#pragma once #include "AP_InertialSensor_config.h" // Gyro and Accelerometer calibration criteria #define AP_INERTIAL_SENSOR_ACCEL_TOT_MAX_OFFSET_CHANGE 4.0f #define AP_INERTIAL_SENSOR_ACCEL_MAX_OFFSET 250.0f #define AP_INERTIAL_SENSOR_ACCEL_VIBE_FLOOR_FILT_HZ 5.0f // accel vibration floor filter hz #define AP_INERTIAL_SENSOR_ACCEL_VIBE_FILT_HZ 2.0f // accel vibration filter hz #define AP_INERTIAL_SENSOR_ACCEL_PEAK_DETECT_TIMEOUT_MS 500 // peak-hold detector timeout #include /** maximum number of INS instances available on this platform. If more than 1 then redundant sensors may be available */ #ifndef INS_MAX_INSTANCES #define INS_MAX_INSTANCES 3 #endif #define INS_MAX_BACKENDS 2*INS_MAX_INSTANCES #define INS_MAX_NOTCHES 12 #ifndef INS_VIBRATION_CHECK_INSTANCES #if HAL_MEM_CLASS >= HAL_MEM_CLASS_300 #define INS_VIBRATION_CHECK_INSTANCES INS_MAX_INSTANCES #else #define INS_VIBRATION_CHECK_INSTANCES 1 #endif #endif #define XYZ_AXIS_COUNT 3 // The maximum we need to store is gyro-rate / loop-rate, worst case ArduCopter with BMI088 is 2000/400 #define INS_MAX_GYRO_WINDOW_SAMPLES 8 #define DEFAULT_IMU_LOG_BAT_MASK 0 #ifndef HAL_INS_TEMPERATURE_CAL_ENABLE #define HAL_INS_TEMPERATURE_CAL_ENABLE !HAL_MINIMIZE_FEATURES && BOARD_FLASH_SIZE > 1024 #endif #ifndef HAL_INS_NUM_HARMONIC_NOTCH_FILTERS #define HAL_INS_NUM_HARMONIC_NOTCH_FILTERS 2 #endif // time for the estimated gyro rates to converge #ifndef HAL_INS_CONVERGANCE_MS #define HAL_INS_CONVERGANCE_MS 30000 #endif #include #include #include #include #include #include #include #include #include #ifndef AP_SIM_INS_ENABLED #define AP_SIM_INS_ENABLED AP_SIM_ENABLED #endif #ifndef AP_SIM_INS_FILE_ENABLED #define AP_SIM_INS_FILE_ENABLED AP_SIM_ENABLED #endif class AP_InertialSensor_Backend; class AuxiliaryBus; class AP_AHRS; /* forward declare AP_Logger class. We can't include logger.h because of mutual dependencies */ class AP_Logger; /* AP_InertialSensor is an abstraction for gyro and accel measurements * which are correctly aligned to the body axes and scaled to SI units. * * Gauss-Newton accel calibration routines borrowed from Rolfe Schmidt * blog post describing the method: http://chionophilous.wordpress.com/2011/10/24/accelerometer-calibration-iv-1-implementing-gauss-newton-on-an-atmega/ * original sketch available at http://rolfeschmidt.com/mathtools/skimetrics/adxl_gn_calibration.pde */ class AP_InertialSensor : AP_AccelCal_Client { friend class AP_InertialSensor_Backend; public: AP_InertialSensor(); /* Do not allow copies */ CLASS_NO_COPY(AP_InertialSensor); static AP_InertialSensor *get_singleton(); enum Gyro_Calibration_Timing { GYRO_CAL_NEVER = 0, GYRO_CAL_STARTUP_ONLY = 1 }; /// Perform startup initialisation. /// /// Called to initialise the state of the IMU. /// /// Gyros will be calibrated unless INS_GYRO_CAL is zero /// /// @param style The initialisation startup style. /// void init(uint16_t sample_rate_hz); /// Register a new gyro/accel driver, allocating an instance /// number bool register_gyro(uint8_t &instance, uint16_t raw_sample_rate_hz, uint32_t id); bool register_accel(uint8_t &instance, uint16_t raw_sample_rate_hz, uint32_t id); // a function called by the main thread at the main loop rate: void periodic(); bool calibrate_trim(Vector3f &trim_rad); /// calibrating - returns true if the gyros or accels are currently being calibrated bool calibrating() const; /// calibrating - returns true if a temperature calibration is running bool temperature_cal_running() const; /// Perform