/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #include #if HAL_CPU_CLASS >= HAL_CPU_CLASS_150 #include "AP_NavEKF2.h" #include "AP_NavEKF2_core.h" #include #include #include extern const AP_HAL::HAL& hal; /******************************************************** * RESET FUNCTIONS * ********************************************************/ // Reset velocity states to last GPS measurement if available or to zero if in constant position mode or if PV aiding is not absolute // Do not reset vertical velocity using GPS as there is baro alt available to constrain drift void NavEKF2_core::ResetVelocity(void) { if (PV_AidingMode != AID_ABSOLUTE) { stateStruct.velocity.zero(); } else if (!gpsNotAvailable) { // reset horizontal velocity states, applying an offset to the GPS velocity to prevent the GPS position being rejected when the GPS position offset is being decayed to zero. stateStruct.velocity.x = gpsDataNew.vel.x + gpsVelGlitchOffset.x; // north velocity from blended accel data stateStruct.velocity.y = gpsDataNew.vel.y + gpsVelGlitchOffset.y; // east velocity from blended accel data } for (uint8_t i=0; i hgtRetryTime_ms) { hgtTimeout = true; } // command fusion of height data // wait until the EKF time horizon catches up with the measurement if (RecallBaro()) { // enable fusion fuseHgtData = true; } // If we are operating without any aiding, fuse in the last known position and zero velocity // to constrain tilt drift. This assumes a non-manoeuvring vehicle // Do this to coincide with the height fusion if (fuseHgtData && PV_AidingMode == AID_NONE) { gpsDataDelayed.vel.zero(); gpsDataDelayed.pos.x = lastKnownPositionNE.x; gpsDataDelayed.pos.y = lastKnownPositionNE.y; // only fuse synthetic measurements when rate of change of velocity is less than 1g to reduce attitude errors due to launch acceleration if (accNavMag < 9.8f) { fusePosData = true; fuseVelData = true; } else { fusePosData = false; fuseVelData = false; } } // perform fusion if (fuseVelData || fusePosData || fuseHgtData) { // ensure that the covariance prediction is up to date before fusing data if (!covPredStep) CovariancePrediction(); FuseVelPosNED(); // clear the flags to prevent repeated fusion of the same data fuseVelData = false; fuseHgtData = false; fusePosData = false; } } // fuse selected position, velocity and height measurements void NavEKF2_core::FuseVelPosNED() { // start performance timer hal.util->perf_begin(_perf_FuseVelPosNED); // health is set bad until test passed velHealth = false; posHealth = false; hgtHealth = false; // declare variables used to check measurement errors Vector3f velInnov; // declare variables used to control access to arrays bool fuseData[6] = {false,false,false,false,false,false}; uint8_t stateIndex; uint8_t obsIndex; // declare variables used by state and covariance update calculations float posErr; Vector6 R_OBS; // Measurement variances used for fusion Vector6 R_OBS_DATA_CHECKS; // Measurement variances used for data checks only Vector6 observation; float SK; // perform sequential fusion of GPS measurements. This assumes that the // errors in the different velocity and position components are // uncorrelated which is not true, however in the absence of covariance // data from the GPS receiver it is the only assumption we can make // so we might as well take advantage of the computational efficiencies // associated with sequential fusion if (fuseVelData || fusePosData || fuseHgtData) { // set the GPS data timeout depending on whether airspeed data is present uint32_t gpsRetryTime; if (useAirspeed()) gpsRetryTime = frontend.gpsRetryTimeUseTAS_ms; else gpsRetryTime = frontend.gpsRetryTimeNoTAS_ms; // form the observation vector observation[0] = gpsDataDelayed.vel.x + gpsVelGlitchOffset.x; observation[1] = gpsDataDelayed.vel.y + gpsVelGlitchOffset.y; observation[2] = gpsDataDelayed.vel.z; observation[3] = gpsDataDelayed.pos.x + gpsPosGlitchOffsetNE.x; observation[4] = gpsDataDelayed.pos.y + gpsPosGlitchOffsetNE.y; observation[5] = -baroDataDelayed.hgt; // calculate additional error in GPS position