#include "HAL_AVR.h" #include "Scheduler.h" using namespace AP_HAL_AVR; #include #include #define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit)) #define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit)) static volatile uint32_t timer0_overflow_count = 0; static volatile uint32_t timer0_millis = 0; static uint8_t timer0_fract = 0; /* AVRScheduler timer interrupt period is controlled by TCNT2. * 256-62 gives a 1kHz period. */ #define RESET_TCNT2_VALUE (256 - 62) /* Static AVRScheduler variables: */ AP_HAL::TimedProc AVRScheduler::_failsafe = NULL; volatile bool AVRScheduler::_timer_suspended = false; AP_HAL::TimedProc AVRScheduler::_timer_proc[AVR_SCHEDULER_MAX_TIMER_PROCS] = {NULL}; AP_HAL::TimedProc AVRScheduler::_defered_timer_proc = NULL; uint8_t AVRScheduler::_num_timer_procs = 0; bool AVRScheduler::_in_timer_proc = false; AVRScheduler::AVRScheduler() : _delay_cb(NULL), _min_delay_cb_ms(65535), _nested_atomic_ctr(0) {} void AVRScheduler::init(void* _isrregistry) { ISRRegistry* isrregistry = (ISRRegistry*) _isrregistry; // this needs to be called before setup() or some functions won't // work there sei(); // set timer 0 prescale factor to 64 // this combination is for the standard 168/328/1280/2560 sbi(TCCR0B, CS01); sbi(TCCR0B, CS00); // enable timer 0 overflow interrupt sbi(TIMSK0, TOIE0); // timers 1 and 2 are used for phase-correct hardware pwm // this is better for motors as it ensures an even waveform // note, however, that fast pwm mode can achieve a frequency of up // 8 MHz (with a 16 MHz clock) at 50% duty cycle TCCR1B = 0; // set timer 1 prescale factor to 64 sbi(TCCR1B, CS11); sbi(TCCR1B, CS10); // put timer 1 in 8-bit phase correct pwm mode sbi(TCCR1A, WGM10); sbi(TCCR3B, CS31); // set timer 3 prescale factor to 64 sbi(TCCR3B, CS30); sbi(TCCR3A, WGM30); // put timer 3 in 8-bit phase correct pwm mode sbi(TCCR4B, CS41); // set timer 4 prescale factor to 64 sbi(TCCR4B, CS40); sbi(TCCR4A, WGM40); // put timer 4 in 8-bit phase correct pwm mode sbi(TCCR5B, CS51); // set timer 5 prescale factor to 64 sbi(TCCR5B, CS50); sbi(TCCR5A, WGM50); // put timer 5 in 8-bit phase correct pwm mode // set a2d prescale factor to 128 // 16 MHz / 128 = 125 KHz, inside the desired 50-200 KHz range. // XXX: this will not work properly for other clock speeds, and // this code should use F_CPU to determine the prescale factor. sbi(ADCSRA, ADPS2); sbi(ADCSRA, ADPS1); sbi(ADCSRA, ADPS0); // enable a2d conversions sbi(ADCSRA, ADEN); // the bootloader connects pins 0 and 1 to the USART; disconnect them // here so they can be used as normal digital i/o; they will be // reconnected in Serial.begin() UCSR0B = 0; /* TIMER2: Setup the overflow interrupt to occur at 1khz. */ TIMSK2 = 0; /* Disable timer interrupt */ TCCR2A = 0; /* Normal counting mode */ TCCR2B = _BV(CS21) | _BV(CS22); /* Prescaler to clk/256 */ TCNT2 = 0; /* Set count to 0 */ TIFR2 = _BV(TOV2); /* Clear pending interrupts */ TIMSK2 = _BV(TOIE2); /* Enable overflow interrupt*/ /* Register _timer_event to trigger on overflow */ isrregistry->register_signal(ISR_REGISTRY_TIMER2_OVF, _timer_event); } #define clockCyclesPerMicrosecond() ( F_CPU / 1000000L ) #define clockCyclesToMicroseconds(a) ( ((a) * 1000L) / (F_CPU / 1000L) ) // the prescaler is set so that timer0 ticks every 64 clock cycles, and the // the overflow handler is called every 256 ticks. #define MICROSECONDS_PER_TIMER0_OVERFLOW (clockCyclesToMicroseconds(64 * 256)) // the whole number of milliseconds per timer0 overflow #define MILLIS_INC (MICROSECONDS_PER_TIMER0_OVERFLOW / 1000) // the fractional number of milliseconds per timer0 overflow. we shift right // by three to fit these numbers into a byte. (for the clock speeds we care // about - 8 and 16 MHz - this doesn't lose precision.) #define FRACT_INC ((MICROSECONDS_PER_TIMER0_OVERFLOW % 1000) >> 3) #define FRACT_MAX (1000 >> 3) SIGNAL(TIMER0_OVF_vect) { // copy these to local variables so they can be stored in registers // (volatile variables must be read from memory on every access) uint32_t m = timer0_millis; uint8_t f = timer0_fract; m += MILLIS_INC; f += FRACT_INC; if (f >= FRACT_MAX) { f -= FRACT_MAX; m += 1; } timer0_fract = f; timer0_millis = m; timer0_overflow_count++; } uint32_t AVRScheduler::millis() { uint32_t m; uint8_t oldSREG = SREG; // disable interrupts while we read timer0_millis or we might get an // inconsistent value (e.g. in the middle of