#include "Rover.h" /* allow for runtime change of control channel ordering */ void Rover::set_control_channels(void) { channel_steer = RC_Channels::rc_channel(rcmap.roll()-1); channel_throttle = RC_Channels::rc_channel(rcmap.throttle()-1); channel_learn = RC_Channels::rc_channel(g.learn_channel-1); // set rc channel ranges channel_steer->set_angle(SERVO_MAX); channel_throttle->set_angle(100); SRV_Channels::set_angle(SRV_Channel::k_steering, SERVO_MAX); SRV_Channels::set_angle(SRV_Channel::k_throttle, 100); // left/right throttle as -1000 to 1000 values SRV_Channels::set_angle(SRV_Channel::k_throttleLeft, 1000); SRV_Channels::set_angle(SRV_Channel::k_throttleRight, 1000); // For a rover safety is TRIM throttle if (!arming.is_armed() && arming.arming_required() == AP_Arming::YES_MIN_PWM) { SRV_Channels::set_safety_limit(SRV_Channel::k_throttle, SRV_Channel::SRV_CHANNEL_LIMIT_TRIM); if (have_skid_steering()) { SRV_Channels::set_safety_limit(SRV_Channel::k_steering, SRV_Channel::SRV_CHANNEL_LIMIT_TRIM); } } // setup correct scaling for ESCs like the UAVCAN PX4ESC which // take a proportion of speed. Default to 1000 to 2000 for systems without // a k_throttle output hal.rcout->set_esc_scaling(1000, 2000); g2.servo_channels.set_esc_scaling_for(SRV_Channel::k_throttle); } void Rover::init_rc_in() { // set rc dead zones channel_steer->set_default_dead_zone(30); channel_throttle->set_default_dead_zone(30); // set auxiliary ranges update_aux(); } void Rover::init_rc_out() { SRV_Channels::output_trim_all(); // setup PWM values to send if the FMU firmware dies SRV_Channels::setup_failsafe_trim_all(); // output throttle trim when safety off if arming // is setup for min on disarm. MIN is from plane where MIN is effectively no throttle. // For Rover's no throttle means TRIM as rovers can go backwards i.e. MIN throttle is // full speed backward. if (arming.arming_required() == AP_Arming::YES_MIN_PWM) { SRV_Channels::set_safety_limit(SRV_Channel::k_throttle, SRV_Channel::SRV_CHANNEL_LIMIT_TRIM); if (have_skid_steering()) { SRV_Channels::set_safety_limit(SRV_Channel::k_steering, SRV_Channel::SRV_CHANNEL_LIMIT_TRIM); } } } /* check for driver input on rudder/steering stick for arming/disarming */ void Rover::rudder_arm_disarm_check() { // In Rover we need to check that its set to the throttle trim and within the DZ // if throttle is not within trim dz, then pilot cannot rudder arm/disarm if (!channel_throttle->in_trim_dz()) { rudder_arm_timer = 0; return; } // if not in a manual throttle mode then disallow rudder arming/disarming if (auto_throttle_mode) { rudder_arm_timer = 0; return; } if (!arming.is_armed()) { // when not armed, full right rudder starts arming counter if (channel_steer->get_control_in() > 4000) { const uint32_t now = millis(); if (rudder_arm_timer == 0 || now - rudder_arm_timer < 3000) { if (rudder_arm_timer == 0) { rudder_arm_timer = now; } } else { // time to arm! arm_motors(AP_Arming::RUDDER); rudder_arm_timer = 0; } } else { // not at full right rudder rudder_arm_timer = 0; } } else if (!motor_active() & !have_skid_steering()) { // when armed and motor not active (not moving), full left rudder starts disarming counter // This is disabled for skid steering otherwise when tring to turn a skid steering rover around // the rover would disarm if (channel_steer->get_control_in() < -4000) { const uint32_t now = millis(); if (rudder_arm_timer == 0 || now - rudder_arm_timer < 3000) { if (rudder_arm_timer == 0) { rudder_arm_timer = now; } } else { // time to disarm! disarm_motors(); rudder_arm_timer = 0; } } else { // not at full left rudder