// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- // Code to Write and Read packets from DataFlash log memory // Code to interact with the user to dump or erase logs #define HEAD_BYTE1 0xA3 // Decimal 163 #define HEAD_BYTE2 0x95 // Decimal 149 #define END_BYTE 0xBA // Decimal 186 // These are function definitions so the Menu can be constructed before the functions // are defined below. Order matters to the compiler. static int8_t print_log_menu(uint8_t argc, const Menu::arg *argv); static int8_t dump_log(uint8_t argc, const Menu::arg *argv); static int8_t erase_logs(uint8_t argc, const Menu::arg *argv); static int8_t select_logs(uint8_t argc, const Menu::arg *argv); // This is the help function // PSTR is an AVR macro to read strings from flash memory // printf_P is a version of print_f that reads from flash memory static int8_t help_log(uint8_t argc, const Menu::arg *argv) { Serial.printf_P(PSTR("\n" "Commands:\n" " dump " " erase (all logs)\n" " enable | all\n" " disable | all\n" "\n")); } // Creates a constant array of structs representing menu options // and stores them in Flash memory, not RAM. // User enters the string in the console to call the functions on the right. // See class Menu in AP_Coommon for implementation details const struct Menu::command log_menu_commands[] PROGMEM = { {"dump", dump_log}, {"erase", erase_logs}, {"enable", select_logs}, {"disable", select_logs}, {"help", help_log} }; // A Macro to create the Menu MENU2(log_menu, "Log", log_menu_commands, print_log_menu); static bool print_log_menu(void) { int log_start; int log_end; byte last_log_num = get_num_logs(); Serial.printf_P(PSTR("logs enabled: ")); if (0 == g.log_bitmask) { Serial.printf_P(PSTR("none")); }else{ if (g.log_bitmask & MASK_LOG_ATTITUDE_FAST) Serial.printf_P(PSTR(" ATTITUDE_FAST")); if (g.log_bitmask & MASK_LOG_ATTITUDE_MED) Serial.printf_P(PSTR(" ATTITUDE_MED")); if (g.log_bitmask & MASK_LOG_GPS) Serial.printf_P(PSTR(" GPS")); if (g.log_bitmask & MASK_LOG_PM) Serial.printf_P(PSTR(" PM")); if (g.log_bitmask & MASK_LOG_CTUN) Serial.printf_P(PSTR(" CTUN")); if (g.log_bitmask & MASK_LOG_NTUN) Serial.printf_P(PSTR(" NTUN")); if (g.log_bitmask & MASK_LOG_RAW) Serial.printf_P(PSTR(" RAW")); if (g.log_bitmask & MASK_LOG_CMD) Serial.printf_P(PSTR(" CMD")); if (g.log_bitmask & MASK_LOG_CURRENT) Serial.printf_P(PSTR(" CURRENT")); } Serial.println(); if (last_log_num == 0) { Serial.printf_P(PSTR("\nNo logs\n")); }else{ Serial.printf_P(PSTR("\n%d logs\n"), last_log_num); for(int i = 1; i < last_log_num + 1; i++) { get_log_boundaries(last_log_num, i, log_start, log_end); //Serial.printf_P(PSTR("last_num %d "), last_log_num); Serial.printf_P(PSTR("Log # %d, start %d, end %d\n"), i, log_start, log_end); } Serial.println(); } return(true); } static int8_t dump_log(uint8_t argc, const Menu::arg *argv) { byte dump_log; int dump_log_start; int dump_log_end; byte last_log_num = get_num_logs(); //Serial.printf_P(PSTR("\n%d