cold-start initialisation for just the gyros. /// /// @note This should not be called unless ::init has previously /// been called, as ::init may perform other work /// void init_gyro(void); // get startup messages to output to the GCS bool get_output_banner(uint8_t instance_id, char* banner, uint8_t banner_len); /// Fetch the current gyro values /// /// @returns vector of rotational rates in radians/sec /// const Vector3f &get_gyro(uint8_t i) const { return _gyro[i]; } const Vector3f &get_gyro(void) const { return get_gyro(_primary_gyro); } // set gyro offsets in radians/sec const Vector3f &get_gyro_offsets(uint8_t i) const { return _gyro_offset[i]; } const Vector3f &get_gyro_offsets(void) const { return get_gyro_offsets(_primary_gyro); } //get delta angle if available bool get_delta_angle(uint8_t i, Vector3f &delta_angle, float &delta_angle_dt) const; bool get_delta_angle(Vector3f &delta_angle, float &delta_angle_dt) const { return get_delta_angle(_primary_gyro, delta_angle, delta_angle_dt); } //get delta velocity if available bool get_delta_velocity(uint8_t i, Vector3f &delta_velocity, float &delta_velocity_dt) const; bool get_delta_velocity(Vector3f &delta_velocity, float &delta_velocity_dt) const { return get_delta_velocity(_primary_accel, delta_velocity, delta_velocity_dt); } /// Fetch the current accelerometer values /// /// @returns vector of current accelerations in m/s/s /// const Vector3f &get_accel(uint8_t i) const { return _accel[i]; } const Vector3f &get_accel(void) const { return get_accel(_primary_accel); } // multi-device interface bool get_gyro_health(uint8_t instance) const { return (instance<_gyro_count) ? _gyro_healthy[instance] : false; } bool get_gyro_health(void) const { return get_gyro_health(_primary_gyro); } bool get_gyro_health_all(void) const; uint8_t get_gyro_count(void) const { return MIN(INS_MAX_INSTANCES, _gyro_count); } bool gyro_calibrated_ok(uint8_t instance) const { return _gyro_cal_ok[instance]; } bool gyro_calibrated_ok_all() const; bool use_gyro(uint8_t instance) const; Gyro_Calibration_Timing gyro_calibration_timing(); bool get_accel_health(uint8_t instance) const { return (instance<_accel_count) ? _accel_healthy[instance] : false; } bool get_accel_health(void) const { return get_accel_health(_primary_accel); } bool get_accel_health_all(void) const; uint8_t get_accel_count(void) const { return MIN(INS_MAX_INSTANCES, _accel_count); } bool accel_calibrated_ok_all() const; bool use_accel(uint8_t instance) const; // get observed sensor rates, including any internal sampling multiplier uint16_t get_gyro_rate_hz(uint8_t instance) const { return uint16_t(_gyro_raw_sample_rates[instance] * _gyro_over_sampling[instance]); } uint16_t get_accel_rate_hz(uint8_t instance) const { return uint16_t(_accel_raw_sample_rates[instance] * _accel_over_sampling[instance]); } // FFT support access #if HAL_WITH_DSP const Vector3f& get_gyro_for_fft(void) const { return _gyro_for_fft[_primary_gyro]; } FloatBuffer& get_raw_gyro_window(uint8_t instance, uint8_t axis) { return _gyro_window[instance][axis]; } FloatBuffer& get_raw_gyro_window(uint8_t axis) { return get_raw_gyro_window(_primary_gyro, axis); } uint16_t get_raw_gyro_rate_hz() const { return get_raw_gyro_rate_hz(_primary_gyro); } uint16_t get_raw_gyro_rate_hz(uint8_t instance) const { return _gyro_raw_sample_rates[_primary_gyro]; } bool has_fft_notch() const; #endif bool set_gyro_window_size(uint16_t size); // get accel offsets in m/s/s const Vector3f &get_accel_offsets(uint8_t i) const { return _accel_offset[i]; } const Vector3f &get_accel_offsets(void) const { return get_accel_offsets(_primary_accel); } // get accel scale const Vector3f &get_accel_scale(uint8_t i) const { return _accel_scale[i]; } const Vector3f &get_accel_scale(void) const { return get_accel_scale(_primary_accel); } // return a 3D vector defining the position offset of the IMU accelerometer in metres relative to the body frame origin const Vector3f &get_imu_pos_offset(uint8_t instance) const { return _accel_pos[instance]; } const Vector3f &get_imu_pos_offset(void) const { return _accel_pos[_primary_accel]; } // return the temperature if supported. Zero is returned if no // temperature is available float get_temperature(uint8_t instance) const { return _temperature[instance]; } /* get_delta_time returns the time period in seconds * overwhich the sensor data was collected */ float get_delta_time() const { return MIN(_delta_time, _loop_delta_t_max); } // return the maximum gyro drift rate in radians/s/s. This // depends on what gyro chips are being used float get_gyro_drift_rate(void) const { return ToRad(0.5f/60); } // update gyro and accel values from accumulated samples void update(void) __RAMFUNC__; // wait for a sample to be available void wait_for_sample(void) __RAMFUNC__; // class level parameters static const struct AP_Param::GroupInfo var_info[]; // set overall board orientation void set_board_orientation(enum Rotation orientation) { _board_orientation = orientation; } // return the selected loop rate at which samples are made avilable uint16_t get_loop_rate_hz(void) const { return _loop_rate; } // return the main loop delta_t in seconds float get_loop_delta_t(void) const { return _loop_delta_t; } bool healthy(void) const { return get_gyro_health() && get_accel_health(); } uint8_t get_primary_accel(void) const { return _primary_accel; } uint8_t get_primary_gyro(void) const { return _primary_gyro; } // get the gyro filter rate in Hz uint16_t get_gyro_filter_hz(void) const { return _gyro_filter_cutoff; } // get the accel filter rate in Hz uint16_t get_accel_filter_hz(void) const { return _accel_filter_cutoff; } // setup the notch for throttle based tracking bool setup_throttle_gyro_harmonic_notch(float center_freq_hz, float ref); // write out harmonic notch log messages void write_notch_log_messages() const; // indicate which bit in LOG_BITMASK indicates raw logging enabled void set_log_raw_bit(uint32_t log_raw_bit) { _log_raw_bit = log_raw_bit; } // Logging Functions void Write_IMU() const; void Write_Vibration() const; // calculate vibration levels and check for accelerometer clipping (called by a backends) void calc_vibration_and_clipping(uint8_t instance, const Vector3f &accel, float dt); // retrieve latest calculated vibration levels Vector3f get_vibration_levels() const { return get_vibration_levels(_primary_accel); } Vector3f get_vibration_levels(uint8_t instance) const; // retrieve and clear accelerometer clipping count uint32_t get_accel_clip_count(uint8_t instance) const; // check for vibration movement. True when all axis show nearly zero movement bool is_still(); AuxiliaryBus *get_auxiliary_bus(int16_t backend_id) { return get_auxiliary_bus(backend_id, 0); } AuxiliaryBus *get_auxiliary_bus(int16_t backend_id, uint8_t instance); void detect_backends(void); // accel peak hold detector void set_accel_peak_hold(uint8_t instance, const Vector3f &accel); float get_accel_peak_hold_neg_x() const { return _peak_hold_state.accel_peak_hold_neg_x; } //Returns accel calibrator interface object pointer AP_AccelCal* get_acal() const { return _acal; } // Returns body fixed accelerometer level data averaged during accel calibration's first step bool get_fixed_mount_accel_cal_sample(uint8_t sample_num, Vector3f& ret) const; // Returns primary accelerometer level data averaged during accel calibration's first step bool get_primary_accel_cal_sample_avg(uint8_t sample_num, Vector3f& ret) const; // Returns newly calculated trim values if calculated bool get_new_trim(Vector3f &trim_rad); #if HAL_INS_ACCELCAL_ENABLED // initialise and register accel calibrator // called during the startup of accel cal void acal_init(); // update accel calibrator void acal_update(); #endif // simple accel calibration #if HAL_GCS_ENABLED MAV_RESULT simple_accel_cal(); #endif bool accel_cal_requires_reboot() const { return _accel_cal_requires_reboot; } // return time in microseconds of last update() call uint32_t get_last_update_usec(void) const { return _last_update_usec; } // for killing an IMU for testing purposes void kill_imu(uint8_t imu_idx, bool kill_it); enum IMU_SENSOR_TYPE { IMU_SENSOR_TYPE_ACCEL = 0, IMU_SENSOR_TYPE_GYRO = 1, }; class BatchSampler { public: BatchSampler(const AP_InertialSensor &imu) : type(IMU_SENSOR_TYPE_ACCEL), _imu(imu) { AP_Param::setup_object_defaults(this, var_info); }; void init(); void sample(uint8_t instance, IMU_SENSOR_TYPE _type, uint64_t sample_us, const Vector3f &sample) __RAMFUNC__; // a function called by the main thread at the main loop rate: void periodic(); bool doing_sensor_rate_logging() const { return _doing_sensor_rate_logging; } bool doing_post_filter_logging() const { return (_doing_post_filter_logging && (post_filter || !_doing_sensor_rate_logging)) || (_doing_pre_post_filter_logging && post_filter); } // class level parameters static const struct AP_Param::GroupInfo var_info[]; // Parameters AP_Int16 _required_count; AP_Int8 _sensor_mask; AP_Int8 _batch_options_mask; // Parameters controlling pushing data to AP_Logger: // Each DF message is ~ 108 bytes in size, so we use about 1kB/s of // logging bandwidth with a 100ms interval. If we are taking // 1024 samples then we need to send 32 packets, so it will // take ~3 seconds to push a complete batch to the log. If // you are running a on an FMU with three IMUs then you // will loop back around to the first sensor after about // twenty seconds. AP_Int16 samples_per_msg; AP_Int8 push_interval_ms; // end Parameters private: enum batch_opt_t { BATCH_OPT_SENSOR_RATE = (1<<0), BATCH_OPT_POST_FILTER = (1<<1), BATCH_OPT_PRE_POST_FILTER = (1<<2), }; void rotate_to_next_sensor(); void update_doing_sensor_rate_logging(); bool should_log(uint8_t instance, IMU_SENSOR_TYPE type) __RAMFUNC__; void push_data_to_log(); // Logging functions bool Write_ISBH(const float sample_rate_hz) const; bool Write_ISBD() const; bool has_option(batch_opt_t option) const { return _batch_options_mask & uint16_t(option); } uint64_t measurement_started_us; bool initialised; bool isbh_sent; bool _doing_sensor_rate_logging; bool _doing_post_filter_logging; bool _doing_pre_post_filter_logging; uint8_t instance; // instance we are sending data for bool post_filter; // whether we are sending post-filter data AP_InertialSensor::IMU_SENSOR_TYPE type; uint16_t isb_seqnum; int16_t *data_x; int16_t *data_y; int16_t *data_z; uint16_t data_write_offset; // units: samples uint16_t data_read_offset; // units: samples uint32_t last_sent_ms; // all samples are multiplied by this uint16_t multiplier; // initialised as part of init() const AP_InertialSensor &_imu; }; BatchSampler batchsampler{*this}; #if HAL_EXTERNAL_AHRS_ENABLED // handle external AHRS data void handle_external(const AP_ExternalAHRS::ins_data_message_t &pkt); #endif #if HAL_INS_TEMPERATURE_CAL_ENABLE /* get a string representation of parameters that should be made persistent across changes of firmware type */ void get_persistent_params(ExpandingString &str) const; #endif // force save of current calibration as valid void force_save_calibration(void); // structure per harmonic notch filter. This is public to allow for // easy iteration class HarmonicNotch { public: HarmonicNotchFilterParams params; HarmonicNotchFilterVector3f filter[INS_MAX_INSTANCES]; uint8_t num_dynamic_notches; // the current center frequency for the notch float calculated_notch_freq_hz[INS_MAX_NOTCHES]; uint8_t num_calculated_notch_frequencies; // Update the harmonic notch frequency void update_notch_freq_hz(float scaled_freq); // Update the harmonic notch frequencies void update_notch_frequencies_hz(uint8_t num_freqs, const float scaled_freq[]); // runtime update of notch parameters void update_params(uint8_t instance, bool converging, float gyro_rate); // Update the harmonic notch frequencies void update_freq_hz(float scaled_freq); void update_frequencies_hz(uint8_t num_freqs, const float scaled_freq[]); // enable/disable the notch void set_inactive(bool _inactive) { inactive = _inactive; } bool is_inactive(void) const { return inactive; } private: // support for updating harmonic filter at runtime float last_center_freq_hz[INS_MAX_INSTANCES]; float last_bandwidth_hz[INS_MAX_INSTANCES]; float last_attenuation_dB[INS_MAX_INSTANCES]; bool inactive; } harmonic_notches[HAL_INS_NUM_HARMONIC_NOTCH_FILTERS]; private: // load backend drivers bool _add_backend(AP_InertialSensor_Backend *backend); void _start_backends(); AP_InertialSensor_Backend *_find_backend(int16_t backend_id, uint8_t instance); // gyro initialisation void _init_gyro(); // Calibration routines borrowed from Rolfe Schmidt // blog post describing the method: http://chionophilous.wordpress.com/2011/10/24/accelerometer-calibration-iv-1-implementing-gauss-newton-on-an-atmega/ // original sketch available at http://rolfeschmidt.com/mathtools/skimetrics/adxl_gn_calibration.pde bool _calculate_trim(const Vector3f &accel_sample, Vector3f &trim_rad); // save gyro calibration values to eeprom void _save_gyro_calibration(); // Logging function void Write_IMU_instance(const uint64_t time_us, const uint8_t imu_instance) const; // backend objects AP_InertialSensor_Backend *_backends[INS_MAX_BACKENDS]; // number of gyros and accel drivers. Note that most backends // provide both accel and gyro data, so will increment both // counters on initialisation uint8_t _gyro_count; uint8_t _accel_count; uint8_t _backend_count; // the selected loop rate at which samples are made available uint16_t _loop_rate; float _loop_delta_t; float _loop_delta_t_max; // Most recent accelerometer reading Vector3f _accel[INS_MAX_INSTANCES]; Vector3f _delta_velocity[INS_MAX_INSTANCES]; float _delta_velocity_dt[INS_MAX_INSTANCES]; bool _delta_velocity_valid[INS_MAX_INSTANCES]; // delta velocity accumulator Vector3f _delta_velocity_acc[INS_MAX_INSTANCES]; // time accumulator for delta velocity accumulator float _delta_velocity_acc_dt[INS_MAX_INSTANCES]; // Low Pass filters for gyro and