#include "Copter.h" #include /***************************************************************************** * The init_ardupilot function processes everything we need for an in - air restart * We will determine later if we are actually on the ground and process a * ground start in that case. * *****************************************************************************/ static void failsafe_check_static() { copter.failsafe_check(); } void Copter::init_ardupilot() { #if STATS_ENABLED == ENABLED // initialise stats module g2.stats.init(); #endif BoardConfig.init(); #if HAL_MAX_CAN_PROTOCOL_DRIVERS can_mgr.init(); #endif // init cargo gripper #if GRIPPER_ENABLED == ENABLED g2.gripper.init(); #endif #if AC_FENCE == ENABLED fence.init(); #endif // init winch #if WINCH_ENABLED == ENABLED g2.winch.init(); #endif // initialise notify system notify.init(); notify_flight_mode(); // initialise battery monitor battery.init(); // Init RSSI rssi.init(); barometer.init(); // setup telem slots with serial ports gcs().setup_uarts(); #if OSD_ENABLED == ENABLED osd.init(); #endif #if LOGGING_ENABLED == ENABLED log_init(); #endif // update motor interlock state update_using_interlock(); #if FRAME_CONFIG == HELI_FRAME // trad heli specific initialisation heli_init(); #endif #if FRAME_CONFIG == HELI_FRAME input_manager.set_loop_rate(scheduler.get_loop_rate_hz()); #endif init_rc_in(); // sets up rc channels from radio // allocate the motors class allocate_motors(); // initialise rc channels including setting mode rc().init(); // sets up motors and output to escs init_rc_out(); // check if we should enter esc calibration mode esc_calibration_startup_check(); // motors initialised so parameters can be sent ap.initialised_params = true; relay.init(); /* * setup the 'main loop is dead' check. Note that this relies on * the RC library being initialised. */ hal.scheduler->register_timer_failsafe(failsafe_check_static, 1000); // Do GPS init gps.set_log_gps_bit(MASK_LOG_GPS); gps.init(serial_manager); AP::compass().set_log_bit(MASK_LOG_COMPASS); AP::compass().init(); #if OPTFLOW == ENABLED // make optflow available to AHRS ahrs.set_optflow(&optflow); #endif // init Location class #if AP_TERRAIN_AVAILABLE && AC_TERRAIN Location::set_terrain(&terrain); wp_nav->set_terrain(&terrain); #endif #if AC_OAPATHPLANNER_ENABLED == ENABLED g2.oa.init(); #endif attitude_control->parameter_sanity_check(); pos_control->set_dt(scheduler.get_loop_period_s()); // init the optical flow sensor init_optflow(); #if HAL_MOUNT_ENABLED // initialise camera mount camera_mount.init(); #endif #if PRECISION_LANDING == ENABLED // initialise precision landing init_precland(); #endif // initialise landing gear position landinggear.init(); #ifdef USERHOOK_INIT USERHOOK_INIT #endif #if HIL_MODE != HIL_MODE_DISABLED while (barometer.get_last_update() == 0) { // the barometer begins updating when we get the first // HIL_STATE message gcs().send_text(MAV_SEVERITY_WARNING, "Waiting for first HIL_STATE message"); delay(1000); } // set INS to HIL mode ins.set_hil_mode(); #endif // read Baro pressure at ground //----------------------------- barometer.set_log_baro_bit(MASK_LOG_IMU); barometer.calibrate(); // initialise rangefinder init_rangefinder(); // init proximity sensor init_proximity(); #if BEACON_ENABLED == ENABLED // init beacons used for non-gps position estimation g2.beacon.init(); #endif #if RPM_ENABLED == ENABLED // initialise AP_RPM library rpm_sensor.init(); #endif #if MODE_AUTO_ENABLED == ENABLED // initialise mission library mode_auto.mission.init(); #endif #if MODE_SMARTRTL_ENABLED == ENABLED // initialize SmartRTL g2.smart_rtl.init(); #endif // initialise AP_Logger library