask) def FETtecESC(self): '''Test FETtecESC''' self.set_parameters({ "SERIAL5_PROTOCOL": 38, "SERVO_FTW_MASK": 0b11101000, "SIM_FTOWESC_ENA": 1, "SERVO1_FUNCTION": 0, "SERVO2_FUNCTION": 0, "SERVO3_FUNCTION": 0, "SERVO4_FUNCTION": 33, "SERVO5_FUNCTION": 0, "SERVO6_FUNCTION": 34, "SERVO7_FUNCTION": 35, "SERVO8_FUNCTION": 36, "SIM_ESC_TELEM": 0, }) self.customise_SITL_commandline(["--serial5=sim:fetteconewireesc"]) self.FETtecESC_safety_switch() self.FETtecESC_esc_power_checks() self.FETtecESC_btw_mask_checks() self.FETtecESC_flight() def PerfInfo(self): '''Test Scheduler PerfInfo output''' self.set_parameter('SCHED_OPTIONS', 1) # enable gathering # sometimes we need to trigger collection.... content = self.fetch_file_via_ftp("@SYS/tasks.txt") self.delay_sim_time(5) content = self.fetch_file_via_ftp("@SYS/tasks.txt") self.progress("Got content (%s)" % str(content)) lines = content.split("\n") if not lines[0].startswith("TasksV2"): raise NotAchievedException("Expected TasksV2 as first line first not (%s)" % lines[0]) # last line is empty, so -2 here if not lines[-2].startswith("AP_Vehicle::update_arming"): raise NotAchievedException("Expected EFI last not (%s)" % lines[-2]) def RTL_TO_RALLY(self, target_system=1, target_component=1): '''Check RTL to rally point''' self.wait_ready_to_arm() rally_loc = self.home_relative_loc_ne(50, -25) rally_alt = 37 items = [ self.mav.mav.mission_item_int_encode( target_system, target_component, 0, # seq mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT, mavutil.mavlink.MAV_CMD_NAV_RALLY_POINT, 0, # current 0, # autocontinue 0, # p1 0, # p2 0, # p3 0, # p4 int(rally_loc.lat * 1e7), # latitude int(rally_loc.lng * 1e7), # longitude rally_alt, # altitude mavutil.mavlink.MAV_MISSION_TYPE_RALLY), ] self.upload_using_mission_protocol( mavutil.mavlink.MAV_MISSION_TYPE_RALLY, items ) self.set_parameters({ 'RALLY_INCL_HOME': 0, }) self.takeoff(10) self.change_mode('RTL') self.wait_location(rally_loc) self.assert_altitude(rally_alt, relative=True) self.progress("Ensuring we're descending") self.wait_altitude(20, 25, relative=True) self.change_mode('LOITER') self.progress("Flying home") self.clear_mission(mavutil.mavlink.MAV_MISSION_TYPE_RALLY) self.change_mode('RTL') self.wait_disarmed() self.assert_at_home() def NoRCOnBootPreArmFailure(self): '''Ensure we can't arm with no RC on boot if THR_FS_VALUE set''' self.context_push() for rc_failure_mode in 1, 2: self.set_parameters({ "SIM_RC_FAIL": rc_failure_mode, }) self.reboot_sitl() if rc_failure_mode == 1: self.assert_prearm_failure("RC not found", other_prearm_failures_fatal=False) elif rc_failure_mode == 2: self.assert_prearm_failure("Throttle below failsafe", other_prearm_failures_fatal=False) self.context_pop() self.reboot_sitl() def IMUConsistency(self): '''test IMUs must be consistent with one another''' self.wait_ready_to_arm() self.start_subsubtest("prearm checks for accel inconsistency") self.context_push() self.set_parameters({ "SIM_ACC1_BIAS_X": 5, }) self.assert_prearm_failure("Accels inconsistent") self.context_pop() tstart = self.get_sim_time() self.wait_ready_to_arm() if self.get_sim_time() - tstart < 8: raise NotAchievedException("Should take 10 seconds to become armableafter IMU upset") self.start_subsubtest("prearm checks for gyro inconsistency") self.context_push() self.set_parameters({ "SIM_GYR1_BIAS_X": math.radians(10), }) self.assert_prearm_failure("Gyros inconsistent") self.context_pop() tstart = self.get_sim_time() self.wait_ready_to_arm() if self.get_sim_time() - tstart < 8: raise NotAchievedException("Should take 10 seconds to become armableafter IMU upset") def Sprayer(self): """Test sprayer functionality.""" self.context_push() rc_ch = 9 pump_ch = 5 spinner_ch = 6 pump_ch_min = 1050 pump_ch_trim = 1520 pump_ch_max = 1950 spinner_ch_min = 975 spinner_ch_trim = 1510 spinner_ch_max = 1975 self.set_parameters({ "SPRAY_ENABLE": 1, "SERVO%u_FUNCTION" % pump_ch: 22, "SERVO%u_MIN" % pump_ch: pump_ch_min, "SERVO%u_TRIM" % pump_ch: pump_ch_trim, "SERVO%u_MAX" % pump_ch: pump_ch_max, "SERVO%u_FUNCTION" % spinner_ch: 23, "SERVO%u_MIN" % spinner_ch: spinner_ch_min, "SERVO%u_TRIM" % spinner_ch: spinner_ch_trim, "SERVO%u_MAX" % spinner_ch: spinner_ch_max, "SIM_SPR_ENABLE": 1, "SIM_SPR_PUMP": pump_ch, "SIM_SPR_SPIN": spinner_ch, "RC%u_OPTION" % rc_ch: 15, "LOG_DISARMED": 1, }) self.reboot_sitl() self.wait_ready_to_arm() self.arm_vehicle() self.progress("test bootup state - it's zero-output!") self.wait_servo_channel_value(spinner_ch, 0) self.wait_servo_channel_value(pump_ch, 0) self.progress("Enable sprayer") self.set_rc(rc_ch, 2000) self.progress("Testing zero-speed state") self.wait_servo_channel_value(spinner_ch, spinner_ch_min) self.wait_servo_channel_value(pump_ch, pump_ch_min) self.progress("Testing turning it off") self.set_rc(rc_ch, 1000) self.wait_servo_channel_value(spinner_ch, spinner_ch_min) self.wait_servo_channel_value(pump_ch, pump_ch_min) self.progress("Testing turning it back on") self.set_rc(rc_ch, 2000) self.wait_servo_channel_value(spinner_ch, spinner_ch_min) self.wait_servo_channel_value(pump_ch, pump_ch_min) self.takeoff(30, mode='LOITER') self.progress("Testing speed-ramping") self.set_rc(1, 1700) # start driving forward # this is somewhat empirical... self.wait_servo_channel_value( pump_ch, 1458, timeout=60, comparator=lambda x, y : abs(x-y) < 5 ) self.progress("Turning it off again") self.set_rc(rc_ch, 1000) self.wait_servo_channel_value(spinner_ch, spinner_ch_min) self.wait_servo_channel_value(pump_ch, pump_ch_min) self.start_subtest("Checking mavlink commands") self.progress("Starting Sprayer") self.run_cmd_int(mavutil.mavlink.MAV_CMD_DO_SPRAYER, p1=1) self.progress("Testing speed-ramping") self.wait_servo_channel_value( pump_ch, 1458, timeout=60, comparator=lambda x, y : abs(x-y) < 5 ) self.start_subtest("Stopping Sprayer") self.run_cmd(mavutil.mavlink.MAV_CMD_DO_SPRAYER, p1=0) self.wait_servo_channel_value(pump_ch, pump_ch_min) self.disarm_vehicle(force=True) self.context_pop() self.reboot_sitl() self.progress("Sprayer