logs\n"), last_log_num); // check that the requested log number can be read dump_log = argv[1].i; if (/*(argc != 2) || */(dump_log < 1) || (dump_log > last_log_num)) { Serial.printf_P(PSTR("bad log # %d\n"), dump_log); return(-1); //Log_Read(1, 4095); return (0); } get_log_boundaries(last_log_num, dump_log, dump_log_start, dump_log_end); /*Serial.printf_P(PSTR("Dumping Log number %d, start %d, end %d\n"), dump_log, dump_log_start, dump_log_end); */ Log_Read(dump_log_start, dump_log_end); //Serial.printf_P(PSTR("Done\n")); return (0); } static int8_t erase_logs(uint8_t argc, const Menu::arg *argv) { //for(int i = 10 ; i > 0; i--) { // Serial.printf_P(PSTR("ATTENTION - Erasing log in %d seconds.\n"), i); // delay(1000); //} // lay down a bunch of "log end" messages. Serial.printf_P(PSTR("\nErasing log...\n")); for(int j = 1; j < 4096; j++) DataFlash.PageErase(j); DataFlash.StartWrite(1); DataFlash.WriteByte(HEAD_BYTE1); DataFlash.WriteByte(HEAD_BYTE2); DataFlash.WriteByte(LOG_INDEX_MSG); DataFlash.WriteByte(0); DataFlash.WriteByte(END_BYTE); DataFlash.FinishWrite(); Serial.printf_P(PSTR("\nLog erased.\n")); return (0); } static int8_t select_logs(uint8_t argc, const Menu::arg *argv) { uint16_t bits; if (argc != 2) { Serial.printf_P(PSTR("missing log type\n")); return(-1); } bits = 0; // Macro to make the following code a bit easier on the eye. // Pass it the capitalised name of the log option, as defined // in defines.h but without the LOG_ prefix. It will check for // that name as the argument to the command, and set the bit in // bits accordingly. // if (!strcasecmp_P(argv[1].str, PSTR("all"))) { bits = ~(bits = 0); } else { #define TARG(_s) if (!strcasecmp_P(argv[1].str, PSTR(#_s))) bits |= MASK_LOG_ ## _s TARG(ATTITUDE_FAST); TARG(ATTITUDE_MED); TARG(GPS); TARG(PM); TARG(CTUN); TARG(NTUN); TARG(MODE); TARG(RAW); TARG(CMD); TARG(CURRENT); #undef TARG } if (!strcasecmp_P(argv[0].str, PSTR("enable"))) { g.log_bitmask.set_and_save(g.log_bitmask | bits); }else{ g.log_bitmask.set_and_save(g.log_bitmask & ~bits); } return(0); } int8_t process_logs(uint8_t argc, const Menu::arg *argv) { log_menu.run(); } // finds out how many logs are available byte get_num_logs(void) { int page = 1; byte data; byte log_step = 0; DataFlash.StartRead(1); while (page == 1) { data = DataFlash.ReadByte(); switch(log_step){ //This is a state machine to read the packets case 0: if(data==HEAD_BYTE1) // Head byte 1 log_step++; break; case 1: if(data==HEAD_BYTE2) // Head byte 2 log_step++; else log_step = 0; break; case 2: if(data == LOG_INDEX_MSG){ byte num_logs = DataFlash.ReadByte(); //Serial.printf("num_logs, %d\n", num_logs); return num_logs; }else{ //Serial.printf("* %d\n", data); log_step = 0; // Restart, we have a problem... } break; } page = DataFlash.GetPage(); } return 0; } // send the number of the last log? void start_new_log() { byte num_existing_logs = get_num_logs(); int start_pages[50]; int end_pages[50]; if(num_existing_logs > 0){ for(int i = 0; i < num_existing_logs; i++) { get_log_boundaries(num_existing_logs, i + 1, start_pages[i], end_pages[i]); } end_pages[num_existing_logs - 1] = find_last_log_page(start_pages[num_existing_logs - 1]); } if((end_pages[num_existing_logs - 1] < 4095) && (num_existing_logs < MAX_NUM_LOGS /*50*/)) { if(num_existing_logs > 0) start_pages[num_existing_logs] = end_pages[num_existing_logs - 1] + 1; else start_pages[0] = 2; num_existing_logs++; DataFlash.StartWrite(1); DataFlash.WriteByte(HEAD_BYTE1); DataFlash.WriteByte(HEAD_BYTE2); DataFlash.WriteByte(LOG_INDEX_MSG); DataFlash.WriteByte(num_existing_logs); for(int i = 0; i < MAX_NUM_LOGS; i++) { DataFlash.WriteInt(start_pages[i]); DataFlash.WriteInt(end_pages[i]); } DataFlash.WriteByte(END_BYTE); DataFlash.FinishWrite(); DataFlash.StartWrite(start_pages[num_existing_logs - 1]); }else{ gcs.send_text_P(SEVERITY_LOW,PSTR(" Logs full")); } } // All log data is stored in page 1? void get_log_boundaries(byte num_logs, byte log_num, int &start_page, int &end_page) { int page = 1; byte data; byte log_step = 0; // start reading at page 1, // XXX not 0? DataFlash.StartRead(page); while (page == 1) { data = DataFlash.ReadByte(); switch(log_step){ //This is a state machine to read the packets case 0: if(data==HEAD_BYTE1) // Head byte 1 log_step++; break; case 1: if(data==HEAD_BYTE2) // Head byte 2 log_step++; else log_step = 0; break; case 2: if(data == LOG_INDEX_MSG){ byte num_logs = DataFlash.ReadByte(); for(int i = 0; i < log_num; i++) { start_page = DataFlash.ReadInt(); end_page = DataFlash.ReadInt(); //Serial.printf("log %d, start page:%d, end page:%d\n",i, start_page, end_page); } // what is this? // if(log_num == num_logs) end_page = find_last_log_page(start_page); return; // This is the normal exit point }else{ log_step=0; // Restart, we have a problem... } break; } page = DataFlash.GetPage(); } if(page > 1){ Serial.printf("page er:%d\n", page); } // Error condition if we reach here with page = 2 TO DO - report condition } // int find_last_log_page(int bottom_page) { int top_page = 4096; int look_page; long check; while((top_page - bottom_page) > 1) { look_page = (top_page + bottom_page) / 2; DataFlash.StartRead(look_page); check = DataFlash.ReadLong(); //Serial.printf("look page:%d, check:%d\n", look_page, check); if(check == 0xFFFFFFFF) top_page = look_page; else bottom_page = look_page; } return top_page; } // Write an GPS packet. Total length : 30 bytes void Log_Write_GPS() { DataFlash.WriteByte(HEAD_BYTE1); DataFlash.WriteByte(HEAD_BYTE2); DataFlash.WriteByte(LOG_GPS_MSG); DataFlash.WriteLong(g_gps->time); // 1 DataFlash.WriteByte(g_gps->fix); // 2 DataFlash.WriteByte(g_gps->num_sats); // 3 DataFlash.WriteLong(current_loc.lat); // 4 DataFlash.WriteLong(current_loc.lng); // 5 DataFlash.WriteLong(g_gps->altitude); // 6 DataFlash.WriteLong(current_loc.alt); // 7 DataFlash.WriteInt(g_gps->ground_speed); // 8 