#include "AP_Arming.h" #include "Rover.h" // perform pre_arm_rc_checks checks bool AP_Arming_Rover::pre_arm_rc_checks(const bool display_failure) { // set rc-checks to success if RC checks are disabled if ((checks_to_perform != ARMING_CHECK_ALL) && !(checks_to_perform & ARMING_CHECK_RC)) { return true; } const RC_Channel *channels[] = { rover.channel_steer, rover.channel_throttle, }; const char *channel_names[] = {"Steer", "Throttle"}; for (uint8_t i= 0 ; i < ARRAY_SIZE(channels); i++) { const RC_Channel *channel = channels[i]; const char *channel_name = channel_names[i]; // check if radio has been calibrated if (channel->get_radio_min() > 1300) { check_failed(ARMING_CHECK_RC, display_failure, "%s radio min too high", channel_name); return false; } if (channel->get_radio_max() < 1700) { check_failed(ARMING_CHECK_RC, display_failure, "%s radio max too low", channel_name); return false; } if (channel->get_radio_trim() < channel->get_radio_min()) { check_failed(ARMING_CHECK_RC, display_failure, "%s radio trim below min", channel_name); return false; } if (channel->get_radio_trim() > channel->get_radio_max()) { check_failed(ARMING_CHECK_RC, display_failure, "%s radio trim above max", channel_name); return false; } } return true; } // performs pre_arm gps related checks and returns true if passed bool AP_Arming_Rover::gps_checks(bool display_failure) { const AP_AHRS &ahrs = AP::ahrs(); // always check if inertial nav has started and is ready if (!ahrs.prearm_healthy()) { const char *reason = ahrs.prearm_failure_reason(); if (reason == nullptr) { reason = "AHRS not healthy"; } check_failed(ARMING_CHECK_NONE, display_failure, "%s", reason); return false; } if (!rover.control_mode->requires_position() && !rover.control_mode->requires_velocity()) { // we don't care! return true; } // check for ekf failsafe if (rover.failsafe.ekf) { check_failed(ARMING_CHECK_NONE, display_failure, "EKF failsafe"); return false; } // ensure position esetimate is ok if (!rover.ekf_position_ok()) { const char *reason = ahrs.prearm_failure_reason(); if (reason == nullptr) { reason = "Need Position Estimate"; } check_failed(ARMING_CHECK_NONE, display_failure, "%s", reason); return false; } // call parent gps checks return AP_Arming::gps_checks(display_failure); } bool AP_Arming_Rover::pre_arm_checks(bool report) { //are arming checks disabled? if (checks_to_perform == ARMING_CHECK_NONE) { return true; } if (SRV_Channels::get_emergency_stop()) { check_failed(ARMING_CHECK_NONE, report, "Motors Emergency Stopped"); return false; } return (AP_Arming::pre_arm_checks(report) & rover.g2.motors.pre_arm_check(report) & fence_checks(report) & proximity_check(report)); } bool AP_Arming_Rover::arm_checks(AP_Arming::Method method) { //are arming checks disabled? if (checks_to_perform == ARMING_CHECK_NONE) { return true; } return AP_Arming::arm_checks(method); } // check nothing is too close to vehicle bool AP_Arming_Rover::proximity_check(bool report) { // return true immediately if no sensor present if (rover.g2.proximity.get_status() == AP_Proximity::Proximity_NotConnected) { return true; } // return false if proximity sensor unhealthy if (rover.g2.proximity.get_status() < AP_Proximity::Proximity_Good) { check_failed(ARMING_CHECK_NONE, report, "check proximity sensor"); return false; } return true; }