#include "Blimp.h" #include "GCS_Mavlink.h" #include MAV_TYPE GCS_Blimp::frame_type() const { return blimp.get_frame_mav_type(); } MAV_MODE GCS_MAVLINK_Blimp::base_mode() const { uint8_t _base_mode = MAV_MODE_FLAG_STABILIZE_ENABLED; _base_mode |= MAV_MODE_FLAG_MANUAL_INPUT_ENABLED; // we are armed if we are not initialising if (blimp.motors != nullptr && blimp.motors->armed()) { _base_mode |= MAV_MODE_FLAG_SAFETY_ARMED; } // indicate we have set a custom mode _base_mode |= MAV_MODE_FLAG_CUSTOM_MODE_ENABLED; return (MAV_MODE)_base_mode; } uint32_t GCS_Blimp::custom_mode() const { return (uint32_t)blimp.control_mode; } MAV_STATE GCS_MAVLINK_Blimp::vehicle_system_status() const { // set system as critical if any failsafe have triggered if (blimp.any_failsafe_triggered()) { return MAV_STATE_CRITICAL; } if (blimp.ap.land_complete) { return MAV_STATE_STANDBY; } return MAV_STATE_ACTIVE; } void GCS_MAVLINK_Blimp::send_position_target_global_int() { Location target; if (!blimp.flightmode->get_wp(target)) { return; } static constexpr uint16_t POSITION_TARGET_TYPEMASK_LAST_BYTE = 0xF000; static constexpr uint16_t TYPE_MASK = POSITION_TARGET_TYPEMASK_VX_IGNORE | POSITION_TARGET_TYPEMASK_VY_IGNORE | POSITION_TARGET_TYPEMASK_VZ_IGNORE | POSITION_TARGET_TYPEMASK_AX_IGNORE | POSITION_TARGET_TYPEMASK_AY_IGNORE | POSITION_TARGET_TYPEMASK_AZ_IGNORE | POSITION_TARGET_TYPEMASK_YAW_IGNORE | POSITION_TARGET_TYPEMASK_YAW_RATE_IGNORE | POSITION_TARGET_TYPEMASK_LAST_BYTE; mavlink_msg_position_target_global_int_send( chan, AP_HAL::millis(), // time_boot_ms MAV_FRAME_GLOBAL, // targets are always global altitude TYPE_MASK, // ignore everything except the x/y/z components target.lat, // latitude as 1e7 target.lng, // longitude as 1e7 target.alt * 0.01f, // altitude is sent as a float 0.0f, // vx 0.0f, // vy 0.0f, // vz 0.0f, // afx 0.0f, // afy 0.0f, // afz 0.0f, // yaw 0.0f); // yaw_rate } void GCS_MAVLINK_Blimp::send_nav_controller_output() const { } float GCS_MAVLINK_Blimp::vfr_hud_airspeed() const { Vector3f airspeed_vec_bf; if (AP::ahrs().airspeed_vector_true(airspeed_vec_bf)) { // we are running the EKF3 wind estimation code which can give // us an airspeed estimate return airspeed_vec_bf.length(); } return AP::gps().ground_speed(); } int16_t GCS_MAVLINK_Blimp::vfr_hud_throttle() const { if (blimp.motors == nullptr) { return 0; } return (int16_t)(blimp.motors->get_throttle() * 100); } /* send PID tuning message */ void GCS_MAVLINK_Blimp::send_pid_tuning() { if (blimp.control_mode == Mode::Number::MANUAL || blimp.control_mode == Mode::Number::LAND) { //No PIDs are used in Manual or Land mode. return; } static const int8_t axes[] = { PID_SEND::VELX, PID_SEND::VELY, PID_SEND::VELZ, PID_SEND::VELYAW, PID_SEND::POSX, PID_SEND::POSY, PID_SEND::POSZ, PID_SEND::POSYAW }; for (uint8_t i=0; itarget, pid_info->actual, pid_info->FF, pid_info->P, pid_info->I, pid_info->D, pid_info->slew_rate, pid_info->Dmod); } } } uint8_t