/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* APM_OBC.cpp Outback Challenge Failsafe module */ #include #include #include #include extern const AP_HAL::HAL& hal; // table of user settable parameters const AP_Param::GroupInfo APM_OBC::var_info[] PROGMEM = { // @Param: MAN_PIN // @DisplayName: Manual Pin // @Description: This sets a digital output pin to set high when in manual mode // @User: Advanced AP_GROUPINFO("MAN_PIN", 0, APM_OBC, _manual_pin, -1), // @Param: HB_PIN // @DisplayName: Heartbeat Pin // @Description: This sets a digital output pin which is cycled at 10Hz when termination is not activated // @User: Advanced AP_GROUPINFO("HB_PIN", 1, APM_OBC, _heartbeat_pin, -1), // @Param: WP_COMMS // @DisplayName: Comms Waypoint // @Description: Waypoint number to navigate to on comms loss // @User: Advanced AP_GROUPINFO("WP_COMMS", 2, APM_OBC, _wp_comms_hold, 0), // @Param: GPS_LOSS // @DisplayName: GPS Loss Waypoint // @Description: Waypoint number to navigate to on GPS lock loss // @User: Advanced AP_GROUPINFO("WP_GPS_LOSS", 4, APM_OBC, _wp_gps_loss, 0), // @Param: TERMINATE // @DisplayName: Force Terminate // @Description: Can be set in flight to force termination of the heartbeat signal // @User: Advanced AP_GROUPINFO("TERMINATE", 5, APM_OBC, _terminate, 0), // @Param: TERM_ACTION // @DisplayName: Terminate action // @Description: This can be used to force an action on flight termination. Normally this is handled by an external failsafe board, but you can setup APM to handle it here. If set to 0 (which is the default) then no extra action is taken. If set to the magic value 42 then the plane will deliberately crash itself by setting maximum throws on all surfaces, and zero throttle // @User: Advanced AP_GROUPINFO("TERM_ACTION", 6, APM_OBC, _terminate_action, 0), // @Param: TERM_PIN // @DisplayName: Terminate Pin // @Description: This sets a digital output pin to set high on flight termination // @User: Advanced AP_GROUPINFO("TERM_PIN", 7, APM_OBC, _terminate_pin, -1), // @Param: AMSL_LIMIT // @DisplayName: AMSL limit // @Description: This sets the AMSL (above mean sea level) altitude limit. If the pressure altitude determined by QNH exceeds this limit then flight termination will be forced. Note that this limit is in meters, whereas pressure altitude limits are often quoted in feet. A value of zero disables the pressure altitude limit. // @User: Advanced // @Units: meters AP_GROUPINFO("AMSL_LIMIT", 8, APM_OBC, _amsl_limit, 0), // @Param: AMSL_ERR_GPS // @DisplayName: Error margin for GPS based AMSL limit // @Description: This sets margin for error in GPS derived altitude limit. This error margin is only used if the barometer has failed. If the barometer fails then the GPS will be used to enforce the AMSL_LIMIT, but this margin will be subtracted from the AMSL_LIMIT first, to ensure that even with the given amount of GPS altitude error the pressure altitude is not breached. OBC users should set this to comply with their D2 safety case. A value of -1 will mean that barometer failure will lead to immediate termination. // @User: Advanced // @Units: meters AP_GROUPINFO("AMSL_ERR_GPS", 9, APM_OBC, _amsl_margin_gps, -1), // @Param: QNH_PRESSURE // @DisplayName: QNH pressure // @Description: This sets the QNH pressure in millibars to be used for pressure altitude in the altitude limit. A value of zero disables the altitude limit. // @Units: millibar // @User: Advanced AP_GROUPINFO("QNH_PRESSURE", 10, APM_OBC, _qnh_pressure, 0), AP_GROUPEND }; // access to geofence state extern bool geofence_breached(void); // check for Failsafe conditions. This is called at 10Hz by the main // ArduPlane code void APM_OBC::check(APM_OBC::control_mode mode, uint32_t last_heartbeat_ms) { // we always check for fence breach if (geofence_breached() || check_altlimit()) { if (!