rudder_arm_timer = 0; } } } void Rover::read_radio() { if (!hal.rcin->new_input()) { // check if we lost RC link control_failsafe(channel_throttle->get_radio_in()); return; } failsafe.last_valid_rc_ms = AP_HAL::millis(); // read the RC value RC_Channels::set_pwm_all(); // check that RC value are valid control_failsafe(channel_throttle->get_radio_in()); // copy RC scaled inputs to outputs SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, channel_throttle->get_control_in()); SRV_Channels::set_output_scaled(SRV_Channel::k_steering, channel_steer->get_control_in()); // Check if the throttle value is above 50% and we need to nudge // Make sure its above 50% in the direction we are travelling if ((abs(SRV_Channels::get_output_scaled(SRV_Channel::k_throttle)) > 50) && (((SRV_Channels::get_output_scaled(SRV_Channel::k_throttle) < 0) && in_reverse) || ((SRV_Channels::get_output_scaled(SRV_Channel::k_throttle) > 0) && !in_reverse))) { throttle_nudge = (g.throttle_max - g.throttle_cruise) * ((fabsf(channel_throttle->norm_input()) - 0.5f) / 0.5f); } else { throttle_nudge = 0; } // apply RC skid steer mixing if (g.skid_steer_in) { // convert the two radio_in values from skid steering values /* mixing rule: steering = motor1 - motor2 throttle = 0.5*(motor1 + motor2) motor1 = throttle + 0.5*steering motor2 = throttle - 0.5*steering */ const float motor1 = channel_steer->norm_input(); const float motor2 = channel_throttle->norm_input(); const float steering_scaled = motor1 - motor2; const float throttle_scaled = 0.5f * (motor1 + motor2); int16_t steer = channel_steer->get_radio_trim(); int16_t thr = channel_throttle->get_radio_trim(); if (steering_scaled > 0.0f) { steer += steering_scaled * (channel_steer->get_radio_max()-channel_steer->get_radio_trim()); } else { steer += steering_scaled * (channel_steer->get_radio_trim()-channel_steer->get_radio_min()); } if (throttle_scaled > 0.0f) { thr += throttle_scaled * (channel_throttle->get_radio_max()-channel_throttle->get_radio_trim()); } else { thr += throttle_scaled * (channel_throttle->get_radio_trim()-channel_throttle->get_radio_min()); } channel_steer->set_pwm(steer); channel_throttle->set_pwm(thr); } // check if we try to do RC arm/disarm rudder_arm_disarm_check(); } void Rover::control_failsafe(uint16_t pwm) { if (!g.fs_throttle_enabled) { // no throttle failsafe return; } // Check for failsafe condition based on loss of GCS control if (rc_override_active) { failsafe_trigger(FAILSAFE_EVENT_RC, (millis() - failsafe.rc_override_timer) > 1500); } else if (g.fs_throttle_enabled) { bool failed = pwm < static_cast(g.fs_throttle_value); if (AP_HAL::millis() - failsafe.last_valid_rc_ms > 2000) { failed = true; } failsafe_trigger(FAILSAFE_EVENT_THROTTLE, failed); } } /* return true if throttle level is below throttle failsafe threshold or RC input is invalid */ bool Rover::throttle_failsafe_active(void) { if (!g.fs_throttle_enabled) { return false; } if (millis() - failsafe.last_valid_rc_ms > 1000) { // we haven't had a valid RC frame for 1 seconds return true; } if (channel_throttle->get_reverse()) { return channel_throttle->get_radio_in() >= g.fs_throttle_value; } return channel_throttle->get_radio_in() <= g.fs_throttle_value; } void Rover::trim_control_surfaces() { read_radio(); // Store control surface trim values // --------------------------------- if (channel_steer->get_radio_in() > 1400) { channel_steer->set_radio_trim(channel_steer->get_radio_in()); // save to eeprom channel_steer->save_eeprom(); } } void Rover::trim_radio() { for (int y = 0; y < 30; y++) { read_radio(); } trim_control_surfaces(); }