GCS_MAVLINK_Blimp::sysid_my_gcs() const { return blimp.g.sysid_my_gcs; } bool GCS_MAVLINK_Blimp::sysid_enforce() const { return blimp.g2.sysid_enforce; } uint32_t GCS_MAVLINK_Blimp::telem_delay() const { return (uint32_t)(blimp.g.telem_delay); } bool GCS_Blimp::vehicle_initialised() const { return blimp.ap.initialised; } // try to send a message, return false if it wasn't sent bool GCS_MAVLINK_Blimp::try_send_message(enum ap_message id) { switch (id) { case MSG_WIND: CHECK_PAYLOAD_SIZE(WIND); send_wind(); break; case MSG_SERVO_OUT: case MSG_AOA_SSA: case MSG_LANDING: case MSG_ADSB_VEHICLE: // unused break; default: return GCS_MAVLINK::try_send_message(id); } return true; } const AP_Param::GroupInfo GCS_MAVLINK_Parameters::var_info[] = { // @Param: RAW_SENS // @DisplayName: Raw sensor stream rate // @Description: Stream rate of RAW_IMU, SCALED_IMU2, SCALED_IMU3, SCALED_PRESSURE, SCALED_PRESSURE2, SCALED_PRESSURE3 and SENSOR_OFFSETS to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @RebootRequired: True // @User: Advanced AP_GROUPINFO("RAW_SENS", 0, GCS_MAVLINK_Parameters, streamRates[0], 0), // @Param: EXT_STAT // @DisplayName: Extended status stream rate to ground station // @Description: Stream rate of SYS_STATUS, POWER_STATUS, MCU_STATUS, MEMINFO, CURRENT_WAYPOINT, GPS_RAW_INT, GPS_RTK (if available), GPS2_RAW (if available), GPS2_RTK (if available), NAV_CONTROLLER_OUTPUT, and FENCE_STATUS to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @RebootRequired: True // @User: Advanced AP_GROUPINFO("EXT_STAT", 1, GCS_MAVLINK_Parameters, streamRates[1], 0), // @Param: RC_CHAN // @DisplayName: RC Channel stream rate to ground station // @Description: Stream rate of SERVO_OUTPUT_RAW and RC_CHANNELS to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @RebootRequired: True // @User: Advanced AP_GROUPINFO("RC_CHAN", 2, GCS_MAVLINK_Parameters, streamRates[2], 0), // @Param: RAW_CTRL // @DisplayName: Unused // @Description: Unused // @Units: Hz // @Range: 0 10 // @Increment: 1 // @RebootRequired: True // @User: Advanced AP_GROUPINFO("RAW_CTRL", 3, GCS_MAVLINK_Parameters, streamRates[3], 0), // @Param: POSITION // @DisplayName: Position stream rate to ground station // @Description: Stream rate of GLOBAL_POSITION_INT and LOCAL_POSITION_NED to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @RebootRequired: True // @User: Advanced AP_GROUPINFO("POSITION", 4, GCS_MAVLINK_Parameters, streamRates[4], 0), // @Param: EXTRA1 // @DisplayName: Extra data type 1 stream rate to ground station // @Description: Stream rate of ATTITUDE, SIMSTATE (SITL only), AHRS2 and PID_TUNING to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @RebootRequired: True // @User: Advanced AP_GROUPINFO("EXTRA1", 5, GCS_MAVLINK_Parameters, streamRates[5], 0), // @Param: EXTRA2 // @DisplayName: Extra data type 2 stream rate to ground station // @Description: Stream rate of VFR_HUD