logger.setVehicle_Startup_Writer(FUNCTOR_BIND(&copter, &Copter::Log_Write_Vehicle_Startup_Messages, void)); startup_INS_ground(); #ifdef ENABLE_SCRIPTING g2.scripting.init(); #endif // ENABLE_SCRIPTING // set landed flags set_land_complete(true); set_land_complete_maybe(true); // we don't want writes to the serial port to cause us to pause // mid-flight, so set the serial ports non-blocking once we are // ready to fly serial_manager.set_blocking_writes_all(false); // enable CPU failsafe failsafe_enable(); ins.set_log_raw_bit(MASK_LOG_IMU_RAW); // enable output to motors if (arming.rc_calibration_checks(true)) { enable_motor_output(); } // attempt to set the intial_mode, else set to STABILIZE if (!set_mode((enum Mode::Number)g.initial_mode.get(), ModeReason::INITIALISED)) { // set mode to STABILIZE will trigger mode change notification to pilot set_mode(Mode::Number::STABILIZE, ModeReason::UNAVAILABLE); AP_Notify::events.user_mode_change_failed = 1; } // flag that initialisation has completed ap.initialised = true; } //****************************************************************************** //This function does all the calibrations, etc. that we need during a ground start //****************************************************************************** void Copter::startup_INS_ground() { // initialise ahrs (may push imu calibration into the mpu6000 if using that device). ahrs.init(); ahrs.set_vehicle_class(AHRS_VEHICLE_COPTER); // Warm up and calibrate gyro offsets ins.init(scheduler.get_loop_rate_hz()); // reset ahrs including gyro bias ahrs.reset(); } // update the harmonic notch filter center frequency dynamically void Copter::update_dynamic_notch() { if (!ins.gyro_harmonic_notch_enabled()) { return; } const float ref_freq = ins.get_gyro_harmonic_notch_center_freq_hz(); const float ref = ins.get_gyro_harmonic_notch_reference(); if (is_zero(ref)) { ins.update_harmonic_notch_freq_hz(ref_freq); return; } const float throttle_freq = ref_freq * MAX(1.0f, sqrtf(motors->get_throttle_out() / ref)); switch (ins.get_gyro_harmonic_notch_tracking_mode()) { case HarmonicNotchDynamicMode::UpdateThrottle: // throttle based tracking // set the harmonic notch filter frequency approximately scaled on motor rpm implied by throttle ins.update_harmonic_notch_freq_hz(throttle_freq); break; #if RPM_ENABLED == ENABLED case HarmonicNotchDynamicMode::UpdateRPM: // rpm sensor based tracking float rpm; if (rpm_sensor.get_rpm(0, rpm)) { // set the harmonic notch filter frequency from the main rotor rpm ins.update_harmonic_notch_freq_hz(MAX(ref_freq, rpm * ref / 60.0f)); } else { ins.update_harmonic_notch_freq_hz(ref_freq); } break; #endif #ifdef HAVE_AP_BLHELI_SUPPORT case HarmonicNotchDynamicMode::UpdateBLHeli: // BLHeli based tracking // set the harmonic notch filter frequency scaled on measured frequency if (ins.has_harmonic_option(HarmonicNotchFilterParams::Options::DynamicHarmonic)) { float notches[INS_MAX_NOTCHES]; const uint8_t num_notches = AP_BLHeli::get_singleton()->get_motor_frequencies_hz(INS_MAX_NOTCHES, notches); for (uint8_t i = 0; i < num_notches; i++) { notches[i] = MAX(ref_freq, notches[i]); } if (num_notches > 0) { ins.update_harmonic_notch_frequencies_hz(num_notches, notches); } else { // throttle fallback ins.update_harmonic_notch_freq_hz(throttle_freq); } } else { ins.update_harmonic_notch_freq_hz(MAX(ref_freq, AP_BLHeli::get_singleton()->get_average_motor_frequency_hz() * ref)); } break; #endif #if HAL_GYROFFT_ENABLED case HarmonicNotchDynamicMode::UpdateGyroFFT: // FFT based tracking // set the harmonic notch filter frequency scaled on measured frequency if (ins.has_harmonic_option(HarmonicNotchFilterParams::Options::DynamicHarmonic)) { float notches[INS_MAX_NOTCHES]; const uint8_t peaks = gyro_fft.get_weighted_noise_center_frequencies_hz(INS_MAX_NOTCHES, notches); ins.update_harmonic_notch_frequencies_hz(peaks, notches); } else { ins.update_harmonic_notch_freq_hz(gyro_fft.get_weighted_noise_center_freq_hz()); } break; #endif case HarmonicNotchDynamicMode::Fixed: // static default: ins.update_harmonic_notch_freq_hz(ref_freq); break; } } // position_ok - returns true if the horizontal absolute position is ok and home position is set bool Copter::position_ok() const { // return false if ekf failsafe has triggered if (failsafe.ekf) { return false; } // check ekf position estimate return (ekf_has_absolute_position() || ekf_has_relative_position()); } // ekf_has_absolute_position - returns true if the EKF can provide an absolute WGS-84 position estimate bool Copter::ekf_has_absolute_position() const { if (!ahrs.have_inertial_nav()) { // do not allow navigation with dcm position return false; } // with EKF use filter status and ekf check nav_filter_status filt_status = inertial_nav.get_filter_status(); // if disarmed we accept a predicted horizontal position if (!motors->armed()) { return ((filt_status.flags.horiz_pos_abs || filt_status.flags.pred_horiz_pos_abs)); } else { // once armed we require a good absolute position and EKF must not be in const_pos_mode return (filt_status.flags.horiz_pos_abs && !filt_status.flags.const_pos_mode); } } // ekf_has_relative_position - returns true if the EKF can provide a position estimate relative to it's starting position bool Copter::ekf_has_relative_position() const { // return immediately if EKF not used if (!ahrs.have_inertial_nav()) { return false; } // return immediately if neither optflow nor visual odometry is enabled bool enabled = false; #if OPTFLOW == ENABLED if (optflow.enabled()) { enabled = true; } #endif #if HAL_VISUALODOM_ENABLED if (visual_odom.enabled()) { enabled = true; } #endif if (!enabled) { return false; } // get filter status from EKF nav_filter_status filt_status = inertial_nav.get_filter_status(); // if disarmed we accept a predicted horizontal relative position if (!motors->armed()) { return (filt_status.flags.pred_horiz_pos_rel); } else { return (filt_status.flags.horiz_pos_rel && !filt_status.flags.const_pos_mode); } } // returns true if the ekf has a good altitude estimate (required for modes which do AltHold) bool Copter::ekf_alt_ok() const { if (!ahrs.have_inertial_nav()) { // do not allow alt control with only dcm return false; } // with EKF use filter status and ekf check nav_filter_status filt_status = inertial_nav.get_filter_status(); // require both vertical velocity and position return (filt_status.flags.vert_vel && filt_status.flags.vert_pos); } // update_auto_armed - update status of auto_armed flag void Copter::update_auto_armed() { // disarm checks if(ap.auto_armed){ // if motors are disarmed, auto_armed should also be false if(!motors->armed()) { set_auto_armed(false); return; } // if in stabilize or acro flight mode and throttle is zero, auto-armed should become false if(flightmode->has_manual_throttle() && ap.throttle_zero && !failsafe.radio) { set_auto_armed(false); } // if helicopters are on the ground, and the motor is switched off, auto-armed should be false // so that rotor runup is checked again before attempting to take-off if(ap.land_complete && motors->get_spool_state() != AP_Motors::SpoolState::THROTTLE_UNLIMITED && ap.using_interlock) { set_auto_armed(false); } }else{ // arm checks // for tradheli if motors are armed and throttle is above zero and the motor is started, auto_armed should be true if(motors->armed() && ap.using_interlock) { if(!ap.throttle_zero && motors->get_spool_state() == AP_Motors::SpoolState::THROTTLE_UNLIMITED) { set_auto_armed(true); } // if motors are armed and throttle is above