DataFlash.WriteInt((uint16_t)g_gps->ground_course); // 9 DataFlash.WriteByte(END_BYTE); } // Read a GPS packet void Log_Read_GPS() { Serial.printf_P(PSTR("GPS, %ld, %d, %d, " "%4.7f, %4.7f, %4.4f, %4.4f, " "%d, %u\n"), DataFlash.ReadLong(), // 1 time (int)DataFlash.ReadByte(), // 2 fix (int)DataFlash.ReadByte(), // 3 sats (float)DataFlash.ReadLong() / t7, // 4 lat (float)DataFlash.ReadLong() / t7, // 5 lon (float)DataFlash.ReadLong() / 100.0, // 6 gps alt (float)DataFlash.ReadLong() / 100.0, // 7 sensor alt DataFlash.ReadInt(), // 8 ground speed (uint16_t)DataFlash.ReadInt()); // 9 ground course } // Write an raw accel/gyro data packet. Total length : 28 bytes #if HIL_MODE != HIL_MODE_ATTITUDE void Log_Write_Raw() { Vector3f gyro = imu.get_gyro(); Vector3f accel = imu.get_accel(); gyro *= t7; // Scale up for storage as long integers accel *= t7; DataFlash.WriteByte(HEAD_BYTE1); DataFlash.WriteByte(HEAD_BYTE2); DataFlash.WriteByte(LOG_RAW_MSG); DataFlash.WriteLong((long)gyro.x); DataFlash.WriteLong((long)gyro.y); DataFlash.WriteLong((long)gyro.z); DataFlash.WriteLong((long)accel.x); DataFlash.WriteLong((long)accel.y); DataFlash.WriteLong((long)accel.z); DataFlash.WriteByte(END_BYTE); } #endif void Log_Write_Current() { DataFlash.WriteByte(HEAD_BYTE1); DataFlash.WriteByte(HEAD_BYTE2); DataFlash.WriteByte(LOG_CURRENT_MSG); DataFlash.WriteInt(g.rc_3.control_in); DataFlash.WriteLong(throttle_integrator); DataFlash.WriteInt((int)(battery_voltage * 100.0)); DataFlash.WriteInt((int)(current_amps * 100.0)); DataFlash.WriteInt((int)current_total); DataFlash.WriteByte(END_BYTE); } // Read a Current packet void Log_Read_Current() { Serial.printf_P(PSTR("CURR: %d, %ld, %4.4f, %4.4f, %d\n"), DataFlash.ReadInt(), DataFlash.ReadLong(), ((float)DataFlash.ReadInt() / 100.f), ((float)DataFlash.ReadInt() / 100.f), DataFlash.ReadInt()); } void Log_Write_Nav_Tuning() { Matrix3f tempmat = dcm.get_dcm_matrix(); DataFlash.WriteByte(HEAD_BYTE1); DataFlash.WriteByte(HEAD_BYTE2); DataFlash.WriteByte(LOG_NAV_TUNING_MSG); DataFlash.WriteInt((int)wp_distance); // 1 DataFlash.WriteByte(wp_verify_byte); // 2 DataFlash.WriteInt((int)(target_bearing/100)); // 3 DataFlash.WriteInt((int)(nav_bearing/100)); // 4 DataFlash.WriteInt((int)long_error); // 5 DataFlash.WriteInt((int)lat_error); // 6 DataFlash.WriteInt((int)nav_lon); // 7 DataFlash.WriteInt((int)nav_lat); // 8 DataFlash.WriteByte(END_BYTE); } void Log_Read_Nav_Tuning() { // 1 2 3 4 Serial.printf_P(PSTR( "NTUN, %d, %d, %d, %d, " "%d, %d, %d, %d\n"), DataFlash.ReadInt(), //distance DataFlash.ReadByte(), //bitmask DataFlash.ReadInt(), //target bearing DataFlash.ReadInt(), DataFlash.ReadInt(), DataFlash.ReadInt(), DataFlash.ReadInt(), DataFlash.ReadInt()); //nav bearing } // Write a control tuning packet. Total length : 22 bytes #if HIL_MODE != HIL_MODE_ATTITUDE void Log_Write_Control_Tuning() { DataFlash.WriteByte(HEAD_BYTE1); DataFlash.WriteByte(HEAD_BYTE2); DataFlash.WriteByte(LOG_CONTROL_TUNING_MSG); // Control