to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @RebootRequired: True // @User: Advanced AP_GROUPINFO("EXTRA2", 6, GCS_MAVLINK_Parameters, streamRates[6], 0), // @Param: EXTRA3 // @DisplayName: Extra data type 3 stream rate to ground station // @Description: Stream rate of AHRS, SYSTEM_TIME, RANGEFINDER, DISTANCE_SENSOR, TERRAIN_REQUEST, GIMBAL_DEVICE_ATTITUDE_STATUS, OPTICAL_FLOW, MAG_CAL_REPORT, MAG_CAL_PROGRESS, EKF_STATUS_REPORT, VIBRATION and RPM to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @RebootRequired: True // @User: Advanced AP_GROUPINFO("EXTRA3", 7, GCS_MAVLINK_Parameters, streamRates[7], 0), // @Param: PARAMS // @DisplayName: Parameter stream rate to ground station // @Description: Stream rate of PARAM_VALUE to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @RebootRequired: True // @User: Advanced AP_GROUPINFO("PARAMS", 8, GCS_MAVLINK_Parameters, streamRates[8], 0), AP_GROUPEND }; static const ap_message STREAM_RAW_SENSORS_msgs[] = { MSG_RAW_IMU, MSG_SCALED_IMU2, MSG_SCALED_IMU3, MSG_SCALED_PRESSURE, MSG_SCALED_PRESSURE2, MSG_SCALED_PRESSURE3, }; static const ap_message STREAM_EXTENDED_STATUS_msgs[] = { MSG_SYS_STATUS, MSG_POWER_STATUS, MSG_MCU_STATUS, MSG_MEMINFO, MSG_CURRENT_WAYPOINT, // MISSION_CURRENT MSG_GPS_RAW, MSG_GPS_RTK, #if GPS_MAX_RECEIVERS > 1 MSG_GPS2_RAW, MSG_GPS2_RTK, #endif MSG_NAV_CONTROLLER_OUTPUT, #if AP_FENCE_ENABLED MSG_FENCE_STATUS, #endif MSG_POSITION_TARGET_GLOBAL_INT, }; static const ap_message STREAM_POSITION_msgs[] = { MSG_LOCATION, MSG_LOCAL_POSITION }; static const ap_message STREAM_RC_CHANNELS_msgs[] = { MSG_SERVO_OUTPUT_RAW, MSG_RC_CHANNELS, MSG_RC_CHANNELS_RAW, // only sent on a mavlink1 connection }; static const ap_message STREAM_EXTRA1_msgs[] = { MSG_ATTITUDE, MSG_SIMSTATE, MSG_AHRS2, MSG_PID_TUNING // Up to four PID_TUNING messages are sent, depending on GCS_PID_MASK parameter }; static const ap_message STREAM_EXTRA2_msgs[] = { MSG_VFR_HUD }; static const ap_message STREAM_EXTRA3_msgs[] = { MSG_AHRS, MSG_SYSTEM_TIME, MSG_WIND, MSG_RANGEFINDER, MSG_DISTANCE_SENSOR, #if AP_BATTERY_ENABLED MSG_BATTERY_STATUS, #endif MSG_GIMBAL_DEVICE_ATTITUDE_STATUS, MSG_OPTICAL_FLOW, #if COMPASS_CAL_ENABLED MSG_MAG_CAL_REPORT, MSG_MAG_CAL_PROGRESS, #endif MSG_EKF_STATUS_REPORT, MSG_VIBRATION, #if AP_RPM_ENABLED MSG_RPM, #endif MSG_ESC_TELEMETRY, MSG_GENERATOR_STATUS, }; static const ap_message STREAM_PARAMS_msgs[] = { MSG_NEXT_PARAM }; static const ap_message STREAM_ADSB_msgs[] = { MSG_ADSB_VEHICLE, #if AP_AIS_ENABLED MSG_AIS_VESSEL, #endif }; const struct GCS_MAVLINK::stream_entries GCS_MAVLINK::all_stream_entries[] = { MAV_STREAM_ENTRY(STREAM_RAW_SENSORS), MAV_STREAM_ENTRY(STREAM_EXTENDED_STATUS), MAV_STREAM_ENTRY(STREAM_POSITION), MAV_STREAM_ENTRY(STREAM_RC_CHANNELS), MAV_STREAM_ENTRY(STREAM_EXTRA1), MAV_STREAM_ENTRY(STREAM_EXTRA2), MAV_STREAM_ENTRY(STREAM_EXTRA3), MAV_STREAM_ENTRY(STREAM_ADSB), MAV_STREAM_ENTRY(STREAM_PARAMS), MAV_STREAM_TERMINATOR // must have this at end of stream_entries }; bool GCS_MAVLINK_Blimp::handle_guided_request(AP_Mission::Mission_Command &cmd) { // #if MODE_AUTO_ENABLED == ENABLED // // return blimp.mode_auto.do_guided(cmd); // #else return false; // #endif } void GCS_MAVLINK_Blimp::packetReceived(const mavlink_status_t &status, const mavlink_message_t &msg) { GCS_MAVLINK::packetReceived(status, msg); } bool GCS_MAVLINK_Blimp::params_ready() const { if (AP_BoardConfig::in_config_error()) { // we may never have parameters "initialised" in this case return true; } // if we have not yet initialised (including allocating the motors // object) we drop this request. That prevents the GCS from getting // a confusing parameter count during bootup return blimp.ap.initialised_params; } void GCS_MAVLINK_Blimp::send_banner() { GCS_MAVLINK::send_banner(); send_text(MAV_SEVERITY_INFO, "Frame: %s", blimp.get_frame_string()); } MAV_RESULT GCS_MAVLINK_Blimp::_handle_command_preflight_calibration(const mavlink_command_int_t &packet, const mavlink_message_t &msg) { return GCS_MAVLINK::_handle_command_preflight_calibration(packet, msg); } MAV_RESULT GCS_MAVLINK_Blimp::handle_command_do_set_roi(const Location &roi_loc) { if (!roi_loc.check_latlng()) { return MAV_RESULT_FAILED; } // blimp.flightmode->auto_yaw.set_roi(roi_loc); return MAV_RESULT_ACCEPTED; } bool GCS_MAVLINK_Blimp::set_home_to_current_location(bool _lock) { return blimp.set_home_to_current_location(_lock); } bool GCS_MAVLINK_Blimp::set_home(const Location& loc, bool _lock) { return blimp.set_home(loc, _lock); } MAV_RESULT GCS_MAVLINK_Blimp::handle_command_int_do_reposition(const mavlink_command_int_t &packet) { const bool change_modes = ((int32_t)packet.param2 & MAV_DO_REPOSITION_FLAGS_CHANGE_MODE) == MAV_DO_REPOSITION_FLAGS_CHANGE_MODE; if (!blimp.flightmode->in_guided_mode() && !change_modes) { return MAV_RESULT_DENIED; } // sanity check location if (!check_latlng(packet.x, packet.y)) { return MAV_RESULT_DENIED; } Location request_location {}; if (!location_from_command_t(packet, request_location)) { return MAV_RESULT_DENIED; } if (request_location.sanitize(blimp.current_loc)) { // if the location wasn't already sane don't load it return MAV_RESULT_DENIED; // failed as the location is not valid } return MAV_RESULT_ACCEPTED; } MAV_RESULT GCS_MAVLINK_Blimp::handle_command_int_packet(const mavlink_command_int_t &packet, const mavlink_message_t &msg) { switch (packet.command) { case MAV_CMD_DO_REPOSITION: return handle_command_int_do_reposition(packet); case MAV_CMD_NAV_TAKEOFF: return MAV_RESULT_ACCEPTED; default: return GCS_MAVLINK::handle_command_int_packet(packet, msg); } } #if AP_MAVLINK_COMMAND_LONG_ENABLED bool GCS_MAVLINK_Blimp::mav_frame_for_command_long(MAV_FRAME &frame, MAV_CMD packet_command) const { if (packet_command == MAV_CMD_NAV_TAKEOFF) { frame = MAV_FRAME_GLOBAL_RELATIVE_ALT; return true; } return