zero auto_armed should be true // if motors are armed and we are in throw mode, then auto_armed should be true } else if (motors->armed() && !ap.using_interlock) { if(!ap.throttle_zero || control_mode == Mode::Number::THROW) { set_auto_armed(true); } } } } /* should we log a message type now? */ bool Copter::should_log(uint32_t mask) { #if LOGGING_ENABLED == ENABLED ap.logging_started = logger.logging_started(); return logger.should_log(mask); #else return false; #endif } // return MAV_TYPE corresponding to frame class MAV_TYPE Copter::get_frame_mav_type() { switch ((AP_Motors::motor_frame_class)g2.frame_class.get()) { case AP_Motors::MOTOR_FRAME_QUAD: case AP_Motors::MOTOR_FRAME_UNDEFINED: return MAV_TYPE_QUADROTOR; case AP_Motors::MOTOR_FRAME_HEXA: case AP_Motors::MOTOR_FRAME_Y6: return MAV_TYPE_HEXAROTOR; case AP_Motors::MOTOR_FRAME_OCTA: case AP_Motors::MOTOR_FRAME_OCTAQUAD: return MAV_TYPE_OCTOROTOR; case AP_Motors::MOTOR_FRAME_HELI: case AP_Motors::MOTOR_FRAME_HELI_DUAL: case AP_Motors::MOTOR_FRAME_HELI_QUAD: return MAV_TYPE_HELICOPTER; case AP_Motors::MOTOR_FRAME_TRI: return MAV_TYPE_TRICOPTER; case AP_Motors::MOTOR_FRAME_SINGLE: case AP_Motors::MOTOR_FRAME_COAX: case AP_Motors::MOTOR_FRAME_TAILSITTER: return MAV_TYPE_COAXIAL; case AP_Motors::MOTOR_FRAME_DODECAHEXA: return MAV_TYPE_DODECAROTOR; case AP_Motors::MOTOR_FRAME_DECA: return MAV_TYPE_DECAROTOR; } // unknown frame so return generic return MAV_TYPE_GENERIC; } // return string corresponding to frame_class const char* Copter::get_frame_string() { switch ((AP_Motors::motor_frame_class)g2.frame_class.get()) { case AP_Motors::MOTOR_FRAME_QUAD: return "QUAD"; case AP_Motors::MOTOR_FRAME_HEXA: return "HEXA"; case AP_Motors::MOTOR_FRAME_Y6: return "Y6"; case AP_Motors::MOTOR_FRAME_OCTA: return "OCTA"; case AP_Motors::MOTOR_FRAME_OCTAQUAD: return "OCTA_QUAD"; case AP_Motors::MOTOR_FRAME_HELI: return "HELI"; case AP_Motors::MOTOR_FRAME_HELI_DUAL: return "HELI_DUAL"; case AP_Motors::MOTOR_FRAME_HELI_QUAD: return "HELI_QUAD"; case AP_Motors::MOTOR_FRAME_TRI: return "TRI"; case AP_Motors::MOTOR_FRAME_SINGLE: return "SINGLE"; case AP_Motors::MOTOR_FRAME_COAX: return "COAX"; case AP_Motors::MOTOR_FRAME_TAILSITTER: return "TAILSITTER"; case AP_Motors::MOTOR_FRAME_DODECAHEXA: return "DODECA_HEXA"; case AP_Motors::MOTOR_FRAME_DECA: return "DECA"; case AP_Motors::MOTOR_FRAME_UNDEFINED: default: return "UNKNOWN"; } } /* allocate the motors class */ void Copter::allocate_motors(void) { switch ((AP_Motors::motor_frame_class)g2.frame_class.get()) { #if FRAME_CONFIG != HELI_FRAME case AP_Motors::MOTOR_FRAME_QUAD: case AP_Motors::MOTOR_FRAME_HEXA: case AP_Motors::MOTOR_FRAME_Y6: case AP_Motors::MOTOR_FRAME_OCTA: case AP_Motors::MOTOR_FRAME_OCTAQUAD: case AP_Motors::MOTOR_FRAME_DODECAHEXA: case AP_Motors::MOTOR_FRAME_DECA: default: motors = new AP_MotorsMatrix(copter.scheduler.get_loop_rate_hz()); motors_var_info = AP_MotorsMatrix::var_info; break; case AP_Motors::MOTOR_FRAME_TRI: motors = new AP_MotorsTri(copter.scheduler.get_loop_rate_hz()); motors_var_info = AP_MotorsTri::var_info; AP_Param::set_frame_type_flags(AP_PARAM_FRAME_TRICOPTER); break; case AP_Motors::MOTOR_FRAME_SINGLE: motors = new AP_MotorsSingle(copter.scheduler.get_loop_rate_hz()); motors_var_info = AP_MotorsSingle::var_info; break; case AP_Motors::MOTOR_FRAME_COAX: motors = new AP_MotorsCoax(copter.scheduler.get_loop_rate_hz()); motors_var_info = AP_MotorsCoax::var_info; break; case AP_Motors::MOTOR_FRAME_TAILSITTER: motors = new AP_MotorsTailsitter(copter.scheduler.get_loop_rate_hz()); motors_var_info = AP_MotorsTailsitter::var_info; break; #else // FRAME_CONFIG == HELI_FRAME case AP_Motors::MOTOR_FRAME_HELI_DUAL: motors = new AP_MotorsHeli_Dual(copter.scheduler.get_loop_rate_hz()); motors_var_info = AP_MotorsHeli_Dual::var_info; AP_Param::set_frame_type_flags(AP_PARAM_FRAME_HELI); break; case AP_Motors::MOTOR_FRAME_HELI_QUAD: motors = new AP_MotorsHeli_Quad(copter.scheduler.get_loop_rate_hz()); motors_var_info = AP_MotorsHeli_Quad::var_info; AP_Param::set_frame_type_flags(AP_PARAM_FRAME_HELI); break; case AP_Motors::MOTOR_FRAME_HELI: default: motors = new AP_MotorsHeli_Single(copter.scheduler.get_loop_rate_hz()); motors_var_info = AP_MotorsHeli_Single::var_info; AP_Param::set_frame_type_flags(AP_PARAM_FRAME_HELI); break; #endif } if (motors == nullptr) { AP_HAL::panic("Unable to allocate FRAME_CLASS=%u", (unsigned)g2.frame_class.get()); } AP_Param::load_object_from_eeprom(motors, motors_var_info); ahrs_view = ahrs.create_view(ROTATION_NONE); if (ahrs_view == nullptr) { AP_HAL::panic("Unable to allocate AP_AHRS_View"); } const struct AP_Param::GroupInfo *ac_var_info; #if FRAME_CONFIG != HELI_FRAME attitude_control = new AC_AttitudeControl_Multi(*ahrs_view, aparm, *motors, scheduler.get_loop_period_s()); ac_var_info = AC_AttitudeControl_Multi::var_info; #else attitude_control = new AC_AttitudeControl_Heli(*ahrs_view, aparm, *motors, scheduler.get_loop_period_s()); ac_var_info = AC_AttitudeControl_Heli::var_info; #endif if (attitude_control == nullptr) { AP_HAL::panic("Unable to allocate AttitudeControl"); } AP_Param::load_object_from_eeprom(attitude_control, ac_var_info); pos_control = new AC_PosControl(*ahrs_view, inertial_nav, *motors, *attitude_control); if (pos_control == nullptr) { AP_HAL::panic("Unable to allocate PosControl"); } AP_Param::load_object_from_eeprom(pos_control, pos_control->var_info); #if AC_OAPATHPLANNER_ENABLED == ENABLED wp_nav = new AC_WPNav_OA(inertial_nav, *ahrs_view, *pos_control, *attitude_control); #else wp_nav = new AC_WPNav(inertial_nav, *ahrs_view, *pos_control, *attitude_control); #endif if (wp_nav == nullptr) { AP_HAL::panic("Unable to allocate WPNav"); } AP_Param::load_object_from_eeprom(wp_nav, wp_nav->var_info); loiter_nav = new AC_Loiter(inertial_nav, *ahrs_view, *pos_control, *attitude_control); if (loiter_nav == nullptr) { AP_HAL::panic("Unable to allocate LoiterNav"); } AP_Param::load_object_from_eeprom(loiter_nav, loiter_nav->var_info); #if MODE_CIRCLE_ENABLED == ENABLED circle_nav = new AC_Circle(inertial_nav, *ahrs_view, *pos_control); if (circle_nav == nullptr) { AP_HAL::panic("Unable to allocate CircleNav"); } AP_Param::load_object_from_eeprom(circle_nav, circle_nav->var_info); #endif // reload lines from the defaults file that may now be accessible AP_Param::reload_defaults_file(true); // now setup some frame-class specific defaults switch ((AP_Motors::motor_frame_class)g2.frame_class.get()) { case AP_Motors::MOTOR_FRAME_Y6: attitude_control->get_rate_roll_pid().kP().set_default(0.1); attitude_control->get_rate_roll_pid().kD().set_default(0.006); attitude_control->get_rate_pitch_pid().kP().set_default(0.1); attitude_control->get_rate_pitch_pid().kD().set_default(0.006); attitude_control->get_rate_yaw_pid().kP().set_default(0.15); attitude_control->get_rate_yaw_pid().kI().set_default(0.015); break; case AP_Motors::MOTOR_FRAME_TRI: attitude_control->get_rate_yaw_pid().filt_D_hz().set_default(100); break; default: break; } // brushed 16kHz defaults to 16kHz pulses if (motors->get_pwm_type() == AP_Motors::PWM_TYPE_BRUSHED) { g.rc_speed.set_default(16000); } // upgrade parameters. This must be done after allocating the objects convert_pid_parameters(); #if FRAME_CONFIG == HELI_FRAME convert_tradheli_parameters(); #endif // param count could have changed AP_Param::invalidate_count(); } bool Copter::is_tradheli() const { #if FRAME_CONFIG == HELI_FRAME return true; #else return false; #endif }