DataFlash.WriteInt((int)(g.rc_4.control_in/100)); DataFlash.WriteInt((int)(g.rc_4.servo_out/100)); // yaw DataFlash.WriteByte(yaw_debug); DataFlash.WriteInt((int)(dcm.yaw_sensor/100)); DataFlash.WriteInt((int)(nav_yaw/100)); DataFlash.WriteInt((int)yaw_error/100); DataFlash.WriteInt((int)(omega.z * 100)); // Alt hold DataFlash.WriteInt((int)(g.rc_3.servo_out)); DataFlash.WriteInt((int)sonar_alt); // DataFlash.WriteInt((int)baro_alt); // DataFlash.WriteInt((int)next_WP.alt); // DataFlash.WriteInt((int)altitude_error); // DataFlash.WriteInt((int)g.pid_sonar_throttle.get_integrator()); DataFlash.WriteByte(END_BYTE); } #endif // Read an control tuning packet void Log_Read_Control_Tuning() { Serial.printf_P(PSTR( "CTUN, %d, %d, " "%d, %d, %d, %d, %1.4f, " "%d, %d, %d, %d, %d, %d\n"), // Control DataFlash.ReadInt(), DataFlash.ReadInt(), // yaw (int)DataFlash.ReadByte(), DataFlash.ReadInt(), DataFlash.ReadInt(), DataFlash.ReadInt(), (float)DataFlash.ReadInt(),// Gyro Rate // Alt Hold DataFlash.ReadInt(), DataFlash.ReadInt(), DataFlash.ReadInt(), DataFlash.ReadInt(), DataFlash.ReadInt(), DataFlash.ReadInt()); } // Write a performance monitoring packet. Total length : 19 bytes void Log_Write_Performance() { DataFlash.WriteByte(HEAD_BYTE1); DataFlash.WriteByte(HEAD_BYTE2); DataFlash.WriteByte(LOG_PERFORMANCE_MSG); DataFlash.WriteLong( millis()- perf_mon_timer); DataFlash.WriteInt( mainLoop_count); DataFlash.WriteInt( G_Dt_max); DataFlash.WriteByte( dcm.gyro_sat_count); DataFlash.WriteByte( imu.adc_constraints); DataFlash.WriteByte( dcm.renorm_sqrt_count); DataFlash.WriteByte( dcm.renorm_blowup_count); DataFlash.WriteByte( gps_fix_count); DataFlash.WriteInt( (int)(dcm.get_health() * 1000)); //PM, 20005, 3742, 10,0,0,0,0,89,1000, DataFlash.WriteByte(END_BYTE); } // Read a performance packet void Log_Read_Performance() { long pm_time; int logvar; Serial.printf_P(PSTR("PM,")); pm_time = DataFlash.ReadLong(); Serial.print(pm_time); Serial.print(comma); for (int y = 1; y < 9; y++) { if(y < 3 || y > 7){ logvar = DataFlash.ReadInt(); }else{ logvar = DataFlash.ReadByte(); } Serial.print(logvar); Serial.print(comma); } Serial.println(" "); } // Write a command processing packet. //void Log_Write_Cmd(byte num, byte id, byte p1, long alt, long lat, long lng) void Log_Write_Cmd(byte num, struct Location *wp) { DataFlash.WriteByte(HEAD_BYTE1); DataFlash.WriteByte(HEAD_BYTE2); DataFlash.WriteByte(LOG_CMD_MSG); DataFlash.WriteByte(g.waypoint_total); DataFlash.WriteByte(num); DataFlash.WriteByte(wp->id); DataFlash.WriteByte(wp->options); DataFlash.WriteByte(wp->p1); DataFlash.WriteLong(wp->alt); DataFlash.WriteLong(wp->lat); DataFlash.WriteLong(wp->lng); DataFlash.WriteByte(END_BYTE); } //CMD, 3, 0, 16, 8, 1, 800, 340440192, -1180692736 // Read a command processing packet void Log_Read_Cmd() { Serial.printf_P(PSTR( "CMD, %d, %d, %d, %d, %d, %ld, %ld, %ld\n"), // WP total DataFlash.ReadByte(), // num, id, p1, options