#pragma once /// @file AC_PID.h /// @brief Generic PID algorithm, with EEPROM-backed storage of constants. #include #include #include #include #include #define AC_PID_TFILT_HZ_DEFAULT 0.0f // default input filter frequency #define AC_PID_EFILT_HZ_DEFAULT 0.0f // default input filter frequency #define AC_PID_DFILT_HZ_DEFAULT 20.0f // default input filter frequency #define AC_PID_RESET_TC 0.16f // Time constant for integrator reset decay to zero #include "AP_PIDInfo.h" /// @class AC_PID /// @brief Copter PID control class class AC_PID { public: // Constructor for PID AC_PID(float initial_p, float initial_i, float initial_d, float initial_ff, float initial_imax, float initial_filt_T_hz, float initial_filt_E_hz, float initial_filt_D_hz, float initial_srmax=0, float initial_srtau=1.0); CLASS_NO_COPY(AC_PID); // update_all - set target and measured inputs to PID controller and calculate outputs // target and error are filtered // the derivative is then calculated and filtered // the integral is then updated based on the setting of the limit flag float update_all(float target, float measurement, float dt, bool limit = false, float boost = 1.0f); // update_error - set error input to PID controller and calculate outputs // target is set to zero and error is set and filtered // the derivative then is calculated and filtered // the integral is then updated based on the setting of the limit flag // Target and Measured must be set manually for logging purposes. // todo: remove function when it is no longer used. float update_error(float error, float dt, bool limit = false); // update_i - update the integral // if the limit flag is set the integral is only allowed to shrink void update_i(float dt, bool limit); // get_pid - get results from pid controller float get_pid() const; float get_pi() const; float get_p() const; float get_i() const; float get_d() const; float get_ff(); // reset_I - reset the integrator void reset_I(); // reset_filter - input filter will be reset to the next value provided to set_input() void reset_filter() { _flags._reset_filter = true; } // load gain from eeprom void load_gains(); // save gain to eeprom void save_gains(); /// operator function call for easy initialisation void operator()(float p_val, float i_val, float d_val, float ff_val, float imax_val, float input_filt_T_hz, float input_filt_E_hz, float input_filt_D_hz); // get accessors AP_Float &kP() { return _kp; } AP_Float &kI() { return _ki; } AP_Float &kD() { return _kd; } AP_Float &kIMAX() { return _kimax; } AP_Float &ff() { return _kff;} AP_Float &filt_T_hz() { return _filt_T_hz; } AP_Float &filt_E_hz() { return _filt_E_hz; } AP_Float &filt_D_hz() { return _filt_D_hz; } AP_Float &slew_limit() { return _slew_rate_max; } float imax() const { return _kimax.get(); } float get_filt_T_alpha(float dt) const; float get_filt_E_alpha(float dt) const; float get_filt_D_alpha(float dt) const; // set accessors void kP(const float v) { _kp.set(v); } void kI(const float v) { _ki.set(v); } void kD(const float v) { _kd.set(v); } void ff(const float v) { _kff.set(v); } void imax(const float v) { _kimax.set(fabsf(v)); } void filt_T_hz(const float v); void filt_E_hz(const float v); void filt_D_hz(const float v); void slew_limit(const float v); // set the desired and actual rates (for logging purposes) void set_target_rate(float target) { _pid_info.target = target; } void set_actual_rate(float actual) { _pid_info.actual = actual; } // integrator setting functions void set_integrator(float target, float measurement, float i); void set_integrator(float error, float i); void set_integrator(float i); void relax_integrator(float integrator, float dt, float time_constant); // set slew limiter scale factor void set_slew_limit_scale(int8_t scale) { _slew_limit_scale = scale; } // return current slew rate of slew limiter. Will return 0 if SMAX is zero float get_slew_rate(void) const { return _slew_limiter.get_slew_rate(); } const AP_PIDInfo& get_pid_info(void) const { return _pid_info; } // parameter var table static const struct AP_Param::GroupInfo var_info[]; // the time constant tau is not currently configurable, but is set // as an AP_Float to make it easy to make it configurable for a // single user of AC_PID by adding the parameter in the param // table of the parent class. It is made public for this reason AP_Float _slew_rate_tau; protected: // parameters AP_Float _kp; AP_Float _ki; AP_Float _kd; AP_Float _kff; AP_Float _kimax; AP_Float _filt_T_hz; // PID target filter frequency in Hz AP_Float _filt_E_hz; // PID error filter frequency in Hz AP_Float _filt_D_hz; // PID derivative filter frequency in Hz AP_Float _slew_rate_max; SlewLimiter _slew_limiter{_slew_rate_max, _slew_rate_tau}; // flags struct ac_pid_flags { bool _reset_filter :1; // true when input filter should be reset during next call to set_input } _flags; // internal variables float _integrator; // integrator value float _target; // target value to enable filtering float _error; // error value to enable filtering float _derivative; // derivative value to enable filtering int8_t _slew_limit_scale; AP_PIDInfo _pid_info; };