accel LowPassFilter2pVector3f _accel_filter[INS_MAX_INSTANCES]; LowPassFilter2pVector3f _gyro_filter[INS_MAX_INSTANCES]; Vector3f _accel_filtered[INS_MAX_INSTANCES]; Vector3f _gyro_filtered[INS_MAX_INSTANCES]; #if HAL_WITH_DSP // Thread-safe public version of _last_raw_gyro Vector3f _gyro_for_fft[INS_MAX_INSTANCES]; Vector3f _last_gyro_for_fft[INS_MAX_INSTANCES]; FloatBuffer _gyro_window[INS_MAX_INSTANCES][XYZ_AXIS_COUNT]; uint16_t _gyro_window_size; // capture a gyro window after the filters LowPassFilter2pVector3f _post_filter_gyro_filter[INS_MAX_INSTANCES]; bool _post_filter_fft; uint8_t _fft_window_phase; #endif bool _new_accel_data[INS_MAX_INSTANCES]; bool _new_gyro_data[INS_MAX_INSTANCES]; // Most recent gyro reading Vector3f _gyro[INS_MAX_INSTANCES]; Vector3f _delta_angle[INS_MAX_INSTANCES]; float _delta_angle_dt[INS_MAX_INSTANCES]; bool _delta_angle_valid[INS_MAX_INSTANCES]; // time accumulator for delta angle accumulator float _delta_angle_acc_dt[INS_MAX_INSTANCES]; Vector3f _delta_angle_acc[INS_MAX_INSTANCES]; Vector3f _last_delta_angle[INS_MAX_INSTANCES]; Vector3f _last_raw_gyro[INS_MAX_INSTANCES]; // bitmask indicating if a sensor is doing sensor-rate sampling: uint8_t _accel_sensor_rate_sampling_enabled; uint8_t _gyro_sensor_rate_sampling_enabled; // multipliers for data supplied via sensor-rate logging: uint16_t _accel_raw_sampling_multiplier[INS_MAX_INSTANCES]; uint16_t _gyro_raw_sampling_multiplier[INS_MAX_INSTANCES]; // IDs to uniquely identify each sensor: shall remain // the same across reboots AP_Int32 _accel_id[INS_MAX_INSTANCES]; AP_Int32 _gyro_id[INS_MAX_INSTANCES]; // accelerometer scaling and offsets AP_Vector3f _accel_scale[INS_MAX_INSTANCES]; AP_Vector3f _accel_offset[INS_MAX_INSTANCES]; AP_Vector3f _gyro_offset[INS_MAX_INSTANCES]; // accelerometer position offset in body frame AP_Vector3f _accel_pos[INS_MAX_INSTANCES]; // accelerometer max absolute offsets to be used for calibration float _accel_max_abs_offsets[INS_MAX_INSTANCES]; // accelerometer and gyro raw sample rate in units of Hz float _accel_raw_sample_rates[INS_MAX_INSTANCES]; float _gyro_raw_sample_rates[INS_MAX_INSTANCES]; // how many sensors samples per notify to the backend uint8_t _accel_over_sampling[INS_MAX_INSTANCES]; uint8_t _gyro_over_sampling[INS_MAX_INSTANCES]; // last sample time in microseconds. Use for deltaT calculations // on non-FIFO sensors uint64_t _accel_last_sample_us[INS_MAX_INSTANCES]; uint64_t _gyro_last_sample_us[INS_MAX_INSTANCES]; // sample times for checking real sensor rate for FIFO sensors uint16_t _sample_accel_count[INS_MAX_INSTANCES]; uint32_t _sample_accel_start_us[INS_MAX_INSTANCES]; uint16_t _sample_gyro_count[INS_MAX_INSTANCES]; uint32_t _sample_gyro_start_us[INS_MAX_INSTANCES]; // temperatures for an instance if available float _temperature[INS_MAX_INSTANCES]; // filtering frequency (0 means default) AP_Int16 _accel_filter_cutoff; AP_Int16 _gyro_filter_cutoff; AP_Int8 _gyro_cal_timing; // use for attitude, velocity, position estimates AP_Int8 _use[INS_MAX_INSTANCES]; // control enable of fast sampling AP_Int8 _fast_sampling_mask; // control enable of fast sampling AP_Int8 _fast_sampling_rate; // control enable of detected sensors AP_Int8 _enable_mask; // board orientation from AHRS enum Rotation _board_orientation; // per-sensor orientation to allow for board type defaults at runtime enum Rotation _gyro_orientation[INS_MAX_INSTANCES]; enum Rotation _accel_orientation[INS_MAX_INSTANCES]; // calibrated_ok/id_ok