DataFlash.ReadByte(), DataFlash.ReadByte(), DataFlash.ReadByte(), DataFlash.ReadByte(), // Alt, lat long DataFlash.ReadLong(), DataFlash.ReadLong(), DataFlash.ReadLong()); } // Write an attitude packet. Total length : 10 bytes void Log_Write_Attitude() { DataFlash.WriteByte(HEAD_BYTE1); DataFlash.WriteByte(HEAD_BYTE2); DataFlash.WriteByte(LOG_ATTITUDE_MSG); DataFlash.WriteInt((int)dcm.roll_sensor); DataFlash.WriteInt((int)dcm.pitch_sensor); DataFlash.WriteInt((uint16_t)dcm.yaw_sensor); DataFlash.WriteByte(END_BYTE); } // Read an attitude packet void Log_Read_Attitude() { Serial.printf_P(PSTR("ATT, %d, %d, %u\n"), DataFlash.ReadInt(), DataFlash.ReadInt(), (uint16_t)DataFlash.ReadInt()); } // Write a mode packet. Total length : 5 bytes void Log_Write_Mode(byte mode) { DataFlash.WriteByte(HEAD_BYTE1); DataFlash.WriteByte(HEAD_BYTE2); DataFlash.WriteByte(LOG_MODE_MSG); DataFlash.WriteByte(mode); DataFlash.WriteInt((int)g.throttle_cruise); DataFlash.WriteByte(END_BYTE); } // Read a mode packet void Log_Read_Mode() { Serial.printf_P(PSTR("MOD:")); Serial.print(flight_mode_strings[DataFlash.ReadByte()]); Serial.printf_P(PSTR(", %d\n"),DataFlash.ReadInt()); } // Read a raw accel/gyro packet void Log_Read_Raw() { float logvar; Serial.printf_P(PSTR("RAW,")); for (int y = 0; y < 6; y++) { logvar = (float)DataFlash.ReadLong() / t7; Serial.print(logvar); Serial.print(comma); } Serial.println(" "); } // Read the DataFlash log memory : Packet Parser void Log_Read(int start_page, int end_page) { byte data; byte log_step = 0; int packet_count = 0; int page = start_page; DataFlash.StartRead(start_page); while (page < end_page && page != -1){ data = DataFlash.ReadByte(); // This is a state machine to read the packets switch(log_step){ case 0: if(data == HEAD_BYTE1) // Head byte 1 log_step++; break; case 1: if(data == HEAD_BYTE2) // Head byte 2 log_step++; else log_step = 0; break; case 2: if(data == LOG_ATTITUDE_MSG){ Log_Read_Attitude(); log_step++; }else if(data == LOG_MODE_MSG){ Log_Read_Mode(); log_step++; }else if(data == LOG_CONTROL_TUNING_MSG){ Log_Read_Control_Tuning(); log_step++; }else if(data == LOG_NAV_TUNING_MSG){ Log_Read_Nav_Tuning(); log_step++; }else if(data == LOG_PERFORMANCE_MSG){ Log_Read_Performance(); log_step++; }else if(data == LOG_RAW_MSG){ Log_Read_Raw(); log_step++; }else if(data == LOG_CMD_MSG){ Log_Read_Cmd(); log_step++; }else if(data == LOG_CURRENT_MSG){ Log_Read_Current(); log_step++; }else if(data == LOG_STARTUP_MSG){ //Log_Read_Startup(); log_step++; }else { if(data == LOG_GPS_MSG){ Log_Read_GPS(); log_step++; }else{ Serial.printf_P(PSTR("Error Reading Packet: %d\n"),packet_count); log_step = 0; // Restart, we have a problem... } } break; case 3: if(data == END_BYTE){ packet_count++; }else{ Serial.printf_P(PSTR("Error EB: %d\n"),data); } log_step = 0; // Restart sequence: new packet... break; } page = DataFlash.GetPage(); } //Serial.printf_P(PSTR("# of packets read: %d\n"), packet_count); }