OK") def tests1a(self): '''return list of all tests''' ret = super(AutoTestCopter, self).tests() # about 5 mins and ~20 initial tests from autotest/vehicle_test_suite.py ret.extend([ self.NavDelayTakeoffAbsTime, self.NavDelayAbsTime, self.NavDelay, self.GuidedSubModeChange, self.MAV_CMD_CONDITION_YAW, self.LoiterToAlt, self.PayloadPlaceMission, self.PrecisionLoiterCompanion, self.Landing, self.PrecisionLanding, self.SetModesViaModeSwitch, self.SetModesViaAuxSwitch, self.AuxSwitchOptions, self.AuxFunctionsInMission, self.AutoTune, self.AutoTuneYawD, self.NoRCOnBootPreArmFailure, ]) return ret def tests1b(self): '''return list of all tests''' ret = ([ self.ThrowMode, self.BrakeMode, self.RecordThenPlayMission, self.ThrottleFailsafe, self.ThrottleFailsafePassthrough, self.GCSFailsafe, self.CustomController, ]) return ret def tests1c(self): '''return list of all tests''' ret = ([ self.BatteryFailsafe, self.BatteryMissing, self.VibrationFailsafe, self.EK3AccelBias, self.StabilityPatch, self.OBSTACLE_DISTANCE_3D, self.AC_Avoidance_Proximity, self.AC_Avoidance_Proximity_AVOID_ALT_MIN, self.AC_Avoidance_Fence, self.AC_Avoidance_Beacon, self.AvoidanceAltFence, self.BaroWindCorrection, self.SetpointGlobalPos, self.ThrowDoubleDrop, self.SetpointGlobalVel, self.SetpointBadVel, self.SplineTerrain, self.TakeoffCheck, ]) return ret def tests1d(self): '''return list of all tests''' ret = ([ self.HorizontalFence, self.HorizontalAvoidFence, self.MaxAltFence, self.MaxAltFenceAvoid, self.MinAltFence, self.MinAltFenceAvoid, self.FenceFloorEnabledLanding, self.FenceFloorAutoDisableLanding, self.FenceFloorAutoEnableOnArming, self.AutoTuneSwitch, self.GPSGlitchLoiter, self.GPSGlitchLoiter2, self.GPSGlitchAuto, self.ModeAltHold, self.ModeLoiter, self.SimpleMode, self.SuperSimpleCircle, self.ModeCircle, self.MagFail, self.OpticalFlow, self.OpticalFlowLocation, self.OpticalFlowLimits, self.OpticalFlowCalibration, self.MotorFail, self.ModeFlip, self.CopterMission, self.TakeoffAlt, self.SplineLastWaypoint, self.Gripper, self.TestLocalHomePosition, self.TestGripperMission, self.VisionPosition, self.ATTITUDE_FAST, self.BaseLoggingRates, self.BodyFrameOdom, self.GPSViconSwitching, ]) return ret def tests1e(self): '''return list of all tests''' ret = ([ self.BeaconPosition, self.RTLSpeed, self.Mount, self.MountYawVehicleForMountROI, self.MAV_CMD_DO_MOUNT_CONTROL, self.MAV_CMD_DO_GIMBAL_MANAGER_CONFIGURE, self.Button, self.ShipTakeoff, self.RangeFinder, self.BaroDrivers, self.SurfaceTracking, self.Parachute, self.ParameterChecks, self.ManualThrottleModeChange, self.MANUAL_CONTROL, self.ModeZigZag, self.PosHoldTakeOff, self.ModeFollow, self.RangeFinderDrivers, self.RangeFinderDriversMaxAlt, self.MaxBotixI2CXL, self.MAVProximity, self.ParameterValidation, self.AltTypes, self.PAUSE_CONTINUE, self.PAUSE_CONTINUE_GUIDED, self.RichenPower, self.IE24, self.MAVLandedStateTakeoff, self.Weathervane, self.MAV_CMD_AIRFRAME_CONFIGURATION, self.MAV_CMD_NAV_LOITER_UNLIM, self.MAV_CMD_NAV_RETURN_TO_LAUNCH, self.MAV_CMD_NAV_VTOL_LAND, self.clear_roi, ]) return ret def tests2a(self): '''return list of all tests''' ret = ([ # something about SITLCompassCalibration appears to fail # this one, so we put it first: self.FixedYawCalibration, # we run this single 8min-and-40s test on its own, apart # from requiring FixedYawCalibration right before it # because without it, it fails to calibrate this # autotest appears to interfere with # FixedYawCalibration, no idea why. self.SITLCompassCalibration, ]) return ret def ScriptMountPOI(self): '''test the MountPOI example script''' self.context_push() self.install_terrain_handlers_context() self.set_parameters({ "SCR_ENABLE": 1, "RC12_OPTION": 300, }) self.setup_servo_mount() self.reboot_sitl() self.set_rc(6, 1300) self.install_applet_script_context('mount-poi.lua') self.reboot_sitl() self.wait_ready_to_arm() self.context_collect('STATUSTEXT') self.set_rc(12, 2000) self.wait_statustext('POI.*-35.*149', check_context=True, regex=True) self.set_rc(12, 1000) self.context_pop() self.reboot_sitl() def AHRSTrimLand(self): '''test land detector with significant AHRS trim''' self.context_push() self.set_parameters({ "SIM_ACC_TRIM_X": 0.12, "AHRS_TRIM_X": 0.12, }) self.reboot_sitl() self.wait_ready_to_arm() self.takeoff(alt_min=20, mode='LOITER') self.do_RTL() self.context_pop() self.reboot_sitl() def turn_safety_x(self, value): self.mav.mav.set_mode_send( self.mav.target_system, mavutil.mavlink.MAV_MODE_FLAG_DECODE_POSITION_SAFETY, value) def turn_safety_off(self): self.turn_safety_x(0) def turn_safety_on(self): self.turn_safety_x(1) def SafetySwitch(self): '''test safety switch behaviour''' self.wait_ready_to_arm() self.turn_safety_on() self.assert_prearm_failure("safety switch") self.turn_safety_off() self.wait_ready_to_arm() self.takeoff(2, mode='LOITER') self.turn_safety_on() self.wait_servo_channel_value(1, 0) self.turn_safety_off() self.change_mode('LAND') self.wait_disarmed() # test turning safty on/off using explicit MAVLink command: self.run_cmd_int(mavutil.mavlink.MAV_CMD_DO_SET_SAFETY_SWITCH_STATE, mavutil.mavlink.SAFETY_SWITCH_STATE_SAFE) self.assert_prearm_failure("safety switch") self.run_cmd_int(mavutil.mavlink.MAV_CMD_DO_SET_SAFETY_SWITCH_STATE, mavutil.mavlink.SAFETY_SWITCH_STATE_DANGEROUS) self.wait_ready_to_arm() def ArmSwitchAfterReboot(self): '''test that the arming switch does not trigger after a reboot''' self.wait_ready_to_arm() self.set_parameters({ "RC8_OPTION": 153, }) self.set_rc(8, 2000) self.wait_armed() self.disarm_vehicle() self.context_collect('STATUSTEXT') self.reboot_sitl() tstart = self.get_sim_time() while True: if self.get_sim_time_cached() - tstart > 60: break if self.armed(): raise NotAchievedException("Armed after reboot with switch high") armmsg = self.statustext_in_collections('Arm: ') if armmsg is not None: raise NotAchievedException("statustext(%s) means we tried to arm" % armmsg.text) self.progress("Did not arm via arming switfch after a reboot") def GuidedYawRate(self): '''ensuer guided yaw rate is not affected