a write to timer0_millis) cli(); m = timer0_millis; SREG = oldSREG; return m; } /* micros() is essentially a static method, but we need it to be available * via virtual dispatch through the hal. */ uint32_t AVRScheduler::micros() { return _micros(); } /* _micros() is the implementation of micros() as a static private method * so we can use it from inside _timer_event() without virtual dispatch. */ uint32_t AVRScheduler::_micros() { uint32_t m; uint8_t oldSREG = SREG, t; cli(); m = timer0_overflow_count; t = TCNT0; if ((TIFR0 & _BV(TOV0)) && (t < 255)) m++; SREG = oldSREG; return ((m << 8) + t) * (64 / clockCyclesPerMicrosecond()); } void AVRScheduler::delay(uint32_t ms) { uint16_t start = (uint16_t)micros(); while (ms > 0) { if (((uint16_t)micros() - start) >= 1000) { ms--; start += 1000; if (_min_delay_cb_ms >= ms) { if (_delay_cb) { _delay_cb(); } } } } } /* Delay for the given number of microseconds. Assumes a 16 MHz clock. */ void AVRScheduler::delay_microseconds(uint16_t us) { // for the 16 MHz clock on most Arduino boards // for a one-microsecond delay, simply return. the overhead // of the function call yields a delay of approximately 1 1/8 us. if (--us == 0) return; // the following loop takes a quarter of a microsecond (4 cycles) // per iteration, so execute it four times for each microsecond of // delay requested. us <<= 2; // account for the time taken in the preceeding commands. us -= 2; // busy wait __asm__ __volatile__ ( "1: sbiw %0,1" "\n\t" // 2 cycles "brne 1b" : "=w" (us) : "0" (us) // 2 cycles ); } void AVRScheduler::register_delay_callback(AP_HAL::Proc proc, uint16_t min_time_ms) { _delay_cb = proc; _min_delay_cb_ms = min_time_ms; } void AVRScheduler::register_timer_process(AP_HAL::TimedProc proc) { for (int i = 0; i < _num_timer_procs; i++) { if (_timer_proc[i] == proc) { return; } } if (_num_timer_procs < AVR_SCHEDULER_MAX_TIMER_PROCS) { /* this write to _timer_proc can be outside the critical section * because that memory won't be used until _num_timer_procs is * incremented. */ _timer_proc[_num_timer_procs] = proc; /* _num_timer_procs is used from interrupt, and multiple bytes long. */ cli(); _num_timer_procs++; sei(); } } bool AVRScheduler::defer_timer_process(AP_HAL::TimedProc proc) { if ( _in_timer_proc || _timer_suspended ) { _defered_timer_proc = proc; return false; } else { _timer_suspended = true; proc(micros()); _timer_suspended = false; return true; } } void AVRScheduler::register_timer_failsafe( AP_HAL::TimedProc failsafe, uint32_t period_us) { /* XXX Assert period_us == 1000 */ _failsafe = failsafe; } void AVRScheduler::suspend_timer_procs() { _timer_suspended = true; } void AVRScheduler::resume_timer_procs() { _timer_suspended = false; } void AVRScheduler::_timer_event() { // we enable the interrupt again immediately and also enable // interrupts. This allows other time critical interrupts to // run (such as the serial receive interrupt). We catch the // timer calls taking too long using _in_timer_call. // This approach also gives us a nice uniform spacing between // timer calls TCNT2 = RESET_TCNT2_VALUE; sei(); uint32_t tnow = _micros(); if (_in_timer_proc) { // the timer calls took longer than the period of the // timer. This is bad, and may indicate a serious // driver failure. We can't just call the drivers // again, as we could run out of stack. So we only // call the _failsafe call. It's job is to detect if // the drivers or the main loop are indeed dead and to // activate whatever failsafe it thinks may help if // need be. We assume the failsafe code can't // block. If it does then we will recurse and die when // we run out of stack if (_failsafe != NULL) { _failsafe(tnow); } return; } _in_timer_proc = true; if (!_timer_suspended) { // now call the timer based drivers for (int i = 0; i < _num_timer_procs; i++) { if (_timer_proc[i] != NULL) { _timer_proc[i](tnow); } } } /* Run any defered procedures, if they exist.*/ cli(); /* Atomic read and clear: */ AP_HAL::TimedProc defered = _defered_timer_proc; _defered_timer_proc = NULL; sei(); if (defered != NULL) { _timer_suspended = true; defered(tnow); _timer_suspended = false; } // and the failsafe, if one is setup if (_failsafe != NULL) { _failsafe(tnow); } _in_timer_proc = false; } void AVRScheduler::begin_atomic() { _nested_atomic_ctr++; cli(); } void AVRScheduler::end_atomic() { _nested_atomic_ctr--; if (_nested_atomic_ctr == 0) { sei(); } }