flags bool _gyro_cal_ok[INS_MAX_INSTANCES]; bool _accel_id_ok[INS_MAX_INSTANCES]; // primary accel and gyro uint8_t _primary_gyro; uint8_t _primary_accel; // mask of accels and gyros which we will be actively using // and this should wait for in wait_for_sample() uint8_t _gyro_wait_mask; uint8_t _accel_wait_mask; // bitmask bit which indicates if we should log raw accel and gyro data uint32_t _log_raw_bit; // has wait_for_sample() found a sample? bool _have_sample:1; bool _backends_detected:1; // are gyros or accels currently being calibrated bool _calibrating_accel; bool _calibrating_gyro; // the delta time in seconds for the last sample float _delta_time; // last time a wait_for_sample() returned a sample uint32_t _last_sample_usec; // target time for next wait_for_sample() return uint32_t _next_sample_usec; // time between samples in microseconds uint32_t _sample_period_usec; // last time update() completed uint32_t _last_update_usec; // health of gyros and accels bool _gyro_healthy[INS_MAX_INSTANCES]; bool _accel_healthy[INS_MAX_INSTANCES]; uint32_t _accel_error_count[INS_MAX_INSTANCES]; uint32_t _gyro_error_count[INS_MAX_INSTANCES]; // vibration and clipping uint32_t _accel_clip_count[INS_MAX_INSTANCES]; LowPassFilterVector3f _accel_vibe_floor_filter[INS_VIBRATION_CHECK_INSTANCES]; LowPassFilterVector3f _accel_vibe_filter[INS_VIBRATION_CHECK_INSTANCES]; // peak hold detector state for primary accel struct PeakHoldState { float accel_peak_hold_neg_x; uint32_t accel_peak_hold_neg_x_age; } _peak_hold_state; // threshold for detecting stillness AP_Float _still_threshold; // Trim options AP_Int8 _acc_body_aligned; AP_Int8 _trim_option; static AP_InertialSensor *_singleton; AP_AccelCal* _acal; AccelCalibrator *_accel_calibrator; //save accelerometer bias and scale factors void _acal_save_calibrations() override; void _acal_event_failure() override; // Returns AccelCalibrator objects pointer for specified acceleromter AccelCalibrator* _acal_get_calibrator(uint8_t i) override { return i temp_filter; // double precision is needed for good results when we // span a wide range of temperatures PolyFit<4, double, Vector3f> pfit; } state[2]; void add_sample(const Vector3f &sample, float temperature, LearnState &state); void finish_calibration(float temperature); bool save_calibration(float temperature); void reset(float temperature); float start_temp; float start_tmax; uint32_t last_save_ms; TCal &tcal; uint8_t instance(void) const { return tcal.instance(); } Vector3f accel_start; }; AP_Enum enable; // get persistent params for this instance void get_persistent_params(ExpandingString &str) const; private: AP_Float temp_max; AP_Float temp_min; AP_Vector3f accel_coeff[3]; AP_Vector3f gyro_coeff[3]; Vector3f accel_tref; Vector3f gyro_tref; Learn *learn; void correct_sensor(float temperature, float cal_temp, const AP_Vector3f coeff[3], Vector3f &v) const; Vector3f polynomial_eval(float temperature, const AP_Vector3f coeff[3]) const; // get instance number uint8_t instance(void) const; }; // instance number for logging uint8_t tcal_instance(const TCal &tc) const { return &tc - &tcal[0]; } private: TCal tcal[INS_MAX_INSTANCES]; enum class TCalOptions : uint8_t { PERSIST_TEMP_CAL = (1U<<0), PERSIST_ACCEL_CAL = (1U<<1), }; // temperature that last calibration was run at AP_Float caltemp_accel[INS_MAX_INSTANCES]; AP_Float caltemp_gyro[INS_MAX_INSTANCES]; AP_Int32 tcal_options; bool tcal_learning; #endif }; namespace AP { AP_InertialSensor &ins(); };