GCS_MAVLINK::mav_frame_for_command_long(frame, packet_command); } #endif void GCS_MAVLINK_Blimp::handleMessage(const mavlink_message_t &msg) { switch (msg.msgid) { case MAVLINK_MSG_ID_RADIO: case MAVLINK_MSG_ID_RADIO_STATUS: { // MAV ID: 109 handle_radio_status(msg, blimp.should_log(MASK_LOG_PM)); break; } case MAVLINK_MSG_ID_TERRAIN_DATA: case MAVLINK_MSG_ID_TERRAIN_CHECK: break; default: handle_common_message(msg); break; } // end switch } // end handle mavlink MAV_RESULT GCS_MAVLINK_Blimp::handle_flight_termination(const mavlink_command_int_t &packet) { MAV_RESULT result = MAV_RESULT_FAILED; if (packet.param1 > 0.5f) { blimp.arming.disarm(AP_Arming::Method::TERMINATION); result = MAV_RESULT_ACCEPTED; } return result; } float GCS_MAVLINK_Blimp::vfr_hud_alt() const { if (blimp.g2.dev_options.get() & DevOptionVFR_HUDRelativeAlt) { // compatibility option for older mavlink-aware devices that // assume Blimp returns a relative altitude in VFR_HUD.alt return blimp.current_loc.alt * 0.01f; } return GCS_MAVLINK::vfr_hud_alt(); } uint64_t GCS_MAVLINK_Blimp::capabilities() const { return (MAV_PROTOCOL_CAPABILITY_MISSION_FLOAT | MAV_PROTOCOL_CAPABILITY_MISSION_INT | MAV_PROTOCOL_CAPABILITY_COMMAND_INT | MAV_PROTOCOL_CAPABILITY_SET_POSITION_TARGET_LOCAL_NED | MAV_PROTOCOL_CAPABILITY_SET_POSITION_TARGET_GLOBAL_INT | MAV_PROTOCOL_CAPABILITY_FLIGHT_TERMINATION | MAV_PROTOCOL_CAPABILITY_SET_ATTITUDE_TARGET | GCS_MAVLINK::capabilities()); } MAV_LANDED_STATE GCS_MAVLINK_Blimp::landed_state() const { if (blimp.ap.land_complete) { return MAV_LANDED_STATE_ON_GROUND; } if (blimp.flightmode->is_landing()) { return MAV_LANDED_STATE_LANDING; } // if (blimp.flightmode->is_taking_off()) { // return MAV_LANDED_STATE_TAKEOFF; // } return MAV_LANDED_STATE_IN_AIR; } void GCS_MAVLINK_Blimp::send_wind() const { Vector3f airspeed_vec_bf; if (!AP::ahrs().airspeed_vector_true(airspeed_vec_bf)) { // if we don't have an airspeed estimate then we don't have a // valid wind estimate on blimps return; } const Vector3f wind = AP::ahrs().wind_estimate(); mavlink_msg_wind_send( chan, degrees(atan2f(-wind.y, -wind.x)), wind.length(), wind.z); } #if HAL_HIGH_LATENCY2_ENABLED uint8_t GCS_MAVLINK_Blimp::high_latency_wind_speed() const { Vector3f airspeed_vec_bf; if (!AP::ahrs().airspeed_vector_true(airspeed_vec_bf)) { // if we don't have an airspeed estimate then we don't have a // valid wind estimate on blimps return 0; } // return units are m/s*5 const Vector3f wind = AP::ahrs().wind_estimate(); return wind.length() * 5; } uint8_t GCS_MAVLINK_Blimp::high_latency_wind_direction() const { Vector3f airspeed_vec_bf; if (!AP::ahrs().airspeed_vector_true(airspeed_vec_bf)) { // if we don't have an airspeed estimate then we don't have a // valid wind estimate on blimps return 0; } const Vector3f wind = AP::ahrs().wind_estimate(); // need to convert -180->180 to 0->360/2 return wrap_360(degrees(atan2f(-wind.y, -wind.x))) / 2; } #endif // HAL_HIGH_LATENCY2_ENABLED