by rate of sewt-attitude messages''' self.takeoff(30, mode='GUIDED') rates = {} for rate in 1, 10: # command huge yaw rate for a while tstart = self.get_sim_time() interval = 1/rate yawspeed_rads_sum = 0 yawspeed_rads_count = 0 last_sent = 0 while True: self.drain_mav() tnow = self.get_sim_time_cached() if tnow - last_sent > interval: self.do_yaw_rate(60) # this is... unlikely last_sent = tnow if tnow - tstart < 5: # let it spin up to speed first continue yawspeed_rads_sum += self.mav.messages['ATTITUDE'].yawspeed yawspeed_rads_count += 1 if tnow - tstart > 15: # 10 seconds of measurements break yawspeed_degs = math.degrees(yawspeed_rads_sum / yawspeed_rads_count) rates[rate] = yawspeed_degs self.progress("Input rate %u hz: average yaw rate %f deg/s" % (rate, yawspeed_degs)) if rates[10] < rates[1] * 0.95: raise NotAchievedException("Guided yaw rate slower for higher rate updates") self.do_RTL() def test_rplidar(self, sim_device_name, expected_distances): '''plonks a Copter with a RPLidarA2 in the middle of a simulated field of posts and checks that the measurements are what we expect.''' self.set_parameters({ "SERIAL5_PROTOCOL": 11, "PRX1_TYPE": 5, }) self.customise_SITL_commandline([ "--serial5=sim:%s:" % sim_device_name, "--home", "51.8752066,14.6487840,0,0", # SITL has "posts" here ]) self.wait_ready_to_arm() wanting_distances = copy.copy(expected_distances) tstart = self.get_sim_time() timeout = 60 while True: now = self.get_sim_time_cached() if now - tstart > timeout: raise NotAchievedException("Did not get all distances") m = self.mav.recv_match(type="DISTANCE_SENSOR", blocking=True, timeout=1) if m is None: continue self.progress("Got (%s)" % str(m)) if m.orientation not in wanting_distances: continue if abs(m.current_distance - wanting_distances[m.orientation]) > 5: self.progress("Wrong distance orient=%u want=%u got=%u" % (m.orientation, wanting_distances[m.orientation], m.current_distance)) continue self.progress("Correct distance for orient %u (want=%u got=%u)" % (m.orientation, wanting_distances[m.orientation], m.current_distance)) del wanting_distances[m.orientation] if len(wanting_distances.items()) == 0: break def RPLidarA2(self): '''test Raspberry Pi Lidar A2''' expected_distances = { mavutil.mavlink.MAV_SENSOR_ROTATION_NONE: 276, mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_45: 256, mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_90: 1130, mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_135: 1286, mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_180: 626, mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_225: 971, mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_270: 762, mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_315: 792, } self.test_rplidar("rplidara2", expected_distances) def RPLidarA1(self): '''test Raspberry Pi Lidar A1''' return # we don't send distances when too long? expected_distances = { mavutil.mavlink.MAV_SENSOR_ROTATION_NONE: 276, mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_45: 256, mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_90: 800, mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_135: 800, mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_180: 626, mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_225: 800, mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_270: 762, mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_315: 792, } self.test_rplidar("rplidara1", expected_distances) def BrakeZ(self): '''check jerk limit correct in Brake mode''' self.set_parameter('PSC_JERK_Z', 3) self.takeoff(50, mode='GUIDED') vx, vy, vz_up = (0, 0, -1) self.test_guided_local_velocity_target(vx=vx, vy=vy, vz_up=vz_up, timeout=10) self.wait_for_local_velocity(vx=vx, vy=vy, vz_up=vz_up, timeout=10) self.change_mode('BRAKE') self.wait_for_local_velocity(vx=0, vy=0, vz_up=0, timeout=10) self.land_and_disarm() def MISSION_START(self): '''test mavlink command MAV_CMD_MISSION_START''' self.upload_simple_relhome_mission([ (mavutil.mavlink.MAV_CMD_NAV_TAKEOFF, 0, 0, 200), (mavutil.mavlink.MAV_CMD_NAV_RETURN_TO_LAUNCH, 0, 0, 0), ]) for command in self.run_cmd, self.run_cmd_int: self.change_mode('LOITER') self.set_current_waypoint(1) self.wait_ready_to_arm() self.arm_vehicle() self.change_mode('AUTO') command(mavutil.mavlink.MAV_CMD_MISSION_START) self.wait_altitude(20, 1000, relative=True) self.change_mode('RTL') self.wait_disarmed() def DO_CHANGE_SPEED_in_guided(self): '''test Copter DO_CHANGE_SPEED handling in guided mode''' self.takeoff(20, mode='GUIDED') new_loc = self.mav.location() new_loc_offset_n = 2000 new_loc_offset_e = 0 self.location_offset_ne(new_loc, new_loc_offset_n, new_loc_offset_e) second_loc_offset_n = -1000 second_loc_offset_e = 0 second_loc = self.mav.location() self.location_offset_ne(second_loc, second_loc_offset_n, second_loc_offset_e) # for run_cmd we fly away from home for (tloc, command) in (new_loc, self.run_cmd), (second_loc, self.run_cmd_int): self.run_cmd_int( mavutil.mavlink.MAV_CMD_DO_REPOSITION, p1=-1, # "default" p2=0, # flags; none supplied here p3=0, # loiter radius for planes, zero ignored p4=float("nan"), # nan means do whatever you want to do p5=int(tloc.lat * 1e7), p6=int(tloc.lng * 1e7), p7=tloc.alt, frame=mavutil.mavlink.MAV_FRAME_GLOBAL, ) for speed in [2, 10, 4]: command( mavutil.mavlink.MAV_CMD_DO_CHANGE_SPEED, p1=1, # groundspeed, p2=speed, p3=-1, # throttle, -1 is no-change p4=0, # absolute value, not relative ) self.wait_groundspeed(speed-0.2, speed+0.2, minimum_duration=10, timeout=20) # we've made random changes to vehicle guided speeds above; # reboot vehicle to reset those: self.disarm_vehicle(force=True) self.reboot_sitl() def _MAV_CMD_DO_FLIGHTTERMINATION(self, command): self.set_parameters({ "SYSID_MYGCS": self.mav.source_system, "DISARM_DELAY": 0, }) self.wait_ready_to_arm() self.arm_vehicle() self.context_collect('STATUSTEXT') command(mavutil.mavlink.MAV_CMD_DO_FLIGHTTERMINATION, p1=1) self.wait_disarmed() self.reboot_sitl() def MAV_CMD_DO_FLIGHTTERMINATION(self): '''test