caused by manoeuvring posErr = frontend.gpsPosVarAccScale * accNavMag; // estimate the GPS Velocity, GPS horiz position and height measurement variances. // if the GPS is able to report a speed error, we use it to adjust the observation noise for GPS velocity // otherwise we scale it using manoeuvre acceleration // Use different errors if flying without GPS using synthetic position and velocity data if (PV_AidingMode == AID_NONE && inFlight) { // Assume the vehicle will be flown with velocity changes less than 10 m/s in this mode (realistic for indoor use) // This is a compromise between corrections for gyro errors and reducing angular errors due to maneouvres R_OBS[0] = sq(10.0f); R_OBS[1] = R_OBS[0]; R_OBS[2] = R_OBS[0]; // Assume a large position uncertainty so as to contrain position states in this mode but minimise angular errors due to manoeuvres R_OBS[3] = sq(25.0f); R_OBS[4] = R_OBS[3]; } else { if (gpsSpdAccuracy > 0.0f) { // use GPS receivers reported speed accuracy if available and floor at value set by gps noise parameter R_OBS[0] = sq(constrain_float(gpsSpdAccuracy, frontend._gpsHorizVelNoise, 50.0f)); R_OBS[2] = sq(constrain_float(gpsSpdAccuracy, frontend._gpsVertVelNoise, 50.0f)); } else { // calculate additional error in GPS velocity caused by manoeuvring R_OBS[0] = sq(constrain_float(frontend._gpsHorizVelNoise, 0.05f, 5.0f)) + sq(frontend.gpsNEVelVarAccScale * accNavMag); R_OBS[2] = sq(constrain_float(frontend._gpsVertVelNoise, 0.05f, 5.0f)) + sq(frontend.gpsDVelVarAccScale * accNavMag); } R_OBS[1] = R_OBS[0]; R_OBS[3] = sq(constrain_float(frontend._gpsHorizPosNoise, 0.1f, 10.0f)) + sq(posErr); R_OBS[4] = R_OBS[3]; } R_OBS[5] = sq(constrain_float(frontend._baroAltNoise, 0.1f, 10.0f)); // reduce weighting (increase observation noise) on baro if we are likely to be in ground effect if (getTakeoffExpected() || getTouchdownExpected()) { R_OBS[5] *= frontend.gndEffectBaroScaler; } // For data integrity checks we use the same measurement variances as used to calculate the Kalman gains for all measurements except GPS horizontal velocity // For horizontal GPs velocity we don't want the acceptance radius to increase with reported GPS accuracy so we use a value based on best GPs perfomrance // plus a margin for manoeuvres. It is better to reject GPS horizontal velocity errors early for (uint8_t i=0; i<=1; i++) R_OBS_DATA_CHECKS[i] = sq(constrain_float(frontend._gpsHorizVelNoise, 0.05f, 5.0f)) + sq(frontend.gpsNEVelVarAccScale * accNavMag); for (uint8_t i=2; i<=5; i++) R_OBS_DATA_CHECKS[i] = R_OBS[i]; // if vertical GPS velocity data is being used, check to see if the GPS vertical velocity and barometer // innovations have the same sign and are outside limits. If so, then it is likely aliasing is affecting // the accelerometers and we should disable the GPS and barometer innovation consistency checks. if (useGpsVertVel && fuseVelData && (imuSampleTime_ms - lastHgtReceived_ms) < (2 * frontend.hgtAvg_ms)) { // calculate innovations for height and vertical GPS vel measurements float hgtErr = stateStruct.position.z - observation[5]; float velDErr = stateStruct.velocity.z - observation[2]; // check if they are the same sign and both more than 3-sigma out of bounds if ((hgtErr*velDErr > 0.0f) && (sq(hgtErr) > 9.0f * (P[8][8] + R_OBS_DATA_CHECKS[5])) && (sq(velDErr) > 9.0f * (P[5][5] + R_OBS_DATA_CHECKS[2]))) { badIMUdata = true; } else { badIMUdata = false; } } // calculate innovations and check GPS data validity using an innovation consistency check // test position measurements if (fusePosData) { // test horizontal position measurements innovVelPos[3] = stateStruct.position.x - observation[3]; innovVelPos[4] = stateStruct.position.y - observation[4]; varInnovVelPos[3] = P[6][6] + R_OBS_DATA_CHECKS[3]; varInnovVelPos[4] = P[7][7] + R_OBS_DATA_CHECKS[4]; // apply an innovation consistency threshold test, but don't fail if bad IMU data float maxPosInnov2 = sq(frontend._gpsPosInnovGate)*(varInnovVelPos[3] + varInnovVelPos[4]); posTestRatio = (sq(innovVelPos[3]) + sq(innovVelPos[4])) / maxPosInnov2; posHealth = ((posTestRatio < 1.0f) || badIMUdata); // declare a timeout condition if we have been too long without data or not aiding posTimeout = (((imuSampleTime_ms - lastPosPassTime_ms) > gpsRetryTime) || PV_AidingMode == AID_NONE); // use position data if healthy, timed out, or in constant position mode if (posHealth || posTimeout || (PV_AidingMode == AID_NONE)) { posHealth = true; // only reset the failed time and do glitch timeout checks if we are doing full aiding if (PV_AidingMode == AID_ABSOLUTE) { lastPosPassTime_ms = imuSampleTime_ms; // if timed out or outside the specified uncertainty radius, increment the offset applied to GPS data to compensate for large GPS position jumps if (posTimeout || ((varInnovVelPos[3] + varInnovVelPos[4]) > sq(float(frontend._gpsGlitchRadiusMax)))) { gpsPosGlitchOffsetNE.x += innovVelPos[3]; gpsPosGlitchOffsetNE.y += innovVelPos[4]; // limit the radius of the offset and decay the offset to zero radially decayGpsOffset(); // reset the position to the current GPS position which will include the glitch correction offset ResetPosition(); // reset the velocity to the GPS velocity ResetVelocity(); // don't fuse data on this time step fusePosData = false; // Reset the normalised innovation to avoid false failing the bad position fusion test posTestRatio = 0.0f; velTestRatio = 0.0f; } } } else { posHealth = false; } } // test velocity measurements if (fuseVelData) { // test velocity measurements uint8_t imax = 2; // Don't fuse vertical velocity observations if inhibited by the user or if we are using synthetic data if (frontend._fusionModeGPS >= 1 || PV_AidingMode != AID_ABSOLUTE) { imax = 1; } float innovVelSumSq = 0; // sum of squares of velocity innovations float varVelSum = 0; // sum of velocity innovation variances for (uint8_t i = 0; i<=imax; i++) { // velocity states start at index 3 stateIndex = i + 3; // calculate innovations using blended and single IMU predicted states velInnov[i] = stateStruct.velocity[i] - observation[i]; // blended // calculate innovation variance varInnovVelPos[i] = P[stateIndex][stateIndex] + R_OBS_DATA_CHECKS[i]; // sum the innovation and innovation variances innovVelSumSq += sq(velInnov[i]); varVelSum += varInnovVelPos[i]; } // apply an innovation consistency threshold test, but don't fail if bad IMU data // calculate the test ratio velTestRatio = innovVelSumSq / (varVelSum * sq(frontend._gpsVelInnovGate)); // fail if the ratio is greater than 1 velHealth = ((velTestRatio < 1.0f) || badIMUdata); // declare a timeout if we have not fused velocity data for too long or not aiding velTimeout = (((imuSampleTime_ms - lastVelPassTime_ms) > gpsRetryTime) || PV_AidingMode == AID_NONE); // if data is healthy or in constant velocity mode we fuse it if (velHealth || velTimeout) { velHealth = true; // restart the timeout count lastVelPassTime_ms = imuSampleTime_ms; } else if (velTimeout && !posHealth && PV_AidingMode == AID_ABSOLUTE) { // if data is not healthy and timed out and position is unhealthy and we are using aiding, we reset the velocity, but do not fuse data on this time step ResetVelocity(); fuseVelData = false; // Reset the normalised innovation to avoid false failing the bad position fusion test velTestRatio = 0.0f; } else { // if data is unhealthy and position is healthy, we do not fuse it velHealth = false; } } // test height measurements if (fuseHgtData) { // calculate height innovations innovVelPos[5] = stateStruct.position.z - observation[5]; varInnovVelPos[5] = P[8][8] + R_OBS_DATA_CHECKS[5]; // calculate the innovation consistency test ratio hgtTestRatio = sq(innovVelPos[5]) / (sq(frontend._hgtInnovGate) * varInnovVelPos[5]); // fail if the ratio is > 1, but don't fail if bad IMU data hgtHealth = ((hgtTestRatio < 1.0f) || badIMUdata); hgtTimeout = (imuSampleTime_ms - lastHgtPassTime_ms) > hgtRetryTime_ms; // Fuse height data if healthy or timed out or in constant position mode if (hgtHealth || hgtTimeout || (PV_AidingMode == AID_NONE)) { hgtHealth = true; lastHgtPassTime_ms = imuSampleTime_ms; // if timed out, reset the height, but