_terminate) { hal.console->println_P(PSTR("Fence TERMINATE")); _terminate.set(1); } } // tell the failsafe board if we are in manual control // mode. This tells it to pass through controls from the // receiver if (_manual_pin != -1) { if (_manual_pin != _last_manual_pin) { hal.gpio->pinMode(_manual_pin, GPIO_OUTPUT); _last_manual_pin = _manual_pin; } hal.gpio->write(_manual_pin, mode==OBC_MANUAL); } uint32_t now = hal.scheduler->millis(); bool gcs_link_ok = ((now - last_heartbeat_ms) < 10000); bool gps_lock_ok = ((now - gps.last_fix_time_ms()) < 3000); switch (_state) { case STATE_PREFLIGHT: // we startup in preflight mode. This mode ends when // we first enter auto. if (mode == OBC_AUTO) { hal.console->println_P(PSTR("Starting OBC_AUTO")); _state = STATE_AUTO; } break; case STATE_AUTO: // this is the normal mode. if (!gcs_link_ok) { hal.console->println_P(PSTR("State DATA_LINK_LOSS")); _state = STATE_DATA_LINK_LOSS; if (_wp_comms_hold) { _saved_wp = mission.get_current_nav_cmd().index; mission.set_current_cmd(_wp_comms_hold); } break; } if (!gps_lock_ok) { hal.console->println_P(PSTR("State GPS_LOSS")); _state = STATE_GPS_LOSS; if (_wp_gps_loss) { _saved_wp = mission.get_current_nav_cmd().index; mission.set_current_cmd(_wp_gps_loss); } break; } break; case STATE_DATA_LINK_LOSS: if (!gps_lock_ok) { // losing GPS lock when data link is lost // leads to termination hal.console->println_P(PSTR("Dual loss TERMINATE")); _terminate.set(1); } else if (gcs_link_ok) { _state = STATE_AUTO; hal.console->println_P(PSTR("GCS OK")); if (_saved_wp != 0) { mission.set_current_cmd(_saved_wp); _saved_wp = 0; } } break; case STATE_GPS_LOSS: if (!gcs_link_ok) { // losing GCS link when GPS lock lost // leads to termination hal.console->println_P(PSTR("Dual loss TERMINATE")); _terminate.set(1); } else if (gps_lock_ok) { hal.console->println_P(PSTR("GPS OK")); _state = STATE_AUTO; if (_saved_wp != 0) { mission.set_current_cmd(_saved_wp); _saved_wp = 0; } } break; } // if we are not terminating or if there is a separate terminate // pin configured then toggle the heartbeat pin at 10Hz if (_heartbeat_pin != -1 && (_terminate_pin != -1 || !_terminate)) { if (_heartbeat_pin != _last_heartbeat_pin) { hal.gpio->pinMode(_heartbeat_pin, GPIO_OUTPUT); _last_heartbeat_pin = _heartbeat_pin; } _heartbeat_pin_value = !_heartbeat_pin_value; hal.gpio->write(_heartbeat_pin, _heartbeat_pin_value); } // set the terminate pin if (_terminate_pin != -1) { if (_terminate_pin != _last_terminate_pin) { hal.gpio->pinMode(_terminate_pin, GPIO_OUTPUT); _last_terminate_pin = _terminate_pin; } hal.gpio->write(_terminate_pin, _terminate?1:0); } } // check for altitude limit breach bool APM_OBC::check_altlimit(void) { if (_amsl_limit == 0 || _qnh_pressure <= 0) { // no limit set return false; } // see if the barometer is dead if (hal.scheduler->millis() - baro.get_last_update() > 5000) { // the barometer has been unresponsive for 5 seconds. See if we can switch to GPS if (_amsl_margin_gps != -1 && gps.status() >= AP_GPS::GPS_OK_FIX_3D && gps.location().alt*0.01f <= _amsl_limit - _amsl_margin_gps) { // GPS based altitude OK return false; } // no barometer - immediate termination return true; } float alt_amsl = baro.get_altitude_difference(_qnh_pressure*100, baro.get_pressure()); if (alt_amsl > _amsl_limit) { // pressure altitude breach return true; } // all OK return false; } /* setup the IO boards failsafe values for if the FMU firmware crashes */ void APM_OBC::setup_failsafe(void) { const RC_Channel *ch_roll = RC_Channel::rc_channel(rcmap.roll()-1); const RC_Channel *ch_pitch = RC_Channel::rc_channel(rcmap.pitch()-1); const RC_Channel *ch_yaw = RC_Channel::rc_channel(rcmap.yaw()-1); const RC_Channel *ch_throttle = RC_Channel::rc_channel(rcmap.throttle()-1); // setup primary channel output values hal.rcout->set_failsafe_pwm(1U<<(rcmap.roll()-1), ch_roll->get_limit_pwm(RC_Channel::RC_CHANNEL_LIMIT_MAX)); hal.rcout->set_failsafe_pwm(1U<<(rcmap.pitch()-1), ch_pitch->get_limit_pwm(RC_Channel::RC_CHANNEL_LIMIT_MAX)); hal.rcout->set_failsafe_pwm(1U<<(rcmap.yaw()-1), ch_yaw->get_limit_pwm(RC_Channel::RC_CHANNEL_LIMIT_MAX)); hal.rcout->set_failsafe_pwm(1U<<(rcmap.throttle()-1), ch_throttle->get_limit_pwm(RC_Channel::RC_CHANNEL_LIMIT_MIN)); // and all aux channels RC_Channel_aux::set_servo_failsafe(RC_Channel_aux::k_flap_auto, RC_Channel::RC_CHANNEL_LIMIT_MAX); RC_Channel_aux::set_servo_failsafe(RC_Channel_aux::k_flap, RC_Channel::RC_CHANNEL_LIMIT_MAX); RC_Channel_aux::set_servo_failsafe(RC_Channel_aux::k_aileron, RC_Channel::RC_CHANNEL_LIMIT_MAX); RC_Channel_aux::set_servo_failsafe(RC_Channel_aux::k_rudder, RC_Channel::RC_CHANNEL_LIMIT_MAX); RC_Channel_aux::set_servo_failsafe(RC_Channel_aux::k_elevator, RC_Channel::RC_CHANNEL_LIMIT_MAX); RC_Channel_aux::set_servo_failsafe(RC_Channel_aux::k_elevator_with_input, RC_Channel::RC_CHANNEL_LIMIT_MAX); } /* setu radio_out values for all channels to termination values if we are terminating */ void APM_OBC::check_crash_plane(void) { // ensure failsafe values are setup for if FMU crashes on PX4/Pixhawk if (!_failsafe_setup) { _failsafe_setup = true; setup_failsafe(); } // should we crash the plane? Only possible with // FS_TERM_ACTTION set to 42 if (!_terminate || _terminate_action != 42) { // not terminating return; } // we are terminating. Setup primary output channels radio_out values RC_Channel *ch_roll = RC_Channel::rc_channel(rcmap.roll()-1); RC_Channel *ch_pitch = RC_Channel::rc_channel(rcmap.pitch()-1); RC_Channel *ch_yaw = RC_Channel::rc_channel(rcmap.yaw()-1); RC_Channel *ch_throttle = RC_Channel::rc_channel(rcmap.throttle()-1); ch_roll->radio_out = ch_roll->get_limit_pwm(RC_Channel::RC_CHANNEL_LIMIT_MAX); ch_pitch->radio_out = ch_pitch->get_limit_pwm(RC_Channel::RC_CHANNEL_LIMIT_MAX); ch_yaw->radio_out = ch_yaw->get_limit_pwm(RC_Channel::RC_CHANNEL_LIMIT_MAX); ch_throttle->radio_out = ch_throttle->get_limit_pwm(RC_Channel::RC_CHANNEL_LIMIT_MIN); // and all aux channels RC_Channel_aux::set_servo_limit(RC_Channel_aux::k_flap_auto, RC_Channel::RC_CHANNEL_LIMIT_MAX); RC_Channel_aux::set_servo_limit(RC_Channel_aux::k_flap, RC_Channel::RC_CHANNEL_LIMIT_MAX); RC_Channel_aux::set_servo_limit(RC_Channel_aux::k_aileron, RC_Channel::RC_CHANNEL_LIMIT_MAX); RC_Channel_aux::set_servo_limit(RC_Channel_aux::k_rudder, RC_Channel::RC_CHANNEL_LIMIT_MAX); RC_Channel_aux::set_servo_limit(RC_Channel_aux::k_elevator, RC_Channel::RC_CHANNEL_LIMIT_MAX); RC_Channel_aux::set_servo_limit(RC_Channel_aux::k_elevator_with_input, RC_Channel::RC_CHANNEL_LIMIT_MAX); }