MAV_CMD_DO_FLIGHTTERMINATION works on Copter''' self._MAV_CMD_DO_FLIGHTTERMINATION(self.run_cmd) self._MAV_CMD_DO_FLIGHTTERMINATION(self.run_cmd_int) def MAV_CMD_NAV_LOITER_UNLIM(self): '''ensure MAV_CMD_NAV_LOITER_UNLIM via mavlink works''' for command in self.run_cmd, self.run_cmd_int: self.change_mode('STABILIZE') command(mavutil.mavlink.MAV_CMD_NAV_LOITER_UNLIM) self.wait_mode('LOITER') def MAV_CMD_NAV_RETURN_TO_LAUNCH(self): '''ensure MAV_CMD_NAV_RETURN_TO_LAUNCH via mavlink works''' for command in self.run_cmd, self.run_cmd_int: self.change_mode('STABILIZE') command(mavutil.mavlink.MAV_CMD_NAV_RETURN_TO_LAUNCH) self.wait_mode('RTL') def MAV_CMD_NAV_VTOL_LAND(self): '''ensure MAV_CMD_NAV_LAND via mavlink works''' for command in self.run_cmd, self.run_cmd_int: self.change_mode('STABILIZE') command(mavutil.mavlink.MAV_CMD_NAV_VTOL_LAND) self.wait_mode('LAND') self.change_mode('STABILIZE') command(mavutil.mavlink.MAV_CMD_NAV_LAND) self.wait_mode('LAND') def clear_roi(self): '''ensure three commands that clear ROI are equivalent''' self.upload_simple_relhome_mission([ (mavutil.mavlink.MAV_CMD_NAV_TAKEOFF, 0, 0, 20), (mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 0, 0, 20), (mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 200, 0, 20), # directly North, i.e. 0 degrees (mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 400, 0, 20), # directly North, i.e. 0 degrees ]) self.set_parameter("AUTO_OPTIONS", 3) self.change_mode('AUTO') self.wait_ready_to_arm() self.arm_vehicle() home_loc = self.mav.location() cmd_ids = [ mavutil.mavlink.MAV_CMD_DO_SET_ROI, mavutil.mavlink.MAV_CMD_DO_SET_ROI_LOCATION, mavutil.mavlink.MAV_CMD_DO_SET_ROI_NONE, ] for command in self.run_cmd, self.run_cmd_int: for cmd_id in cmd_ids: self.wait_waypoint(2, 2) # Set an ROI at the Home location, expect to point at Home self.run_cmd(mavutil.mavlink.MAV_CMD_DO_SET_ROI_LOCATION, p5=home_loc.lat, p6=home_loc.lng, p7=home_loc.alt) self.wait_heading(180) # Clear the ROI, expect to point at the next Waypoint self.progress("Clear ROI using %s(%d)" % (command.__name__, cmd_id)) command(cmd_id) self.wait_heading(0) self.wait_waypoint(4, 4) self.set_current_waypoint_using_mav_cmd_do_set_mission_current(seq=2) self.land_and_disarm() def start_flying_simple_rehome_mission(self, items): '''uploads items, changes mode to auto, waits ready to arm and arms vehicle. If the first item it a takeoff you can expect the vehicle to fly after this method returns ''' self.upload_simple_relhome_mission(items) self.set_parameter("AUTO_OPTIONS", 3) self.change_mode('AUTO') self.wait_ready_to_arm() self.arm_vehicle() def _MAV_CMD_DO_LAND_START(self, run_cmd): alt = 5 self.start_flying_simple_rehome_mission([ (mavutil.mavlink.MAV_CMD_NAV_TAKEOFF, 0, 0, alt), (mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 200, 0, alt), (mavutil.mavlink.MAV_CMD_NAV_LAND, 0, 0, 0), (mavutil.mavlink.MAV_CMD_DO_LAND_START, 0, 0, alt), (mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 200, 2000, alt), (mavutil.mavlink.MAV_CMD_NAV_LAND, 0, 0, 0), ]) self.wait_current_waypoint(2) run_cmd(mavutil.mavlink.MAV_CMD_DO_LAND_START) self.wait_current_waypoint(5) # we pretend to be in RTL mode while doing this: self.wait_mode("AUTO_RTL") self.do_RTL() def MAV_CMD_DO_LAND_START(self): '''test handling of mavlink-received MAV_CMD_DO_LAND_START command''' self._MAV_CMD_DO_LAND_START(self.run_cmd) self.zero_throttle() self._MAV_CMD_DO_LAND_START(self.run_cmd_int) def _MAV_CMD_SET_EKF_SOURCE_SET(self, run_cmd): run_cmd( mavutil.mavlink.MAV_CMD_SET_EKF_SOURCE_SET, 17, want_result=mavutil.mavlink.MAV_RESULT_DENIED, ) self.change_mode('LOITER') self.wait_ready_to_arm() run_cmd(mavutil.mavlink.MAV_CMD_SET_EKF_SOURCE_SET, 2) self.assert_prearm_failure('Need Position Estimate') run_cmd(mavutil.mavlink.MAV_CMD_SET_EKF_SOURCE_SET, 1) self.wait_ready_to_arm() def MAV_CMD_SET_EKF_SOURCE_SET(self): '''test setting of source sets using mavlink command''' self._MAV_CMD_SET_EKF_SOURCE_SET(self.run_cmd) self._MAV_CMD_SET_EKF_SOURCE_SET(self.run_cmd_int) def MAV_CMD_NAV_TAKEOFF(self): '''test issuing takeoff command via mavlink''' self.change_mode('GUIDED') self.wait_ready_to_arm() self.arm_vehicle() self.run_cmd(mavutil.mavlink.MAV_CMD_NAV_TAKEOFF, p7=5) self.wait_altitude(4.5, 5.5, minimum_duration=5, relative=True) self.change_mode('LAND') self.wait_disarmed() self.start_subtest("Check NAV_TAKEOFF is above home location, not current location") # reset home 20 metres above current location current_alt_abs = self.get_altitude(relative=False) loc = self.mav.location() home_z_ofs = 20 self.run_cmd( mavutil.mavlink.MAV_CMD_DO_SET_HOME, p5=loc.lat, p6=loc.lng, p7=current_alt_abs + home_z_ofs, ) self.change_mode('GUIDED') self.arm_vehicle() takeoff_alt = 5 self.run_cmd(mavutil.mavlink.MAV_CMD_NAV_TAKEOFF, p7=takeoff_alt) self.wait_altitude( current_alt_abs + home_z_ofs + takeoff_alt - 0.5, current_alt_abs + home_z_ofs + takeoff_alt + 0.5, minimum_duration=5, relative=False, ) self.change_mode('LAND') self.wait_disarmed() self.reboot_sitl() # unlock home position def MAV_CMD_NAV_TAKEOFF_command_int(self): '''test issuing takeoff command via mavlink and command_int''' self.change_mode('GUIDED') self.wait_ready_to_arm() self.start_subtest("Check NAV_TAKEOFF is above home location, not current location") # reset home 20 metres above current location current_alt_abs = self.get_altitude(relative=False) loc = self.mav.location() home_z_ofs = 20 self.run_cmd( mavutil.mavlink.MAV_CMD_DO_SET_HOME, p5=loc.lat, p6=loc.lng, p7=current_alt_abs + home_z_ofs, ) self.change_mode('GUIDED') self.arm_vehicle() takeoff_alt = 5 self.run_cmd_int( mavutil.mavlink.MAV_CMD_NAV_TAKEOFF, p7=takeoff_alt, frame=mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT, ) self.wait_altitude( current_alt_abs + home_z_ofs + takeoff_alt - 0.5, current_alt_abs + home_z_ofs + takeoff_alt + 0.5, minimum_duration=5, relative=False, ) self.change_mode('LAND') self.wait_disarmed() self.reboot_sitl() # unlock home position def Ch6TuningWPSpeed(self): '''test waypoint