#include "Copter.h" // return barometric altitude in centimeters void Copter::read_barometer(void) { barometer.update(); baro_alt = barometer.get_altitude() * 100.0f; motors->set_air_density_ratio(barometer.get_air_density_ratio()); } void Copter::init_rangefinder(void) { #if RANGEFINDER_ENABLED == ENABLED rangefinder.init(); rangefinder_state.alt_cm_filt.set_cutoff_frequency(RANGEFINDER_WPNAV_FILT_HZ); rangefinder_state.enabled = rangefinder.has_orientation(ROTATION_PITCH_270); #endif } // return rangefinder altitude in centimeters void Copter::read_rangefinder(void) { #if RANGEFINDER_ENABLED == ENABLED rangefinder.update(); if (rangefinder.num_sensors() > 0 && should_log(MASK_LOG_CTUN)) { DataFlash.Log_Write_RFND(rangefinder); } rangefinder_state.alt_healthy = ((rangefinder.status_orient(ROTATION_PITCH_270) == RangeFinder::RangeFinder_Good) && (rangefinder.range_valid_count_orient(ROTATION_PITCH_270) >= RANGEFINDER_HEALTH_MAX)); int16_t temp_alt = rangefinder.distance_cm_orient(ROTATION_PITCH_270); #if RANGEFINDER_TILT_CORRECTION == ENABLED // correct alt for angle of the rangefinder temp_alt = (float)temp_alt * MAX(0.707f, ahrs.get_rotation_body_to_ned().c.z); #endif rangefinder_state.alt_cm = temp_alt; // filter rangefinder for use by AC_WPNav uint32_t now = AP_HAL::millis(); if (rangefinder_state.alt_healthy) { if (now - rangefinder_state.last_healthy_ms > RANGEFINDER_TIMEOUT_MS) { // reset filter if we haven't used it within the last second rangefinder_state.alt_cm_filt.reset(rangefinder_state.alt_cm); } else { rangefinder_state.alt_cm_filt.apply(rangefinder_state.alt_cm, 0.05f); } rangefinder_state.last_healthy_ms = now; } // send rangefinder altitude and health to waypoint navigation library wp_nav->set_rangefinder_alt(rangefinder_state.enabled, rangefinder_state.alt_healthy, rangefinder_state.alt_cm_filt.get()); #else rangefinder_state.enabled = false; rangefinder_state.alt_healthy = false; rangefinder_state.alt_cm = 0; #endif } // return true if rangefinder_alt can be used bool Copter::rangefinder_alt_ok() { return (rangefinder_state.enabled && rangefinder_state.alt_healthy); } /* update RPM sensors */ void Copter::rpm_update(void) { #if RPM_ENABLED == ENABLED rpm_sensor.update(); if (rpm_sensor.enabled(0) || rpm_sensor.enabled(1)) { if (should_log(MASK_LOG_RCIN)) { DataFlash.Log_Write_RPM(rpm_sensor); } } #endif } // initialise compass void Copter::init_compass() { if (!g.compass_enabled) { return; } if (!compass.init() || !compass.read()) { // make sure we don't pass a broken compass to DCM hal.console->printf("COMPASS INIT ERROR\n"); Log_Write_Error(ERROR_SUBSYSTEM_COMPASS,ERROR_CODE_FAILED_TO_INITIALISE); return; } ahrs.set_compass(&compass); } /* initialise compass's location used for declination */ void Copter::init_compass_location() { // update initial location used for declination if (!ap.compass_init_location) { Location loc; if (ahrs.get_position(loc)) { compass.set_initial_location(loc.lat, loc.lng); ap.compass_init_location = true; } } } // initialise optical flow sensor void Copter::init_optflow() { #if OPTFLOW == ENABLED // initialise optical flow sensor optflow.init(); #endif // OPTFLOW == ENABLED } // called at 200hz #if OPTFLOW == ENABLED void Copter::update_optical_flow(void) { static uint32_t last_of_update = 0; // exit immediately if not enabled if (!optflow.enabled()) { return; } // read from sensor optflow.update(); // write to log and send to EKF if new data has arrived if (optflow.last_update() != last_of_update) { last_of_update = optflow.last_update(); uint8_t flowQuality = optflow.quality(); Vector2f flowRate = optflow.flowRate(); Vector2f bodyRate = optflow.bodyRate(); const Vector3f &posOffset = optflow.get_pos_offset(); ahrs.writeOptFlowMeas(flowQuality, flowRate, bodyRate, last_of_update, posOffset); if (g.log_bitmask & MASK_LOG_OPTFLOW) { Log_Write_Optflow(); } } } #endif // OPTFLOW == ENABLED void Copter::compass_cal_update() { static uint32_t compass_cal_stick_gesture_begin = 0; if (!hal.util->get_soft_armed()) { compass.compass_cal_update(); } if (compass.is_calibrating()) { if (channel_yaw->get_control_in() < -4000 && channel_throttle->get_control_in() > 900) { compass.cancel_calibration_all(); } } else { bool stick_gesture_detected = compass_cal_stick_gesture_begin != 0 && !motors->armed() && channel_yaw->get_control_in() > 4000 && channel_throttle->get_control_in() > 900; uint32_t tnow = millis(); if (!stick_gesture_detected) { compass_cal_stick_gesture_begin = tnow; } else if (tnow-compass_cal_stick_gesture_begin > 1000*COMPASS_CAL_STICK_GESTURE_TIME) { #ifdef CAL_ALWAYS_REBOOT compass.start_calibration_all(true,true,COMPASS_CAL_STICK_DELAY,true); #else compass.start_calibration_all(true,true,COMPASS_CAL_STICK_DELAY,false); #endif } } } void Copter::accel_cal_update() { if (hal.util->get_soft_armed()) { return; } ins.acal_update(); // check if new trim values, and set them float trim_roll, trim_pitch; if(ins.get_new_trim(trim_roll, trim_pitch)) { ahrs.set_trim(Vector3f(trim_roll, trim_pitch, 0)); } #ifdef CAL_ALWAYS_REBOOT if (ins.accel_cal_requires_reboot()) { hal.scheduler->delay(1000); hal.scheduler->reboot(false); } #endif } // initialise proximity sensor void Copter::init_proximity(void) { #if PROXIMITY_ENABLED == ENABLED g2.proximity.init(); g2.proximity.set_rangefinder(&rangefinder); #endif } // update error mask of sensors and subsystems. The mask // uses the MAV_SYS_STATUS_* values from mavlink. If a bit is set // then it indicates that the sensor or subsystem is present but // not functioning correctly. void Copter::update_sensor_status_flags(void) { // default sensors present control_sensors_present = MAVLINK_SENSOR_PRESENT_DEFAULT; // first what sensors/controllers we have if (g.compass_enabled) { control_sensors_present |= MAV_SYS_STATUS_SENSOR_3D_MAG; // compass present } if (gps.status() > AP_GPS::NO_GPS) { control_sensors_present |= MAV_SYS_STATUS_SENSOR_GPS; } #if OPTFLOW == ENABLED if (optflow.enabled()) { control_sensors_present |= MAV_SYS_STATUS_SENSOR_OPTICAL_FLOW; } #endif #if PRECISION_LANDING == ENABLED if (precland.enabled()) { control_sensors_present |= MAV_SYS_STATUS_SENSOR_VISION_POSITION; } #endif #if VISUAL_ODOMETRY_ENABLED == ENABLED if (g2.visual_odom.enabled()) { control_sensors_present |= MAV_SYS_STATUS_SENSOR_VISION_POSITION; } #endif if (ap.rc_receiver_present) { control_sensors_present |= MAV_SYS_STATUS_SENSOR_RC_RECEIVER; } if (copter.DataFlash.logging_present()) { // primary logging only (usually File) control_sensors_present |= MAV_SYS_STATUS_LOGGING; } #if PROXIMITY_ENABLED == ENABLED if (copter.g2.proximity.sensor_present()) { control_sensors_present |= MAV_SYS_STATUS_SENSOR_PROXIMITY; } #endif #if AC_FENCE == ENABLED if (copter.fence.sys_status_present()) { control_sensors_present |= MAV_SYS_STATUS_GEOFENCE; } #endif #if RANGEFINDER_ENABLED == ENABLED if (rangefinder.has_orientation(ROTATION_PITCH_270)) { control_sensors_present |= MAV_SYS_STATUS_SENSOR_LASER_POSITION; } #endif // all sensors are present except these, which may be set as enabled below: control_sensors_enabled = control_sensors_present & (~MAV_SYS_STATUS_SENSOR_Z_ALTITUDE_CONTROL & ~MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL & ~MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS & ~MAV_SYS_STATUS_LOGGING & ~MAV_SYS_STATUS_SENSOR_BATTERY & ~MAV_SYS_STATUS_GEOFENCE & ~MAV_SYS_STATUS_SENSOR_LASER_POSITION & ~MAV_SYS_STATUS_SENSOR_PROXIMITY); switch (control_mode) { case AUTO: case AVOID_ADSB: case GUIDED: case LOITER: case RTL: case CIRCLE: case LAND: case POSHOLD: case BRAKE: case THROW: case SMART_RTL: control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_Z_ALTITUDE_CONTROL; control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL; break; case ALT_HOLD: case GUIDED_NOGPS: case SPORT: case AUTOTUNE: case FLOWHOLD: control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_Z_ALTITUDE_CONTROL; break; default: // stabilize, acro, drift, and flip have no automatic x,y or z control (i.e. all manual) break; } // set motors outputs as enabled if safety switch is not disarmed (i.e. either NONE or ARMED) if (hal.util->safety_switch_state() != AP_HAL::Util::SAFETY_DISARMED) { control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS; } if (copter.DataFlash.logging_enabled()) { control_sensors_enabled |= MAV_SYS_STATUS_LOGGING; } if (battery.num_instances() > 0) { control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_BATTERY; } #if AC_FENCE == ENABLED if (copter.fence.sys_status_enabled()) { control_sensors_enabled |= MAV_SYS_STATUS_GEOFENCE; } #endif #if PROXIMITY_ENABLED == ENABLED if (copter.g2.proximity.sensor_enabled()) { control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_PROXIMITY; } #endif // default to all healthy control_sensors_health = control_sensors_present; if (!barometer.all_healthy()) { control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_ABSOLUTE_PRESSURE; } if (!g.compass_enabled || !compass.healthy() || !ahrs.use_compass()) { control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_3D_MAG; } if (!gps.is_healthy()) { control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_GPS; } if (!ap.rc_receiver_present || failsafe.radio) { control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_RC_RECEIVER; } #if OPTFLOW == ENABLED if (!optflow.healthy()) { control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_OPTICAL_FLOW; } #endif #if PRECISION_LANDING == ENABLED if (precland.enabled() && !precland.healthy()) { control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_VISION_POSITION; } #endif #if VISUAL_ODOMETRY_ENABLED == ENABLED if (g2.visual_odom.enabled() && !g2.visual_odom.healthy()) { control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_VISION_POSITION; } #endif if (!ins.get_gyro_health_all() || !ins.gyro_calibrated_ok_all()) { control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_3D_GYRO; } if (!ins.get_accel_health_all()) { control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_3D_ACCEL; } if (ahrs.initialised() && !ahrs.healthy()) { // AHRS subsystem is unhealthy control_sensors_health &= ~MAV_SYS_STATUS_AHRS; } if (copter.DataFlash.logging_failed()) { control_sensors_health &= ~MAV_SYS_STATUS_LOGGING; } #if PROXIMITY_ENABLED == ENABLED if (copter.g2.proximity.sensor_failed()) { control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_PROXIMITY; } #endif #if AP_TERRAIN_AVAILABLE && AC_TERRAIN switch (terrain.status()) { case AP_Terrain::TerrainStatusDisabled: break; case AP_Terrain::TerrainStatusUnhealthy: // To-Do: restore unhealthy terrain status reporting once terrain is used in copter //control_sensors_present |= MAV_SYS_STATUS_TERRAIN; //control_sensors_enabled |= MAV_SYS_STATUS_TERRAIN; //break; case AP_Terrain::TerrainStatusOK: control_sensors_present |= MAV_SYS_STATUS_TERRAIN; control_sensors_enabled |= MAV_SYS_STATUS_TERRAIN; control_sensors_health |= MAV_SYS_STATUS_TERRAIN; break; } #endif #if RANGEFINDER_ENABLED == ENABLED if (rangefinder_state.enabled) { control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_LASER_POSITION; if (!rangefinder.has_data_orient(ROTATION_PITCH_270)) { control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_LASER_POSITION; } } #endif if (!ap.initialised || ins.calibrating()) { // while initialising the gyros and accels are not enabled control_sensors_enabled &= ~(MAV_SYS_STATUS_SENSOR_3D_GYRO | MAV_SYS_STATUS_SENSOR_3D_ACCEL); control_sensors_health &= ~(MAV_SYS_STATUS_SENSOR_3D_GYRO | MAV_SYS_STATUS_SENSOR_3D_ACCEL); } if (!copter.battery.healthy() || copter.battery.has_failsafed()) { control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_BATTERY; } #if AC_FENCE == ENABLED if (copter.fence.sys_status_failed()) { control_sensors_health &= ~MAV_SYS_STATUS_GEOFENCE; } #endif #if FRSKY_TELEM_ENABLED == ENABLED // give mask of error flags to Frsky_Telemetry frsky_telemetry.update_sensor_status_flags(~control_sensors_health & control_sensors_enabled & control_sensors_present); #endif } // init visual odometry sensor void Copter::init_visual_odom() { #if VISUAL_ODOMETRY_ENABLED == ENABLED g2.visual_odom.init(); #endif } // update visual odometry sensor void Copter::update_visual_odom() { #if VISUAL_ODOMETRY_ENABLED == ENABLED // check for updates if (g2.visual_odom.enabled() && (g2.visual_odom.get_last_update_ms() != visual_odom_last_update_ms)) { visual_odom_last_update_ms = g2.visual_odom.get_last_update_ms(); float time_delta_sec = g2.visual_odom.get_time_delta_usec() / 1000000.0f; ahrs.writeBodyFrameOdom(g2.visual_odom.get_confidence(), g2.visual_odom.get_position_delta(), g2.visual_odom.get_angle_delta(), time_delta_sec, visual_odom_last_update_ms, g2.visual_odom.get_pos_offset()); // log sensor data DataFlash.Log_Write_VisualOdom(time_delta_sec, g2.visual_odom.get_angle_delta(), g2.visual_odom.get_position_delta(), g2.visual_odom.get_confidence()); } #endif } // winch and wheel encoder initialisation void Copter::winch_init() { #if WINCH_ENABLED == ENABLED g2.wheel_encoder.init(); g2.winch.init(&g2.wheel_encoder); #endif } // winch and wheel encoder update void Copter::winch_update() { #if WINCH_ENABLED == ENABLED g2.wheel_encoder.update(); g2.winch.update(); #endif }