#pragma once #include <AP_AHRS/AP_AHRS.h> #include <AP_Common/AP_Common.h> #include <AP_Vehicle/AP_Vehicle.h> #include "AP_AutoTune.h" #include <AP_Logger/AP_Logger.h> #include <AP_Math/AP_Math.h> class AP_RollController { public: AP_RollController(AP_AHRS &ahrs, const AP_Vehicle::FixedWing &parms) : aparm(parms) , autotune(gains, AP_AutoTune::AUTOTUNE_ROLL, parms) , _ahrs(ahrs) { AP_Param::setup_object_defaults(this, var_info); _slew_rate_filter.set_cutoff_frequency(10.0f); _slew_rate_filter.reset(0.0f); } /* Do not allow copies */ AP_RollController(const AP_RollController &other) = delete; AP_RollController &operator=(const AP_RollController&) = delete; int32_t get_rate_out(float desired_rate, float scaler); int32_t get_servo_out(int32_t angle_err, float scaler, bool disable_integrator); void reset_I(); /* reduce the integrator, used when we have a low scale factor in a quadplane hover */ void decay_I() { // this reduces integrator by 95% over 2s _pid_info.I *= 0.995f; } void autotune_start(void) { autotune.start(); } void autotune_restore(void) { autotune.stop(); } const AP_Logger::PID_Info& get_pid_info(void) const { return _pid_info; } static const struct AP_Param::GroupInfo var_info[]; // tuning accessors void kP(float v) { gains.P.set(v); } void kI(float v) { gains.I.set(v); } void kD(float v) { gains.D.set(v); } void kFF(float v) { gains.FF.set(v); } AP_Float &kP(void) { return gains.P; } AP_Float &kI(void) { return gains.I; } AP_Float &kD(void) { return gains.D; } AP_Float &kFF(void) { return gains.FF; } private: const AP_Vehicle::FixedWing &aparm; AP_AutoTune::ATGains gains; AP_AutoTune autotune; uint32_t _last_t; float _last_out; AP_Logger::PID_Info _pid_info; int32_t _get_rate_out(float desired_rate, float scaler, bool disable_integrator); AP_AHRS &_ahrs; // D gain limit cycle control float _last_pid_info_D; // value of the D term (angular rate control feedback) from the previous time step (deg) LowPassFilterFloat _slew_rate_filter; // LPF applied to the derivative of the control action generated by the angular rate feedback float _slew_rate_amplitude; // Amplitude of the servo slew rate produced by the angular rate feedback (deg/sec) float _D_gain_modifier = 1.0f; // Gain modifier applied to the angular rate feedback to prevent excessive slew rate AP_Float _slew_rate_max; // Maximum permitted angular rate control feedback servo slew rate (deg/sec) AP_Float _slew_rate_tau; // Time constant used to recover gain after a slew rate exceedance (sec) };