speed can be changed via Ch6 tuning knob''' self.set_parameters({ "RC6_OPTION": 219, # RC6 used for tuning "TUNE": 10, # 10 is waypoint speed "TUNE_MIN": 0.02, # 20cm/s "TUNE_MAX": 1000, # 10m/s "AUTO_OPTIONS": 3, }) self.set_rc(6, 2000) self.upload_simple_relhome_mission([ (mavutil.mavlink.MAV_CMD_NAV_TAKEOFF, 0, 0, 20), (mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 2000, 0, 20), (mavutil.mavlink.MAV_CMD_NAV_RETURN_TO_LAUNCH, 0, 0, 0), ]) self.change_mode('AUTO') self.wait_ready_to_arm() self.arm_vehicle() self.wait_groundspeed(9.5, 10.5, minimum_duration=5) self.set_rc(6, 1500) self.wait_groundspeed(4.5, 5.5, minimum_duration=5) self.set_rc(6, 2000) self.wait_groundspeed(9.5, 10.5, minimum_duration=5) self.set_rc(6, 1300) self.wait_groundspeed(2.5, 3.5, minimum_duration=5) self.do_RTL() def PILOT_THR_BHV(self): '''test the PILOT_THR_BHV parameter''' self.start_subtest("Test default behaviour, no disarm on land") self.set_parameters({ "DISARM_DELAY": 0, }) self.takeoff(2, mode='GUIDED') self.set_rc(3, 1500) self.change_mode('LOITER') self.set_rc(3, 1300) maintain_armed = WaitAndMaintainArmed(self, minimum_duration=20) maintain_armed.run() self.start_subtest("Test THR_BEHAVE_DISARM_ON_LAND_DETECT") self.set_parameters({ "PILOT_THR_BHV": 4, # Disarm on land detection }) self.zero_throttle() self.takeoff(2, mode='GUIDED') self.set_rc(3, 1500) self.change_mode('LOITER') self.set_rc(3, 1300) self.wait_disarmed() def CameraLogMessages(self): '''ensure Camera log messages are good''' self.set_parameter("RC12_OPTION", 9) # CameraTrigger self.set_parameter("CAM1_TYPE", 1) # Camera with servo trigger self.reboot_sitl() # needed for RC12_OPTION to take effect gpis = [] gps_raws = [] self.takeoff(10, mode='GUIDED') self.set_rc(12, 2000) gpis.append(self.assert_receive_message('GLOBAL_POSITION_INT')) gps_raws.append(self.assert_receive_message('GPS_RAW_INT')) self.set_rc(12, 1000) self.fly_guided_move_local(0, 0, 20) self.set_rc(12, 2000) gpis.append(self.assert_receive_message('GLOBAL_POSITION_INT')) gps_raws.append(self.assert_receive_message('GPS_RAW_INT')) self.set_rc(12, 1000) dfreader = self.dfreader_for_current_onboard_log() self.do_RTL() for i in range(len(gpis)): gpi = gpis[i] gps_raw = gps_raws[i] m = dfreader.recv_match(type="CAM") things = [ ["absalt", gpi.alt*0.001, m.Alt], ["relalt", gpi.relative_alt*0.001, m.RelAlt], ["gpsalt", gps_raw.alt*0.001, m.GPSAlt], # use GPS_RAW here? ] for (name, want, got) in things: if abs(got - want) > 1: raise NotAchievedException(f"Incorrect {name} {want=} {got=}") self.progress(f"{name} {want=} {got=}") want = gpi.relative_alt*0.001 got = m.RelAlt if abs(got - want) > 1: raise NotAchievedException(f"Incorrect relalt {want=} {got=}") def LoiterToGuidedHomeVSOrigin(self): '''test moving from guided to loiter mode when home is a different alt to origin''' self.set_parameters({ "TERRAIN_ENABLE": 1, "SIM_TERRAIN": 1, }) self.takeoff(10, mode='GUIDED') here = self.mav.location() self.set_home(here) self.change_mode('LOITER') self.wait_altitude(here.alt-1, here.alt+1, minimum_duration=10) self.disarm_vehicle(force=True) self.reboot_sitl() # to "unstick" home def GuidedModeThrust(self): '''test handling of option-bit-3, where mavlink commands are intrepreted as thrust not climb rate''' self.set_parameter('GUID_OPTIONS', 8) self.change_mode('GUIDED') self.wait_ready_to_arm() self.arm_vehicle() self.mav.mav.set_attitude_target_send( 0, # time_boot_ms 1, # target sysid 1, # target compid 0, # bitmask of things to ignore mavextra.euler_to_quat([0, 0, 0]), # att 0, # roll rate (rad/s) 0, # pitch rate (rad/s) 0, # yaw rate (rad/s) 0.5 ) # thrust, 0 to 1 self.wait_altitude(0.5, 100, relative=True, timeout=10) self.do_RTL() def AutoRTL(self): '''Test Auto RTL mode using do land start and return path start mission items''' alt = 50 guided_loc = self.home_relative_loc_ne(1000, 0) guided_loc.alt += alt # Arm, take off and fly to guided location self.takeoff(mode='GUIDED') self.fly_guided_move_to(guided_loc, timeout=240) # Try auto RTL mode, should fail with no mission try: self.change_mode('AUTO_RTL', timeout=10) raise NotAchievedException("Should not change mode with no mission") except WaitModeTimeout: pass except Exception as e: raise e # pymavlink does not understand the new return path command yet, at some point it will cmd_return_path_start = 188 # mavutil.mavlink.MAV_CMD_DO_RETURN_PATH_START # Do land start and do return path should both fail as commands too self.run_cmd(mavutil.mavlink.MAV_CMD_DO_LAND_START, want_result=mavutil.mavlink.MAV_RESULT_FAILED) self.run_cmd(cmd_return_path_start, want_result=mavutil.mavlink.MAV_RESULT_FAILED) # Load mission with do land start self.upload_simple_relhome_mission([ (mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 1000, 0, alt), # 1 (mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 750, 0, alt), # 2 self.create_MISSION_ITEM_INT(mavutil.mavlink.MAV_CMD_DO_LAND_START), # 3 (mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 500, 0, alt), # 4 (mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 250, 0, alt), # 5 ]) # Return path should still fail self.run_cmd(cmd_return_path_start, want_result=mavutil.mavlink.MAV_RESULT_FAILED) # Do land start should jump to the waypoint following the item self.run_cmd(mavutil.mavlink.MAV_CMD_DO_LAND_START, want_result=mavutil.mavlink.MAV_RESULT_ACCEPTED) self.drain_mav() self.assert_current_waypoint(4) # Back to guided location self.change_mode('GUIDED') self.fly_guided_move_to(guided_loc) # mode change to Auto RTL should do the same self.change_mode('AUTO_RTL') self.drain_mav() self.assert_current_waypoint(4) # Back to guided location self.change_mode('GUIDED') self.fly_guided_move_to(guided_loc) # Add a return path item self.upload_simple_relhome_mission([ (mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 1250, 0, alt), # 1 self.create_MISSION_ITEM_INT(cmd_return_path_start), # 2 (mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 900, 0, alt), # 3 (mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 