do not fuse data on this time step if (hgtTimeout) { ResetHeight(); fuseHgtData = false; } } else { hgtHealth = false; } } // set range for sequential fusion of velocity and position measurements depending on which data is available and its health if (fuseVelData && velHealth) { fuseData[0] = true; fuseData[1] = true; if (useGpsVertVel) { fuseData[2] = true; } tiltErrVec.zero(); } if (fusePosData && posHealth) { fuseData[3] = true; fuseData[4] = true; tiltErrVec.zero(); } if (fuseHgtData && hgtHealth) { fuseData[5] = true; } // fuse measurements sequentially for (obsIndex=0; obsIndex<=5; obsIndex++) { if (fuseData[obsIndex]) { stateIndex = 3 + obsIndex; // calculate the measurement innovation, using states from a different time coordinate if fusing height data // adjust scaling on GPS measurement noise variances if not enough satellites if (obsIndex <= 2) { innovVelPos[obsIndex] = stateStruct.velocity[obsIndex] - observation[obsIndex]; R_OBS[obsIndex] *= sq(gpsNoiseScaler); } else if (obsIndex == 3 || obsIndex == 4) { innovVelPos[obsIndex] = stateStruct.position[obsIndex-3] - observation[obsIndex]; R_OBS[obsIndex] *= sq(gpsNoiseScaler); } else { innovVelPos[obsIndex] = stateStruct.position[obsIndex-3] - observation[obsIndex]; if (obsIndex == 5) { const float gndMaxBaroErr = 4.0f; const float gndBaroInnovFloor = -0.5f; if(getTouchdownExpected()) { // when a touchdown is expected, floor the barometer innovation at gndBaroInnovFloor // constrain the correction between 0 and gndBaroInnovFloor+gndMaxBaroErr // this function looks like this: // |/ //---------|--------- // ____/| // / | // / | innovVelPos[5] += constrain_float(-innovVelPos[5]+gndBaroInnovFloor, 0.0f, gndBaroInnovFloor+gndMaxBaroErr); } } } // calculate the Kalman gain and calculate innovation variances varInnovVelPos[obsIndex] = P[stateIndex][stateIndex] + R_OBS[obsIndex]; SK = 1.0f/varInnovVelPos[obsIndex]; for (uint8_t i= 0; i<=15; i++) { Kfusion[i] = P[i][stateIndex]*SK; } // inhibit magnetic field state estimation by setting Kalman gains to zero if (!inhibitMagStates) { for (uint8_t i = 16; i<=21; i++) { Kfusion[i] = P[i][stateIndex]*SK; } } else { for (uint8_t i = 16; i<=21; i++) { Kfusion[i] = 0.0f; } } // inhibit wind state estimation by setting Kalman gains to zero if (!inhibitWindStates) { Kfusion[22] = P[22][stateIndex]*SK; Kfusion[23] = P[23][stateIndex]*SK; } else { Kfusion[22] = 0.0f; Kfusion[23] = 0.0f; } // zero the attitude error state - by definition it is assumed to be zero before each observaton fusion stateStruct.angErr.zero(); // calculate state corrections and re-normalise the quaternions for states predicted using the blended IMU data // Don't apply corrections to Z bias state as this has been done already as part of the single IMU calculations for (uint8_t i = 0; i<=stateIndexLim; i++) { statesArray[i] = statesArray[i] - Kfusion[i] * innovVelPos[obsIndex]; } // the first 3 states represent the angular misalignment vector. This is // is used to correct the estimated quaternion stateStruct.quat.rotate(stateStruct.angErr); // sum the attitude error from velocity and position fusion only // used as a metric for convergence monitoring if (obsIndex != 5) { tiltErrVec += stateStruct.angErr; } // update the covariance - take advantage of direct observation of a single state at index = stateIndex to reduce computations // this is a numerically optimised implementation of standard equation P = (I - K*H)*P; for (uint8_t i= 0; i<=stateIndexLim; i++) { for (uint8_t j= 0; j<=stateIndexLim; j++) { KHP[i][j] = Kfusion[i] * P[stateIndex][j]; } } for (uint8_t i= 0; i<=stateIndexLim; i++) { for (uint8_t j= 0; j<=stateIndexLim; j++) { P[i][j] = P[i][j] - KHP[i][j]; } } } } } // force the covariance matrix to be symmetrical and limit the variances to prevent ill-condiioning. ForceSymmetry(); ConstrainVariances(); // stop performance timer hal.util->perf_end(_perf_FuseVelPosNED); } /******************************************************** * MISC FUNCTIONS * ********************************************************/ #endif // HAL_CPU_CLASS