750, 0, alt), # 4 (mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 550, 0, alt), # 5 (mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 500, 0, alt), # 6 self.create_MISSION_ITEM_INT(mavutil.mavlink.MAV_CMD_DO_LAND_START), # 7 (mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 250, 0, alt), # 8 (mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, -250, 0, alt), # 9 (mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, -500, 0, alt), # 10 ]) # Return path should now work self.run_cmd(cmd_return_path_start, want_result=mavutil.mavlink.MAV_RESULT_ACCEPTED) self.drain_mav() self.assert_current_waypoint(3) # Back to guided location self.change_mode('GUIDED') self.fly_guided_move_to(guided_loc) # mode change to Auto RTL should join the return path self.change_mode('AUTO_RTL') self.drain_mav() self.assert_current_waypoint(3) # do land start should still work self.run_cmd(mavutil.mavlink.MAV_CMD_DO_LAND_START, want_result=mavutil.mavlink.MAV_RESULT_ACCEPTED) self.drain_mav() self.assert_current_waypoint(8) # Move a bit closer in guided return_path_test = self.home_relative_loc_ne(600, 0) return_path_test.alt += alt self.change_mode('GUIDED') self.fly_guided_move_to(return_path_test, timeout=100) # check the mission is joined further along self.run_cmd(cmd_return_path_start, want_result=mavutil.mavlink.MAV_RESULT_ACCEPTED) self.drain_mav() self.assert_current_waypoint(5) # fly over home home = self.home_relative_loc_ne(0, 0) home.alt += alt self.change_mode('GUIDED') self.fly_guided_move_to(home, timeout=140) # Should never join return path after do land start self.run_cmd(cmd_return_path_start, want_result=mavutil.mavlink.MAV_RESULT_ACCEPTED) self.drain_mav() self.assert_current_waypoint(6) # Done self.land_and_disarm() def EK3_OGN_HGT_MASK(self): '''test baraometer-alt-compensation based on long-term GPS readings''' self.context_push() self.set_parameters({ 'EK3_OGN_HGT_MASK': 1, # compensate baro drift using GPS }) self.reboot_sitl() expected_alt = 10 self.change_mode('GUIDED') self.wait_ready_to_arm() current_alt = self.get_altitude() expected_alt_abs = current_alt + expected_alt self.takeoff(expected_alt, mode='GUIDED') self.delay_sim_time(5) self.set_parameter("SIM_BARO_DRIFT", 0.01) # 1cm/second def check_altitude(mav, m): m_type = m.get_type() epsilon = 10 # in metres if m_type == 'GPS_RAW_INT': got_gps_alt = m.alt * 0.001 if abs(expected_alt_abs - got_gps_alt) > epsilon: raise NotAchievedException(f"Bad GPS altitude (got={got_gps_alt} want={expected_alt_abs})") elif m_type == 'GLOBAL_POSITION_INT': got_canonical_alt = m.relative_alt * 0.001 if abs(expected_alt - got_canonical_alt) > epsilon: raise NotAchievedException(f"Bad canonical altitude (got={got_canonical_alt} want={expected_alt})") self.install_message_hook_context(check_altitude) self.delay_sim_time(1500) self.disarm_vehicle(force=True) self.context_pop() self.reboot_sitl(force=True) def GuidedForceArm(self): '''ensure Guided acts appropriately when force-armed''' self.set_parameters({ "EK3_SRC2_VELXY": 5, "SIM_GPS_DISABLE": 1, }) self.load_default_params_file("copter-optflow.parm") self.reboot_sitl() self.delay_sim_time(30) self.change_mode('GUIDED') self.arm_vehicle(force=True) self.takeoff(20, mode='GUIDED') location = self.offset_location_ne(self.sim_location(), metres_north=0, metres_east=-300) self.progress("Ensure we don't move for 10 seconds") tstart = self.get_sim_time() startpos = self.sim_location_int() while True: now = self.get_sim_time_cached() if now - tstart > 10: break self.send_set_position_target_global_int(int(location.lat*1e7), int(location.lng*1e7), 10) dist = self.get_distance_int(startpos, self.sim_location_int()) if dist > 10: raise NotAchievedException("Wandered too far from start position") self.delay_sim_time(1) self.disarm_vehicle(force=True) self.reboot_sitl() def EK3_OGN_HGT_MASK_climbing(self): '''check combination of height bits doesn't cause climb''' self.context_push() self.set_parameters({ 'EK3_OGN_HGT_MASK': 5, }) self.reboot_sitl() expected_alt = 10 self.change_mode('GUIDED') self.wait_ready_to_arm() current_alt = self.get_altitude() expected_alt_abs = current_alt + expected_alt self.takeoff(expected_alt, mode='GUIDED') self.delay_sim_time(5) def check_altitude(mav, m): m_type = m.get_type() epsilon = 10 # in metres if m_type == 'GPS_RAW_INT': got_gps_alt = m.alt * 0.001 if abs(expected_alt_abs - got_gps_alt) > epsilon: raise NotAchievedException(f"Bad GPS altitude (got={got_gps_alt} want={expected_alt_abs})") elif m_type == 'GLOBAL_POSITION_INT': if abs(expected_alt - m.relative_alt * 0.001) > epsilon: raise NotAchievedException("Bad canonical altitude") self.install_message_hook_context(check_altitude) self.delay_sim_time(1500) self.disarm_vehicle(force=True) self.context_pop() self.reboot_sitl(force=True) def GuidedWeatherVane(self): '''check Copter Guided mode weathervane option''' self.set_parameters({ 'SIM_WIND_SPD': 10, 'SIM_WIND_DIR': 90, 'WVANE_ENABLE': 1, }) self.takeoff(20, mode='GUIDED') self.guided_achieve_heading(0) self.set_parameter("GUID_OPTIONS", 128) self.wait_heading(90, timeout=60, minimum_duration=10) self.do_RTL() def Clamp(self): '''test Copter docking clamp''' clamp_ch = 11 self.set_parameters({ "SIM_CLAMP_CH": clamp_ch, }) self.takeoff(1, mode='LOITER') self.context_push() self.context_collect('STATUSTEXT') self.progress("Ensure can't take off with clamp in place") self.run_cmd(mavutil.mavlink.MAV_CMD_DO_SET_SERVO, p1=11, p2=2000) self.wait_statustext("SITL: Clamp: grabbed vehicle", check_context=True) self.arm_vehicle() self.set_rc(3, 2000) self.wait_altitude(0, 5, minimum_duration=5, relative=True) self.run_cmd(mavutil.mavlink.MAV_CMD_DO_SET_SERVO, p1=11, p2=1000) self.wait_statustext("SITL: Clamp: released vehicle", check_context=True) self.wait_altitude(5, 5000, minimum_duration=1, relative=True) self.do_RTL() self.set_rc(3, 1000) self.change_mode('LOITER') self.context_pop() self.progress("Same again for repeatability") self.context_push() self.context_collect('STATUSTEXT') self.run_cmd(mavutil.mavlink.MAV_CMD_DO_SET_SERVO, p1=11, p2=2000) self.wait_statustext("SITL: Clamp: grabbed vehicle", check_context=True) self.arm_vehicle() self.set_rc(3, 2000) self.wait_altitude(0, 1, minimum_duration=5, relative=True) self.run_cmd(mavutil.mavlink.MAV_CMD_DO_SET_SERVO, p1=11, p2=1000) self.wait_statustext("SITL: Clamp: released vehicle", check_context=True) self.wait_altitude(5, 5000, minimum_duration=1, relative=True) self.do_RTL() self.set_rc(3, 1000) self.change_mode('LOITER') self.context_pop() here = self.mav.location() loc = self.offset_location_ne(here, 10, 0) self.takeoff(5, mode='GUIDED') self.send_do_reposition(loc, frame=mavutil.mavlink.MAV_FRAME_GLOBAL) self.wait_location(loc, timeout=120) self.land_and_disarm() # explicitly set home so we RTL to the right spot self.set_home(here) self.context_push() self.context_collect('STATUSTEXT') self.run_cmd(mavutil.mavlink.MAV_CMD_DO_SET_SERVO, p1=11, p2=2000) self.wait_statustext("SITL: Clamp: missed vehicle", check_context=True) self.run_cmd(mavutil.mavlink.MAV_CMD_DO_SET_SERVO, p1=11, p2=1000) self.context_pop() self.takeoff(5, mode='GUIDED') self.do_RTL() self.takeoff(5, mode='GUIDED') self.land_and_disarm() self.context_push() self.context_collect('STATUSTEXT') self.run_cmd(mavutil.mavlink.MAV_CMD_DO_SET_SERVO, p1=11, p2=2000) self.wait_statustext("SITL: Clamp: grabbed vehicle", check_context=True) self.context_pop() self.reboot_sitl() # because we set home def GripperReleaseOnThrustLoss(self): '''tests that gripper is released on thrust loss if option set''' self.context_push() self.set_servo_gripper_parameters() self.reboot_sitl() self.takeoff(30, mode='LOITER') self.context_push() self.context_collect('STATUSTEXT') self.set_parameters({ "SIM_ENGINE_FAIL": 1, "SIM_ENGINE_MUL": 0.5, "FLIGHT_OPTIONS": 4, }) self.wait_statustext("Gripper Load Released", timeout=60) self.context_pop() self.do_RTL() self.context_pop() self.reboot_sitl() def assert_home_position_not_set(self): try: self.poll_home_position() except NotAchievedException: return # if home.lng != 0: etc raise NotAchievedException("Home is set when it shouldn't be") def REQUIRE_POSITION_FOR_ARMING(self): '''check FlightOption::REQUIRE_POSITION_FOR_ARMING works''' self.context_push() self.set_parameters({ "SIM_GPS_NUMSATS": 3, # EKF does not like < 6 }) self.reboot_sitl() self.change_mode('STABILIZE') self.wait_prearm_sys_status_healthy() self.assert_home_position_not_set() self.arm_vehicle() self.disarm_vehicle() self.change_mode('LOITER') self.assert_prearm_failure("waiting for home", other_prearm_failures_fatal=False) self.change_mode('STABILIZE') self.set_parameters({ "FLIGHT_OPTIONS": 8, }) self.assert_prearm_failure("Need Position Estimate", other_prearm_failures_fatal=False) self.context_pop() self.reboot_sitl() def AutoContinueOnRCFailsafe(self): '''check LOITER when entered after RC failsafe is ignored in auto''' self.set_parameters({ "FS_OPTIONS": 1, # 1 is "RC continue if in auto" }) self.upload_simple_relhome_mission([ # N E U (mavutil.mavlink.MAV_CMD_NAV_TAKEOFF, 0, 0, 10), (mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 20, 0, 10), (mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 40, 0, 10), (mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 60, 0, 10), ]) self.takeoff(mode='LOITER') self.set_rc(1, 1200) self.delay_sim_time(1) # build up some pilot desired stuff self.change_mode('AUTO') self.wait_waypoint(2, 2) self.set_parameters({ 'SIM_RC_FAIL': 1, }) # self.set_rc(1, 1500) # note we are still in RC fail! self.wait_waypoint(3, 3) self.assert_mode_is('AUTO') self.change_mode('LOITER') self.wait_groundspeed(0, 0.1, minimum_duration=30, timeout=450) self.do_RTL() def MissionRTLYawBehaviour(self): '''check end-of-mission yaw behaviour''' self.set_parameters({ "AUTO_OPTIONS": 3, }) self.start_subtest("behaviour with WP_YAW_BEHAVE set to next-waypoint-except-RTL") self.upload_simple_relhome_mission([ # N E U (mavutil.mavlink.MAV_CMD_NAV_TAKEOFF, 0, 0, 10), (mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 20, 0, 10), (mavutil.mavlink.MAV_CMD_NAV_RETURN_TO_LAUNCH, 0, 0, 0), ]) self.change_mode('AUTO') self.wait_ready_to_arm() original_heading = self.get_heading() if abs(original_heading) < 5: raise NotAchievedException(f"Bad original heading {original_heading}") self.arm_vehicle() self.wait_current_waypoint(3) self.wait_rtl_complete() self.wait_disarmed() if abs(self.get_heading()) > 5: raise NotAchievedException("Should have yaw zero without option") # must change out of auto and back in again to reset state machine: self.change_mode('LOITER') self.change_mode('AUTO') self.start_subtest("behaviour with WP_YAW_BEHAVE set to next-waypoint") self.upload_simple_relhome_mission([ # N E U (mavutil.mavlink.MAV_CMD_NAV_TAKEOFF, 0, 0, 10), (mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 0, 20, 20), (mavutil.mavlink.MAV_CMD_NAV_RETURN_TO_LAUNCH, 0, 0, 0), ]) self.set_parameters({ "WP_YAW_BEHAVIOR": 1, # look at next waypoint (including in RTL) }) self.change_mode('AUTO') self.wait_ready_to_arm() original_heading = self.get_heading() if abs(original_heading) > 1: raise NotAchievedException("Bad original heading") self.arm_vehicle() self.wait_current_waypoint(3) self.wait_rtl_complete() self.wait_disarmed() new_heading = self.get_heading() if abs(new_heading - original_heading) > 5: raise NotAchievedException(f"Should return to original heading want={original_heading} got={new_heading}") def BatteryInternalUseOnly(self): '''batteries marked as internal use only should not appear over mavlink''' self.set_parameters({ "BATT_MONITOR": 4, # 4 is analog volt+curr "BATT2_MONITOR": 4, }) self.reboot_sitl() self.wait_message_field_values('BATTERY_STATUS', { "id": 0, }) self.wait_message_field_values('BATTERY_STATUS', { "id": 1, }) self.progress("Making battery private") self.set_parameters({ "BATT_OPTIONS": 256, }) self.wait_message_field_values('BATTERY_STATUS', { "id": 1, }) for i in range(10): self.assert_received_message_field_values('BATTERY_STATUS', { "id": 1 }) def MAV_CMD_MISSION_START_p1_p2(self): '''make sure we deny MAV_CMD_MISSION_START if either p1 or p2 non-zero''' self.upload_simple_relhome_mission([ (mavutil.mavlink.MAV_CMD_NAV_TAKEOFF, 0, 0, 20), ]) self.set_parameters({ "AUTO_OPTIONS": 3, }) self.change_mode('AUTO') self.wait_ready_to_arm() self.run_cmd( mavutil.mavlink.MAV_CMD_MISSION_START, p1=1, want_result=mavutil.mavlink.MAV_RESULT_DENIED, ) self.run_cmd( mavutil.mavlink.MAV_CMD_MISSION_START, p2=1, want_result=mavutil.mavlink.MAV_RESULT_DENIED, ) self.run_cmd( mavutil.mavlink.MAV_CMD_MISSION_START, p1=1, p2=1, want_result=mavutil.mavlink.MAV_RESULT_DENIED, ) def tests2b(self): # this block currently around 9.5mins here '''return list of all tests''' ret = ([ self.MotorVibration, Test(self.DynamicNotches, attempts=4), self.PositionWhenGPSIsZero, self.DynamicRpmNotches, # Do not add attempts to this - failure is sign of a bug self.PIDNotches, self.RefindGPS, Test(self.GyroFFT, attempts=1, speedup=8), Test(self.GyroFFTHarmonic, attempts=4, speedup=8), Test(self.GyroFFTAverage, attempts=1, speedup=8), Test(self.GyroFFTContinuousAveraging, attempts=4, speedup=8), self.GyroFFTPostFilter, self.GyroFFTMotorNoiseCheck, self.CompassReordering, self.CRSF, self.MotorTest, self.AltEstimation, self.EKFSource, self.GSF, self.GSF_reset, self.AP_Avoidance, self.SMART_RTL, self.SMART_RTL_EnterLeave, self.RTL_TO_RALLY, self.FlyEachFrame, self.GPSBlending, self.GPSWeightedBlending, self.GPSBlendingLog, self.GPSBlendingAffinity, self.DataFlash, Test(self.DataFlashErase, attempts=8), self.Callisto, self.PerfInfo, self.Replay, self.FETtecESC, self.ProximitySensors, self.GroundEffectCompensation_touchDownExpected, self.GroundEffectCompensation_takeOffExpected, self.DO_CHANGE_SPEED, self.MISSION_START, self.AUTO_LAND_TO_BRAKE, self.WPNAV_SPEED, self.WPNAV_SPEED_UP, self.WPNAV_SPEED_DN, self.DO_WINCH, self.SensorErrorFlags, self.GPSForYaw, self.DefaultIntervalsFromFiles, self.GPSTypes, self.MultipleGPS, self.WatchAlts, self.GuidedEKFLaneChange, self.Sprayer, self.AutoContinueOnRCFailsafe, self.EK3_RNG_USE_HGT, self.TerrainDBPreArm, self.ThrottleGainBoost, self.ScriptMountPOI, self.MountSolo, self.FlyMissionTwice, self.FlyMissionTwiceWithReset, self.MissionIndexValidity, self.InvalidJumpTags, self.IMUConsistency, self.AHRSTrimLand, self.IBus, self.GuidedYawRate, self.NoArmWithoutMissionItems, self.DO_CHANGE_SPEED_in_guided, self.ArmSwitchAfterReboot, self.RPLidarA1, self.RPLidarA2, self.SafetySwitch, self.BrakeZ, self.MAV_CMD_DO_FLIGHTTERMINATION, self.MAV_CMD_DO_LAND_START, self.MAV_CMD_SET_EKF_SOURCE_SET, self.MAV_CMD_NAV_TAKEOFF, self.MAV_CMD_NAV_TAKEOFF_command_int, self.Ch6TuningWPSpeed, self.PILOT_THR_BHV, self.GPSForYawCompassLearn, self.CameraLogMessages, self.LoiterToGuidedHomeVSOrigin, self.GuidedModeThrust, self.CompassMot, self.AutoRTL, self.EK3_OGN_HGT_MASK_climbing, self.EK3_OGN_HGT_MASK, self.FarOrigin, self.GuidedForceArm, self.GuidedWeatherVane, self.Clamp, self.GripperReleaseOnThrustLoss, self.REQUIRE_POSITION_FOR_ARMING, self.LoggingFormat, self.MissionRTLYawBehaviour, self.BatteryInternalUseOnly, self.MAV_CMD_MISSION_START_p1_p2, ]) return ret def testcan(self): ret = ([ self.CANGPSCopterMission, self.TestLogDownloadMAVProxyCAN, ]) return ret def BattCANSplitAuxInfo(self): '''test CAN battery periphs''' self.start_subtest("Swap UAVCAN backend at runtime") self.set_parameters({ "CAN_P1_DRIVER": 1, "BATT_MONITOR": 4, # 4 is ananlog volt+curr "BATT2_MONITOR": 8, # 8 is UAVCAN_BatteryInfo "BATT_SERIAL_NUM": 0, "BATT2_SERIAL_NUM": 0, "BATT_OPTIONS": 128, # allow split auxinfo "BATT2_OPTIONS": 128, # allow split auxinfo }) self.reboot_sitl() self.delay_sim_time(2) self.set_parameters({ "BATT_MONITOR": 8, # 8 is UAVCAN_BatteryInfo "BATT2_MONITOR": 4, # 8 is UAVCAN_BatteryInfo }) self.delay_sim_time(2) self.set_parameters({ "BATT_MONITOR": 4, # 8 is UAVCAN_BatteryInfo "BATT2_MONITOR": 8, # 8 is UAVCAN_BatteryInfo }) self.delay_sim_time(2) self.set_parameters({ "BATT_MONITOR": 8, # 8 is UAVCAN_BatteryInfo "BATT2_MONITOR": 4, # 8 is UAVCAN_BatteryInfo }) self.delay_sim_time(2) def BattCANReplaceRuntime(self): '''test CAN battery periphs''' self.start_subtest("Replace UAVCAN backend at runtime") self.set_parameters({ "CAN_P1_DRIVER": 1, "BATT_MONITOR": 11, # 4 is ananlog volt+curr }) self.reboot_sitl() self.delay_sim_time(2) self.set_parameters({ "BATT_MONITOR": 8, # 4 is UAVCAN batterinfo }) self.delay_sim_time(2) def testcanbatt(self): ret = ([ self.BattCANReplaceRuntime, self.BattCANSplitAuxInfo, ]) return ret def tests(self): ret = [] ret.extend(self.tests1a()) ret.extend(self.tests1b()) ret.extend(self.tests1c()) ret.extend(self.tests1d()) ret.extend(self.tests1e()) ret.extend(self.tests2a()) ret.extend(self.tests2b()) return ret def disabled_tests(self): return { "Parachute": "See https://github.com/ArduPilot/ardupilot/issues/4702", "AltEstimation": "See https://github.com/ArduPilot/ardupilot/issues/15191", "GroundEffectCompensation_takeOffExpected": "Flapping", "GroundEffectCompensation_touchDownExpected": "Flapping", "FlyMissionTwice": "See https://github.com/ArduPilot/ardupilot/pull/18561", "GPSForYawCompassLearn": "Vehicle currently crashed in spectacular fashion", "CompassMot": "Cuases an arithmetic exception in the EKF", "SMART_RTL_EnterLeave": "Causes a panic", } class AutoTestCopterTests1a(AutoTestCopter): def tests(self): return self.tests1a() class AutoTestCopterTests1b(AutoTestCopter): def tests(self): return self.tests1b() class AutoTestCopterTests1c(AutoTestCopter): def tests(self): return self.tests1c() class AutoTestCopterTests1d(AutoTestCopter): def tests(self): return self.tests1d() class AutoTestCopterTests1e(AutoTestCopter): def tests(self): return self.tests1e() class AutoTestCopterTests2a(AutoTestCopter): def tests(self): return self.tests2a() class AutoTestCopterTests2b(AutoTestCopter): def tests(self): return self.tests2b() class AutoTestCAN(AutoTestCopter): def tests(self): return self.testcan() class AutoTestBattCAN(AutoTestCopter): def tests(self): return self.testcanbatt()